Modular Springer Correspondence for classical groups

Karine Sorlin

Université de Picardie Jules Verne

13th March, 2012

- Introduction

G a connected reductive group over $\overline{\mathbb{F}}_p$, *p* a good prime for *G*. *W* Weyl group of *G*.

 ℓ a prime number distinct from p,

 $\mathbb K$ sufficiently large finite extension of $\mathbb Q_\ell,$

Springer Correspondence in characteristic 0 (1976)

 $\mathsf{Irr}\mathbb{K} W \hookrightarrow \mathfrak{P}_{\mathbb{K}}$

- ► IrrKW: set of representatives of isomorphism classes of simple KW-modules.
- 𝔅_K: set of pairs (x, ρ) up to G-conjugacy, where x is a nilpotent element of Lie(G) and ρ ∈ IrrKA(x).
 Where A(x) = C_G(x)/C_G(x)⁰.

- Introduction

G a connected reductive group over $\overline{\mathbb{F}}_p$, *p* a good prime for *G*. *W* Weyl group of *G*.

 ℓ a prime number distinct from p,

 $(\mathbb{K}, \mathbb{O}, \mathbb{F}) \ \ell$ -modular system:

 \mathbb{K} sufficiently large finite extension of \mathbb{Q}_{ℓ} ,

 $\mathbb O$ valuation ring, $\mathbb F$ residue field.

Springer Correspondence in characteristic ℓ (Juteau, 2007)

 $\mathsf{Irr}\mathbb{F}W \hookrightarrow \mathfrak{P}_{\mathbb{F}}$

- ► IrrFW: set of representatives of isomorphism classes of simple FW-modules.
- 𝔅𝔅_𝔅: set of pairs (x, ρ) up to G-conjugacy, where x is a nilpotent element of Lie(G) and ρ ∈ Irr𝔅A(x).
 Where A(x) = C_G(x)/C_G(x)⁰.

The Springer Correspondence in characteristic 0 was:

- explicitly determined in the case of classical groups by Shoji (1979).
- generalized by Lusztig to include all pairs (x, ρ) (1984).
- ► The Springer correspondence was used by Shoji in an algorithm which computes Green functions of a finite reductive group G^F, where G is a reductive group over F_p endowed with a F_q-rational structure (q = pⁿ) given by a Frobenius endomorphism F.

Introduction

- Subject of this talk: common work with Daniel Juteau (Université de Caen) and Cédric Lecouvey (Université de Tours).
- Our purpose was to determine explicitly the modular Springer correspondence for classical groups.
- Strategy: we used the explicit description of the Springer Correspondence in characteristic 0 and unitriangularity properties of the decomposition matrices (both for the Weyl group and perverse sheaves).

Modular Springer Correspondence for classical groups

Geometric construction of the Springer Correspondence

Geometric construction of the Springer Correspondence

Simple perverse sheaves on the nilpotent cone

Let $\mathcal{N} \subset \mathfrak{g} = \operatorname{Lie}(G)$ be the nilpotent cone.

Simple perverse sheaves on the nilpotent cone

Let $\mathcal{N} \subset \mathfrak{g} = \operatorname{Lie}(G)$ be the nilpotent cone.

 $(\mathbb{K}, \mathbb{O}, \mathbb{F})$ an ℓ -modular system as before, $\mathbb{E} = \mathbb{K}$ or \mathbb{F} . We consider the abelian category $\operatorname{Perv}_{G}(\mathcal{N}, \mathbb{E})$ of *G*-equivariant \mathbb{E} -perverse sheaves on \mathcal{N} . We recall the notation:

$$\mathfrak{P}_{\mathbb{E}} = \{(x,
ho) \text{ up to } G\text{-conjugacy } | x \in \mathcal{N},
ho \in \mathsf{Irr} \, \mathbb{E} A(x) \}$$

where $A(x) = C_G(x)/C_G(x)^0$.

Simple perverse sheaves on the nilpotent cone

Let $\mathcal{N} \subset \mathfrak{g} = \operatorname{Lie}(G)$ be the nilpotent cone.

 $(\mathbb{K}, \mathbb{O}, \mathbb{F})$ an ℓ -modular system as before, $\mathbb{E} = \mathbb{K}$ or \mathbb{F} . We consider the abelian category $\operatorname{Perv}_{G}(\mathcal{N}, \mathbb{E})$ of *G*-equivariant \mathbb{E} -perverse sheaves on \mathcal{N} . We recall the notation:

$$\mathfrak{P}_{\mathbb{E}} = \{(x,
ho) ext{ up to } G ext{-conjugacy } | x \in \mathcal{N},
ho \in \mathsf{Irr}\, \mathbb{E} \mathcal{A}(x) \}$$

where $A(x) = C_G(x)/C_G(x)^0$.

These pairs parametrize the simple objects in $\operatorname{Perv}_{G}(\mathcal{N}, \mathbb{E})$:

$$\mathfrak{P}_{\mathbb{E}} \simeq \operatorname{Irr} \operatorname{Perv}_{\mathcal{G}}(\mathcal{N}, \mathbb{E})$$

 $(x, \rho) \mapsto \operatorname{IC}_{\mathbb{E}}(x, \rho)$

Lusztig's construction (1981)

Let \mathcal{B} be the flag variety. Let $\tilde{\mathfrak{g}} = \{(x, B) \in \mathfrak{g} \times \mathcal{B} | x \in Lie(B)\}$ $\pi : \tilde{\mathfrak{g}} \to \mathfrak{g}$ projection onto the first factor

Lusztig's construction (1981)

Let \mathcal{B} be the flag variety. Let $\tilde{\mathfrak{g}} = \{(x, B) \in \mathfrak{g} \times \mathcal{B} | x \in Lie(B)\}\$ $\pi : \tilde{\mathfrak{g}} \to \mathfrak{g}$ projection onto the first factor We have a diagram with cartesian squares:

where \mathfrak{g}_{rs} is the open dense subset of regular semi-simple elements of $\mathfrak{g}.$

Lusztig's construction (1981)

Let \mathcal{B} be the flag variety. Let $\tilde{\mathfrak{g}} = \{(x, B) \in \mathfrak{g} \times \mathcal{B} | x \in Lie(B)\}\$ $\pi : \tilde{\mathfrak{g}} \to \mathfrak{g}$ projection onto the first factor We have a diagram with cartesian squares:

where \mathfrak{g}_{rs} is the open dense subset of regular semi-simple elements of \mathfrak{g} .

One can define an action of the Weyl group W on $K = \pi_* \mathbb{E}_{\tilde{\mathfrak{g}}}$. And $K|_{\mathcal{N}}[\dim(\mathcal{N})] \in \operatorname{Perv}_{\mathcal{G}}(\mathcal{N}, \mathbb{E})$.

In characteristic 0

Borho-MacPherson Theorem (1981)

1. $K[\dim(\mathcal{N})]|_{\mathcal{N}}$ is a semi-simple object in $\operatorname{Perv}_{G}(\mathcal{N},\mathbb{K})$ and

$$\mathcal{K}[\dim(\mathcal{N})]|_{\mathcal{N}}\simeq igoplus_{(x,
ho)\in\mathcal{P}_{\mathbb{K}}} V_{(x,
ho)}\otimes \mathsf{IC}(x,
ho)$$

2. For any $(x, \rho) \in \mathfrak{P}_{\mathbb{K}}$, we get $V_{(x, \rho)} \in \operatorname{Irr} \mathbb{K} W$ and we get an injective map

 $\mathsf{Irr}\,\mathbb{K} W \hookrightarrow \mathcal{P}_{\mathbb{K}}$

which is the Springer Correspondance over $\mathbb K.$

Proof based on the Beilinson-Bernstein-Deligne decomposition theorem of perverse sheaves.

A method one can still use in characteristic ℓ

Fourier-Deligne transform is an autoequivalence \mathcal{F} of the category $\operatorname{Perv}_{G}(\mathfrak{g},\mathbb{E})$ such that

 $\mathcal{F}(\mathsf{K}[\mathsf{dim}(\mathcal{N})]|_{\mathcal{N}})\simeq\mathsf{K}[\mathsf{dim}(\mathfrak{g})]$

Theorem ($\mathbb{E} = \mathbb{K}$ Brylinski (1986), $\mathbb{E} = \mathbb{F}$ Juteau (2007))

Using a Fourier-Deligne transform, on can define an injective map $\Psi_{\mathbb{E}}$: Irr $\mathbb{E}W \hookrightarrow \mathfrak{P}_{\mathbb{E}}$.

A method one can still use in characteristic ℓ

Fourier-Deligne transform is an autoequivalence \mathcal{F} of the category $\operatorname{Perv}_{G}(\mathfrak{g},\mathbb{E})$ such that

 $\mathcal{F}(\mathsf{K}[\mathsf{dim}(\mathcal{N})]|_{\mathcal{N}})\simeq\mathsf{K}[\mathsf{dim}(\mathfrak{g})]$

Theorem ($\mathbb{E} = \mathbb{K}$ Brylinski (1986), $\mathbb{E} = \mathbb{F}$ Juteau (2007))

Using a Fourier-Deligne transform, on can define an injective map $\Psi_{\mathbb{E}}$: Irr $\mathbb{E}W \hookrightarrow \mathfrak{P}_{\mathbb{E}}$.

The two versions of the Springer correspondence in char. 0 are related by tensoring with the sign character.

$$E \in \operatorname{Irr} \mathbb{K} W \mapsto E \otimes_{\mathbb{K}} Sgn \in \operatorname{Irr} \mathbb{K} W$$

Example: $G = GL_n(\overline{\mathbb{F}}_p)$

• $C_G(x)$ is connected for all $x \in \mathcal{N}$ and the group A(x) is trivial.

Example: $G = GL_n(\overline{\mathbb{F}}_p)$

- $C_G(x)$ is connected for all $x \in \mathcal{N}$ and the group A(x) is trivial.
- Nilpotent orbits are parametrized by partitions of n (via the Jordan normal form).
 Matrix () | n]
 - $\mathfrak{P}_{\mathbb{K}} \leftrightarrow \{\lambda \vdash n\}.$

Example: $G = GL_n(\mathbb{F}_p)$

- $C_G(x)$ is connected for all $x \in \mathcal{N}$ and the group A(x) is trivial.
- Nilpotent orbits are parametrized by partitions of n (via the Jordan normal form).
 Mathematical State () = n

 $\mathfrak{P}_{\mathbb{K}} \leftrightarrow \{\lambda \vdash n\}.$

▶ Here, *W* is the symmetric group \mathfrak{S}_n : The simple modules of $\mathbb{K}\mathfrak{S}_n$ are the Specht modules S^{λ} , for $\lambda \vdash n$.

Example: $G = GL_n(\overline{\mathbb{F}}_p)$

- $C_G(x)$ is connected for all $x \in \mathcal{N}$ and the group A(x) is trivial.
- Nilpotent orbits are parametrized by partitions of n (via the Jordan normal form).
 Mathematical descent of the mathe
 - $\mathfrak{P}_{\mathbb{K}} \leftrightarrow \{\lambda \vdash n\}.$
- Here, W is the symmetric group 𝔅_n: The simple modules of K𝔅_n are the Specht modules S^λ, for λ ⊢ n.

Springer correspondence in char. 0 for $GL_n(\overline{\mathbb{F}}_p)$

 $\Psi_{\mathbb{K}}$ is a bijection and maps $S^{\lambda} \in \operatorname{Irr} \mathbb{K}\mathfrak{S}_n$ to $\mathcal{O}_{\lambda^*} \in \mathcal{P}_{\mathbb{K}}$, where λ^* is the transpose partition of λ .

Modular Springer Correspondence for classical groups

 \square How to use the known results in characteristic 0 to solve the case of characteristic ℓ ?

How to use the known results in characteristic 0 to solve the case of characteristic ℓ ?

Decomposition matrix for the Weyl group W

As for any finite group, we can define for the Weyl group W an $\ell\text{-modular}$ decomposition matrix

$$D^W := (d^W_{E,F})_{E \in \operatorname{Irr} \mathbb{K} W, F \in \operatorname{Irr} \mathbb{F} W}$$

where $d_{E,F}^W$ is the composition multiplicity of the simple $\mathbb{F}W$ -module F in $\mathbb{F} \otimes_{\mathbb{O}} E_{\mathbb{O}}$, where $E_{\mathbb{O}}$ is some integral form of E. This is independent of the choice of $E_{\mathbb{O}}$.

Decomposition matrix for perverse sheaves (Juteau, 2007)

- For E ∈ {K, F}, Perv_G(N, E): category of G-equivariant E-perverse sheaves on N. Simple objects: IC(x, ρ) where (x, ρ) ∈ 𝔅_E
- One can define a decomposition matrix for G-equivariant perverse sheaves on N:

$$D^{\mathcal{N}} := (d^{\mathcal{N}}_{(x,
ho),(y,\sigma)})_{(x,
ho)\in\mathfrak{P}_{\mathbb{K}}, \ (y,\sigma)\in\mathfrak{P}_{\mathbb{F}}}$$

Where $d_{(x,\rho),(y,\sigma)}^{\mathcal{N}}$ is the composition multiplicity of $\mathbf{IC}(y,\sigma)$ in $\mathbb{F} \otimes_{\mathbb{O}}^{L} \mathbf{IC}(x,\rho_{\mathbb{O}})$ and $\rho_{\mathbb{O}}$ is some integral form of ρ .

$$D^W$$
 can be seen as a submatrix of D^N

Theorem (Juteau, 2007)

For $E \in \operatorname{Irr} \mathbb{K}W$ and $F \in \operatorname{Irr} \mathbb{F}W$, we have

$$d^{\mathcal{W}}_{E,F} = d^{\mathcal{N}}_{\Psi_{\mathbb{K}}(E),\Psi_{\mathbb{F}}(F)}.$$

Where $\Psi_{\mathbb{E}}$: Irr $\mathbb{E}W \to \mathfrak{P}_{\mathbb{E}}$ is the Springer correspondence over \mathbb{E} .

Till the end of this talk

We will suppose that $G = GL_n(\mathbb{K})$ or G is a classical group and that $\ell \neq 2$.

Then, ℓ does not divide |A(x)|, hence we can identify Irr $\mathbb{F}A(x)$ with Irr $\mathbb{K}A(x)$ and $\mathfrak{P}_{\mathbb{K}}$ with $\mathfrak{P}_{\mathbb{F}}$.

Unitriangularity of the decomposition matrix of perverse sheaves

Definition: partial order on the nilpotent orbits

 $\mathcal{O} \leq \mathcal{O}' \Leftrightarrow \mathcal{O} \subset \overline{\mathcal{O}'}$

 $D^{\mathcal{N}}$ has the following unitriangularity property:

Proposition (Juteau, 2007)

$$d_{(x,\rho),(y,\sigma)}^{\mathcal{N}} = \begin{cases} 0 & \text{ unless } \mathcal{O}_{y} \leq \mathcal{O}_{x}, \\ \delta_{\rho,\sigma} & \text{ if } y = x. \end{cases}$$

Where \mathcal{O}_x (resp. \mathcal{O}_y) is the orbit of x (resp. y).

Example: $GL_4(\overline{\mathbb{F}}_p)$, $\ell = 3$, $p \neq 3$

$$\begin{array}{cccc} & \overline{\chi_4} & \overline{\chi_{31}} & \overline{\chi_{1^4}} & \overline{\chi_{21^2}} \\ \chi_{31} & \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ \chi_{21^2} & \chi_{1^4} & \hline 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 \\ \hline \end{array} \right)$$

Decomposition matrix of \mathfrak{S}_4

$ \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \right) $ Decomposition matrix of \mathfrak{S}_4	D	$\stackrel{\overline{1^2}}{-}$	$\begin{array}{c} \overline{\chi_{22}} \\ 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{array}$	$ \overline{\chi_{1^4}} 0 0 1 0 1 1 $		x4 1 0 1 0 0 0		χ_4 χ_{31} χ_{2^2} χ_{21^2} χ_{1^4}
2^2 31 4	4	31	2 ²	1 ² 2	⁴ 2:	1		
0 0 0	0	0	0	C	L (1	14	χ4
0 0 0 Decomposition matrix $D^{\mathcal{N}}$	0	0	0	1	-		21 ²	χ_{31}
1 0 0	0	0	1				2 ²	χ_{2^2}
1 0	0	1					31	χ_{21^2}
1	1						4	χ_{1^4}

χ4	λ ((4 1 0	$\overline{\chi_{31}}$ 0	$\overline{\chi_{1^4}}$	$\overline{\chi_2}$ 0	$\overline{1^2}$	D	ecomposition matrix of \mathfrak{S}_4
$\begin{array}{c} \chi_{31} \\ \chi_{2^2} \end{array}$		1	0	1	0			
$\chi_{21^2} \ \chi_{1^4}$	(-	0	0	1	0	-)		
		$\begin{vmatrix} \chi_4 \\ 1^4 \end{vmatrix}$	21	2	2 ²	31	4	
χ4	1^{4}	1	0		0	0	0	
χ_{31}	21 ²		1		0	0	0	Decomposition matrix $D^{\mathcal{N}}$
χ_{2^2}	2 ²				1	0	0	
χ_{21^2}	31					1	0	
χ_{1^4}	4						1	

		7	$\overline{\chi_4}$	$\overline{\chi}$ 31	$\overline{\chi_{1^4}}$	$\overline{\chi_{22}}$	12		
	χ_4	(1	0	0	0		П	acomposition matrix of G
	χ_{31}		0	1	0	0		D	ecomposition matrix of O_4
	χ_{2^2}		1	0	1	0			
	χ_{21^2}		0	0	0	1			
	χ_{1^4}	(-	0	0	1	0	_/		
			$ \overline{\chi}_4 $	Ļ					
			14	21	2 2	<u>2</u> 2	31	4	
-	χ_4	1^{4}	1	0		0	0	0	
	χ_{31}	21 ²	0	1		0	0	0	Decomposition matrix $D^{\mathcal{N}}$
	χ_{2^2}	2 ²	1			1	0	0	
	χ_{21^2}	31	0				1	0	
	χ_{1^4}	4	0					1	

Example: $GL_4(\overline{\mathbb{F}}_p)$, $\ell = 3$, $p \neq 3$

	$\overline{\chi_4}$	$\overline{\chi}$ 31	$\overline{\chi_{1^4}}$	$\overline{\chi}_{21}$	2		
χ_{4}	(1	0	0	0		Л	ocompo
χ_{31}	0	1	0	0		D	ecompo
χ_{2^2}	1	0	1	0			
χ_{21^2}	0	0	0	1			
χ_{1^4}	$\sqrt{0}$	0	1	0	_/		
	2	$\overline{\chi}_4 \overline{\chi}_4$	$\overline{\lambda}_{31}$ $\overline{\lambda}$	14	$\overline{\chi}_{21^2}$		
		1 ⁴ 2	1^2 2	2 ²	31	4	
χ ₄ 1	4	1	0	0	0	0	
χ_{31} 21	1^2	0	1	0	0	0	Deco
χ_{2^2} 2	2	1	0	1	0	0	
χ_{21^2} 3	1	0	0	0	1	0	
χ_{1^4} Z	1	0	0	1	0	1	

Decomposition matrix of \mathfrak{S}_4

Decomposition matrix $D^{\mathcal{N}}$

	2	$\overline{\chi_4}$	$\overline{\chi_{31}}$	$\overline{\chi_{1^4}}$	$\overline{\chi}_2$	1 ²		
χ_4	(1	0	0	0		Л	acomposition matrix of G
χ_{31}		0	1	0	0		D	
χ_{2^2}		1	0	1	0			$\{\chi_4, \chi_{31}, \chi_{2^2}, \chi_{21^2}\}$
χ_{21^2}		0	0	0	1		1:	s called a basic set for \mathfrak{G}_4
χ_{1^4}	(-	0	0	1	0	_/		
		$ \overline{\chi} $	$\overline{\chi}_3$	B1 $\overline{\chi}$	14	$\overline{\chi}_{21^2}$		
		14	¹ 21	2 2	22	31	4	
χ4	14	1	C)	0	0	0	
χ_{31}	21 ²	0	1		0	0	0	Decomposition matrix $D^{\mathcal{N}}$
χ_{2^2}	2 ²	1	C)	1	0	0	
χ_{21^2}	31	0	C)	0	1	0	
χ_{1^4}	4	0	C)	1	0	1	

Modular Springer Correspondence for classical groups

Basic data, Springer basic data

Basic data, Springer basic data

Basic set datum

Definition

A basic set datum for W is a pair $\mathfrak{B} = (\leq, \beta)$, consisting of a partial order \leq on Irr $\mathbb{K}W$, and an injection β : Irr $\mathbb{F}W \hookrightarrow$ Irr $\mathbb{K}W$ such that:

$$\begin{split} & d^W_{\beta(F),F} = 1 \text{ for all } F \in \operatorname{Irr} \mathbb{F}W, \\ & d^W_{E,F} \neq 0 \Rightarrow E \leq \beta(F) \text{ for } E \in \operatorname{Irr} \mathbb{K}W, \ F \in \operatorname{Irr} \mathbb{F}W. \end{split}$$

Basic set datum

Definition

A basic set datum for W is a pair $\mathfrak{B} = (\leq, \beta)$, consisting of a partial order \leq on Irr $\mathbb{K}W$, and an injection β : Irr $\mathbb{F}W \hookrightarrow$ Irr $\mathbb{K}W$ such that:

$$d^W_{\beta(F),F} = 1$$
 for all $F \in \operatorname{Irr} \mathbb{F}W$,
 $d^W_{E,F} \neq 0 \Rightarrow E \leq \beta(F)$ for $E \in \operatorname{Irr} \mathbb{K}W, \ F \in \operatorname{Irr} \mathbb{F}W$.

Proposition

Let (\leq_1, β_1) and (\leq_2, β_2) be two basic set data for W. If \leq_2 is a finer order than \leq_1 , then, $\beta_1 = \beta_2$. Basic data, Springer basic data

Springer basic set datum

Definition: Springer order on Irr $\mathbb{K}W$

For $i \in \{1, 2\}$, let $E_i \in \operatorname{Irr} \mathbb{K}W$, and let us write $\Psi_{\mathbb{K}}(E_i) = (x_i, \rho_i)$. Then, $E_1 \leq^{\mathcal{N}} E_2 \iff (E_1 = E_2 \text{ or } \mathcal{O}_{x_2} < \mathcal{O}_{x_1})$ Basic data, Springer basic data

Springer basic set datum

Definition: Springer order on Irr $\mathbb{K}W$

For $i \in \{1, 2\}$, let $E_i \in \operatorname{Irr} \mathbb{K}W$, and let us write $\Psi_{\mathbb{K}}(E_i) = (x_i, \rho_i)$. Then, $E_1 \leq^{\mathcal{N}} E_2 \iff (E_1 = E_2 \text{ or } \mathcal{O}_{x_2} < \mathcal{O}_{x_1})$

Proposition

Let $F \in \operatorname{Irr} \mathbb{F}W$, and let us write $\Psi_{\mathbb{F}}(F) = (x, \sigma)$. Then there exists a unique $E \in \operatorname{Irr} \mathbb{K}W$ such that $\Psi_{\mathbb{K}}(E) = (x, \sigma)$.

Definition

We define the map $\beta^{\mathcal{N}}$: Irr $\mathbb{F}W \to$ Irr $\mathbb{K}W$ by the condition $\beta^{\mathcal{N}}(F) = E \Leftrightarrow \Psi_{\mathbb{F}}(F) = \Psi_{\mathbb{E}}(E).$

Basic data, Springer basic data

Springer basic set datum

Definition: Springer order on Irr $\mathbb{K}W$

For $i \in \{1, 2\}$, let $E_i \in \operatorname{Irr} \mathbb{K}W$, and let us write $\Psi_{\mathbb{K}}(E_i) = (x_i, \rho_i)$. Then, $E_1 \leq^{\mathcal{N}} E_2 \iff (E_1 = E_2 \text{ or } \mathcal{O}_{x_2} < \mathcal{O}_{x_1})$

Proposition

Let $F \in \operatorname{Irr} \mathbb{F}W$, and let us write $\Psi_{\mathbb{F}}(F) = (x, \sigma)$. Then there exists a unique $E \in \operatorname{Irr} \mathbb{K}W$ such that $\Psi_{\mathbb{K}}(E) = (x, \sigma)$.

Definition

We define the map $\beta^{\mathcal{N}}$: Irr $\mathbb{F}W \to$ Irr $\mathbb{K}W$ by the condition $\beta^{\mathcal{N}}(F) = E \Leftrightarrow \Psi_{\mathbb{F}}(F) = \Psi_{\mathbb{E}}(E).$

 $(\leq^{\mathcal{N}}, \beta^{\mathcal{N}})$ is a basic set datum for W, we will call it the **Springer** basic set datum for W.

The case of $GL_n(\overline{\mathbb{F}}_p)$

The decomposition matrix of \mathfrak{S}_n (James, 1976)

Irr $\mathbb{K}\mathfrak{S}_n = \{S^{\lambda}; \lambda \vdash n\}$ (Specht modules) S^{λ} is defined over \mathbb{Z} and is endowed with a scalar product which is also defined over \mathbb{Z} , and thus one can reduce them to get a module for $\mathbb{F}\mathfrak{S}_n$, still denoted by S^{λ} , endowed with a symmetric bilinear form f, which no longer needs to be non-degenerate. Then $S^{\lambda}/\operatorname{Ker}(f) = \begin{cases} D^{\lambda} \in \operatorname{Irr} \mathbb{F}\mathfrak{S}_n \text{ if } \lambda \text{ is } \ell\text{-regular} \\ 0 \text{ otherelse} \end{cases}$ Irr $\mathbb{F}\mathfrak{S}_n = \{D^{\lambda}; \ \lambda \vdash n \ \ell\text{-regular}\}$

The decomposition matrix of \mathfrak{S}_n (James, 1976)

Irr $\mathbb{K}\mathfrak{S}_n = \{S^{\lambda}; \lambda \vdash n\}$ (Specht modules) S^{λ} is defined over \mathbb{Z} and is endowed with a scalar product which is also defined over \mathbb{Z} , and thus one can reduce them to get a module for $\mathbb{F}\mathfrak{S}_n$, still denoted by S^{λ} , endowed with a symmetric bilinear form f, which no longer needs to be non-degenerate. Then $S^{\lambda}/\operatorname{Ker}(f) = \begin{cases} D^{\lambda} \in \operatorname{Irr} \mathbb{F}\mathfrak{S}_n \text{ if } \lambda \text{ is } \ell\text{-regular} \\ 0 \text{ otherelse} \end{cases}$ Irr $\mathbb{F}\mathfrak{S}_n = \{D^{\lambda}; \ \lambda \vdash n \ \ell\text{-regular}\}$

James basic set datum (\leq^{DJ}, β^{DJ})

- $S^{\lambda} \leq^{DJ} S^{\mu} \Leftrightarrow \lambda \leq \mu$ (dominance order)
- β^{DJ} : Irr $\mathbb{F}\mathfrak{S}_n \to \operatorname{Irr} \mathbb{K}\mathfrak{S}_n$ is defined by $\beta^{DJ}(D^{\lambda}) = S^{\lambda}$

Nilpotent orbits of GL_n: {O_λ, λ ⊢ n}. The orbit closure order is given by the dominance order on partitions.

- Nilpotent orbits of GL_n: {O_λ, λ ⊢ n}. The orbit closure order is given by the dominance order on partitions.
- $\Psi_{\mathbb{K}}$ maps $S^{\lambda} \in \mathsf{Irr} \, \mathbb{K} \mathfrak{S}_n$ to the orbit \mathcal{O}_{λ^*}

- Nilpotent orbits of GL_n: {O_λ, λ ⊢ n}. The orbit closure order is given by the dominance order on partitions.
- $\Psi_{\mathbb{K}}$ maps $S^{\lambda} \in \mathsf{Irr} \, \mathbb{K} \mathfrak{S}_n$ to the orbit \mathcal{O}_{λ^*}
- Springer order on Irr $\mathbb{K}\mathfrak{S}_n$:

$$S^{\lambda} \leq^{\mathcal{N}} S^{\mu} \Leftrightarrow \lambda = \mu \text{ or } \mathcal{O}_{\mu^*} < \mathcal{O}_{\lambda^*}$$

- Nilpotent orbits of GL_n: {O_λ, λ ⊢ n}. The orbit closure order is given by the dominance order on partitions.
- $\Psi_{\mathbb{K}}$ maps $S^{\lambda} \in \mathsf{Irr} \, \mathbb{K} \mathfrak{S}_n$ to the orbit \mathcal{O}_{λ^*}
- Springer order on Irr $\mathbb{K}\mathfrak{S}_n$:

$$S^{\lambda} \leq^{\mathcal{N}} S^{\mu} \Leftrightarrow \lambda = \mu \text{ or } \mathcal{O}_{\mu^*} < \mathcal{O}_{\lambda^*}$$

The Springer and James basic set data involve the same order relation, hence they coincide: $S^{\lambda} = β^{N}(D^{\lambda}) \text{ is the unique } E \in \operatorname{Irr} \mathbb{K} \mathfrak{S}_{n} \text{ such that}$ $\Psi_{\mathbb{F}}(D^{\lambda}) = \Psi_{\mathbb{K}}(E).$

 $\Box_{n}(\overline{\mathbb{F}}_{p})$

- Nilpotent orbits of GL_n: {O_λ, λ ⊢ n}. The orbit closure order is given by the dominance order on partitions.
- $\Psi_{\mathbb{K}}$ maps $S^{\lambda} \in \mathsf{Irr} \, \mathbb{K} \mathfrak{S}_n$ to the orbit \mathcal{O}_{λ^*}
- Springer order on Irr $\mathbb{K}\mathfrak{S}_n$:

$$S^{\lambda} \leq^{\mathcal{N}} S^{\mu} \Leftrightarrow \lambda = \mu \text{ or } \mathcal{O}_{\mu^*} < \mathcal{O}_{\lambda^*}$$

The Springer and James basic set data involve the same order relation, hence they coincide:
 S^λ = β^N(D^λ) is the unique E ∈ Irr K𝔅_n such that Ψ_𝔅(D^λ) = Ψ_𝔅(E).

Modular Springer correspondence for GL_n

$$\Psi_{\mathbb{F}}: D^{\mu} \in \operatorname{\mathsf{Irr}} \mathbb{F}\mathfrak{S}_n \mapsto \mathcal{O}_{\mu^*}$$

Modular Springer Correspondence for classical groups

 \Box The case of groups of type B or C

The case of groups of type B or C

Decomposition matrix for the Weyl group W_n of type B_n (Dipper-James, 1990)

Irr $\mathbb{K}W_n = { \mathbf{S}^{\boldsymbol{\lambda}} \mid \boldsymbol{\lambda} \in \mathfrak{Bip}_n }$, where \mathfrak{Bip}_n is the set of bipart. of *n*. Irr $\mathbb{F}W_n = { \mathbf{D}^{\boldsymbol{\lambda}} \mid \boldsymbol{\lambda} \in \mathfrak{Bip}_n^{(\ell)} }$, where $\mathfrak{Bip}_n^{(\ell)}$ is the set of $\boldsymbol{\lambda} = (\lambda^{(1)}, \lambda^{(2)}) \in \mathfrak{Bip}_n$ s.t. $\lambda^{(1)}$ and $\lambda^{(2)}$ are ℓ -regular.

Decomposition matrix for the Weyl group W_n of type B_n (Dipper-James, 1990)

Irr $\mathbb{K}W_n = { \mathbf{S}^{\boldsymbol{\lambda}} \mid \boldsymbol{\lambda} \in \mathfrak{Bip}_n }$, where \mathfrak{Bip}_n is the set of bipart. of *n*. Irr $\mathbb{F}W_n = { \mathbf{D}^{\boldsymbol{\lambda}} \mid \boldsymbol{\lambda} \in \mathfrak{Bip}_n^{(\ell)} }$, where $\mathfrak{Bip}_n^{(\ell)}$ is the set of $\boldsymbol{\lambda} = (\lambda^{(1)}, \lambda^{(2)}) \in \mathfrak{Bip}_n$ s.t. $\lambda^{(1)}$ and $\lambda^{(2)}$ are ℓ -regular.

Dipper-James order on bipartitions

$$oldsymbol{\lambda} \leq^{DJ} oldsymbol{\mu} \Leftrightarrow \left\{ egin{array}{c} |\lambda^{(i)}| = |\mu^{(i)}|, \ \lambda^{(i)} \leq \mu^{(i)} \end{array}
ight.$$
 for $i \in \{1,2\}$

Decomposition matrix for the Weyl group W_n of type B_n (Dipper-James, 1990)

Irr $\mathbb{K}W_n = \{\mathbf{S}^{\boldsymbol{\lambda}} \mid \boldsymbol{\lambda} \in \mathfrak{Bip}_n\}$, where \mathfrak{Bip}_n is the set of bipart. of *n*. Irr $\mathbb{F}W_n = \{\mathbf{D}^{\boldsymbol{\lambda}} \mid \boldsymbol{\lambda} \in \mathfrak{Bip}_n^{(\ell)}\}$, where $\mathfrak{Bip}_n^{(\ell)}$ is the set of $\boldsymbol{\lambda} = (\lambda^{(1)}, \lambda^{(2)}) \in \mathfrak{Bip}_n$ s.t. $\lambda^{(1)}$ and $\lambda^{(2)}$ are ℓ -regular.

Dipper-James order on bipartitions

$$oldsymbol{\lambda} \leq^{DJ} oldsymbol{\mu} \Leftrightarrow \left\{ egin{array}{c} |\lambda^{(i)}| = |\mu^{(i)}|, \ \lambda^{(i)} \leq \mu^{(i)} \end{array}
ight.$$
 for $i \in \{1,2\}$

Dipper-James basic set datum (\leq^{DJ}, β^{DJ})

- Order on Irr $\mathbb{K}W_n$ induced by \leq^{DJ} ,
- β^{DJ} : Irr $\mathbb{F}W_n \to \operatorname{Irr} \mathbb{K}W_n$ is defined by $\beta^{DJ}(\mathbf{D}^{\lambda}) := \mathbf{S}^{\lambda}$.

Springer correspondence in characteristic 0

Let *G* be a connected reductive group of type $X_n \in \{B_n, C_n\}$. $\mathfrak{P}_{\mathbb{K}}$ is then parametrized by a set **Symb**(X_n) of "symbols" which are some pairs (α, β) of finite increasing sequences of positive integers satisfying some specific conditions.

Springer correspondence in characteristic 0

Let *G* be a connected reductive group of type $X_n \in \{B_n, C_n\}$. $\mathfrak{P}_{\mathbb{K}}$ is then parametrized by a set **Symb**(X_n) of "symbols" which are some pairs (α, β) of finite increasing sequences of positive integers satisfying some specific conditions.

Combinatorial description of the Springer correspondence over \mathbbm{K} (Shoji, Lusztig)

$$\Lambda : \mathfrak{Bip}_n \hookrightarrow \mathbf{Symb}(X_n)$$

$$\begin{array}{l} \text{Example: type } \mathcal{C}_{3} \\ ((\lambda_{1}^{(1)} \leq \lambda_{2}^{(1)} \leq \lambda_{3}^{(1)} \leq \lambda_{4}^{(1)}), (\lambda_{1}^{(2)} \leq \lambda_{2}^{(2)} \leq \lambda_{3}^{(2)})) \in \mathfrak{Bip}_{3} \\ \mapsto \begin{pmatrix} \lambda_{1}^{(1)} & \lambda_{2}^{(1)} + 2 & \lambda_{3}^{(1)} + 4 & \lambda_{4}^{(1)} + 6 \\ \lambda_{1}^{(2)} + 1 & \lambda_{2}^{(2)} + 3 & \lambda_{3}^{(2)} + 5 \end{pmatrix} \in \text{Symb}(\mathcal{C}_{3}) \end{array}$$

Springer correspondence in characteristic 0

Let *G* be a connected reductive group of type $X_n \in \{B_n, C_n\}$. $\mathfrak{P}_{\mathbb{K}}$ is then parametrized by a set **Symb**(X_n) of "symbols" which are some pairs (α, β) of finite increasing sequences of positive integers satisfying some specific conditions.

Combinatorial description of the Springer correspondence over \mathbbm{K} (Shoji, Lusztig)

$$\Lambda : \mathfrak{Bip}_n \hookrightarrow \mathbf{Symb}(X_n)$$

Example: type C_3 $((\lambda_1^{(1)} \le \lambda_2^{(1)} \le \lambda_3^{(1)} \le \lambda_4^{(1)}), (\lambda_1^{(2)} \le \lambda_2^{(2)} \le \lambda_3^{(2)})) \in \mathfrak{Bip}_3$ $\mapsto \begin{pmatrix} \lambda_1^{(1)} & \lambda_2^{(1)} + 2 & \lambda_3^{(1)} + 4 & \lambda_4^{(1)} + 6 \\ & \lambda_1^{(2)} + 1 & \lambda_2^{(2)} + 3 & \lambda_3^{(2)} + 5 \end{pmatrix} \in \mathsf{Symb}(C_3)$

To get $\Psi_{\mathbb{K}}$, we first need to send $(\lambda^{(1)},\lambda^{(2)})$ to $(\lambda^{(2)*},\lambda^{(1)*})$

Springer order on Irr $\mathbb{K}W$

Using the Jordan canonical form, one can parametrize nilpotent orbits of a group of type $X_n \in \{B_n, C_n\}$ by some set $\mathcal{P}(X_n)$ of partitions.

Hence we get a combinatorial process which sends a bipartition of \mathfrak{Bip}_n to a partition of $\mathcal{P}(X_n)$.

Springer order on Irr $\mathbb{K}W$

Using the Jordan canonical form, one can parametrize nilpotent orbits of a group of type $X_n \in \{B_n, C_n\}$ by some set $\mathcal{P}(X_n)$ of partitions.

Hence we get a combinatorial process which sends a bipartition of \mathfrak{Bip}_n to a partition of $\mathcal{P}(X_n)$.

The orbit closure order on nilpotent orbits is still given by the dominance order on partitions.

By making use of the above combinatorial process, we can define on \mathfrak{Bip}_n the Springer order.

We would like to compare Dipper-James order and Springer order.

Bip ₃	$Symb(C_3)$	$\mathfrak{P}_{\mathbb{K}}$	Bip ₃	$Symb(C_3)$	$\mathfrak{P}_{\mathbb{K}}$
(3,-)	$\left(\begin{array}{rrr}0&2&4&9\\1&3&5\end{array}\right)$	(6, 1)	(1,2)	$\left(\begin{array}{rrr}0&2&4&7\\1&3&7\end{array}\right)$	(3 ² , 1)
(12, -)	$\left(\begin{array}{rrrr} 0 & 2 & 5 & 8 \\ 1 & 3 & 5 \end{array}\right)$	$(1^24, 1)$	$(1, 1^2)$	$\left(\begin{array}{ccc} 0 & 2 & 4 & 7 \\ 1 & 4 & 6 \end{array}\right)$	(1 ² 2 ² , 1)
$(1^{3}, -)$	$\left(\begin{array}{rrrr} 0 & 3 & 5 & 7 \\ 1 & 3 & 5 \end{array}\right)$	$(1^42, 1)$	(-,3)	$\left(\begin{array}{ccc} 0 & 2 & 4 & 6 \\ 1 & 3 & 8 \end{array}\right)$	
(2,1)	$\left(\begin{array}{ccc} 0 & 2 & 4 & 8 \\ 1 & 3 & 6 \end{array}\right)$	(24, 1)	(-,12)	$\left(\begin{array}{ccc} 0 & 2 & 4 & 6 \\ 1 & 4 & 7 \end{array}\right)$	
$(1^2, 1)$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$(2^3, 1)$	$(-,1^{3})$	$ \left(\begin{array}{ccc} 0 & 2 & 4 & 6\\ 2 & 4 & 6 \end{array}\right) $	$(1^{6}, 1)$

Bip ₃	$Symb(C_3)$	$\mathfrak{P}_{\mathbb{K}}$	Bip ₃	$Symb(C_3)$	$\mathfrak{P}_{\mathbb{K}}$
(3,-)	$\left(\begin{array}{rrr}0&2&4&9\\1&3&5\end{array}\right)$	(6, 1)	(1,2)	$\left(\begin{array}{rrr}0&2&4&7\\1&3&7\end{array}\right)$	(3 ² , 1)
(12, -)	$\left(\begin{array}{rrrr} 0 & 2 & 5 & 8 \\ 1 & 3 & 5 \end{array}\right)$	$(1^{2}4, 1)$	$(1, 1^2)$	$\left(\begin{array}{rrrr} 0 & 2 & 4 & 7 \\ 1 & 4 & 6 \end{array}\right)$	(1 ² 2 ² , 1)
$(1^{3}, -)$	$\left(\begin{array}{rrrr} 0 & 3 & 5 & 7 \\ 1 & 3 & 5 \end{array}\right)$	$(1^42, 1)$	(-,3)	$\left(\begin{array}{rrrr} 0 & 2 & 4 & 6 \\ 1 & 3 & 8 \end{array}\right)$	
(2,1)	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(24, 1)	(-,12)	$\left(\begin{array}{cccc} 0 & 2 & 4 & 6 \\ 1 & 4 & 7 \end{array}\right)$	
$(1^2, 1)$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$(2^3, 1)$	$(-,1^{3})$	$ \left(\begin{array}{ccc} 0 & 2 & 4 & 6\\ 2 & 4 & 6 \end{array}\right) $	$(1^{6}, 1)$

Bip ₃	$Symb(C_3)$	$\mathfrak{P}_{\mathbb{K}}$	Bip ₃	$Symb(C_3)$	$\mathfrak{P}_{\mathbb{K}}$
(3, -)	$\left(\begin{array}{rrr}0&2&4&9\\1&3&5\end{array}\right)$	(6, 1)	(1,2)	$\left(\begin{array}{rrr} 0 & 2 & 4 & 7 \\ 1 & 3 & 7 \end{array}\right)$	$(3^2, 1)$
(12, -)	$\left(\begin{array}{rrrr} 0 & 2 & 5 & 8 \\ 1 & 3 & 5 \end{array}\right)$	$(1^{2}4, 1)$	$(1, 1^2)$	$\left(\begin{array}{rrrr} 0 & 2 & 4 & 7 \\ 1 & 4 & 6 \end{array}\right)$	(1 ² 2 ² , 1)
$(1^3, -)$	$\left(\begin{array}{rrrr} 0 & 3 & 5 & 7 \\ 1 & 3 & 5 \end{array}\right)$	$(1^42, 1)$	(-,3)	$\left(\begin{array}{rrrr} 0 & 2 & 4 & 6 \\ 1 & 3 & 8 \end{array}\right)$	(24 , ε)
(2,1)	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	(24, 1)	(-,12)	$\left(\begin{array}{cccc} 0 & 2 & 4 & 6 \\ 1 & 4 & 7 \end{array}\right)$	$(1^22^2, \varepsilon)$
$(1^2, 1)$	$ \left(\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$(2^3, 1)$	$(-,1^3)$	$\left(\begin{array}{rrr}0&2&4&6\\2&4&6\end{array}\right)$	$(1^{6}, 1)$

Springer correspondence in characteristic ℓ

The ordinary Springer correspondence can be described by a combinatorial process which sends a bipartition of \mathfrak{Bip}_n to a partition of $\mathcal{P}(X_n)$. Moreover, if $\lambda, \mu \in \mathfrak{Bip}_n$ are sent respectively to λ and μ by this

process, then

$$\boldsymbol{\lambda} \leq^{DJ} \boldsymbol{\mu} \Rightarrow \boldsymbol{\lambda} \leq \boldsymbol{\mu}$$

Springer correspondence in characteristic ℓ

The ordinary Springer correspondence can be described by a combinatorial process which sends a bipartition of \mathfrak{Bip}_n to a partition of $\mathcal{P}(X_n)$.

Moreover, if $\lambda, \mu \in \mathfrak{Bip}_n$ are sent respectively to λ and μ by this process, then

$$\boldsymbol{\lambda} \leq^{DJ} \boldsymbol{\mu} \Rightarrow \boldsymbol{\lambda} \leq \boldsymbol{\mu}$$

Hence, Dipper-James order for Irr $\mathbb{K}W_n$ is coarser that Springer order.

Once again, Dipper-James and Springer basic sets coincide.

Theorem

The modular Springer correspondence for a group G of type B or C maps the simple $\mathbb{F}W$ -module D^{λ} ($\lambda \in \mathfrak{Bip}_{n}^{(\ell)}$) to the image of the simple $\mathbb{K}W$ -module S^{λ} under the ordinary Springer correspondence.