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Representations of GLn, Sp2n and ON

Group Partitions Irreducible characters

GLn l(λ) ≤ n Sλ = det
(
Hλi−i+j

)
Sp2n l(λ) ≤ n S⟨λ⟩ =

1

2
det
(
Hλi−i+j +Hλi−i−j+2

)
ON

tλ1 +
tλ2 ≤ N S[λ] = det

(
Hλi−i+j −Hλi−i−j

)
where

Hk = character of the kth symmetric power Sk(V )

of the vector representation V of G



Universal characters (Littlewood, King, Koike–Terada)

Let Λ be the ring of symmetric functions. For any partition λ, we
define sλ, s⟨λ⟩, s[λ] by putting

sλ = det
(
hλi−i+j

)
(Schur function),

s⟨λ⟩ =
1

2
det
(
hλi−i+j + hλi−i−j+2

)
(symplectic universal character),

s[λ] = det
(
hλi−i+j − hλi−i−j

)
(orthogonal universal character),

where hk is the kth complete symmetric function.



Specializations

For each classical group G = GLn, Sp2n, ON , let Rep(G) denote
the representation ring of G and define πG : Λ → Rep(G) by

πG(hk) = Hk (k ≥ 0).

Then we have

πGLn
(sλ) = Sλ if l(λ) ≤ n,

πSp2n(s⟨λ⟩) = S⟨λ⟩ if l(λ) ≤ n,

πON
(s[λ]) = S[λ] if tλ1 +

tλ2 ≤ N .

and πGLn
(sλ) = 0 if l(λ) > n. There are algorithms for expressing the

images πSp2n(s⟨λ⟩) (l(λ) > n) and πON
(s[λ]) (

tλ1+
tλ2 > N) in terms

of irreducible characters.



Hence the computation of the irreducible decomposition of tensor prod-
ucts and restrictions can be reduced to the manipulation of symmetric
functions. For example, we can show the stability of tensor product
multiplicities and restriction multiplicities.

Goal : To give such a framework for spinor representations of PinN .



Orthogonal Universal Characters
and

Representations of ON

(Littlewood, King, Koike–Terada)



Representations of ON

The irreducible representations of ON are parametrized by partitions
λ such that tλ1 +

tλ2 ≤ N . We call such a partition an N -orthogonal
partition. For an N -orthogonal partition λ, the corresponding irreducible
character S[λ] is given by

S[λ]= det
(
Hλi−i+j −Hλi−i−j

)
1≤i,j≤r

= det


Hλ1 −Hλ1−2 Hλ1+1 −Hλ1−3 Hλ1+2 −Hλ1−4 · · ·

Hλ2−1 −Hλ2−3 Hλ2 −Hλ2−4 Hλ2+1 −Hλ2−5 · · ·
Hλ3−2 −Hλ3−4 Hλ3−1 −Hλ3−5 Hλ3 −Hλ3−6 · · ·

... ... ... . . .


where r ≥ l(λ) and Hk is the character of the k-th symmetric tensor
Sk(CN ) of the vector representation of ON .



Orthogonal universal characters

For any partition λ, we define a symmetric function s[λ] (called an

orthogonal universal character) by

s[λ] = det
(
hλi−i+j − hλi−i−j

)
1≤i,j≤l(λ)

.

Let Rep(ON ) be the representation ring of ON , and πN = πON
:

Λ → Rep(ON ) be the ring homomorphism defined by

πN (hk) = Hk (k ≥ 0).

Then we have

πN (s[λ]) = S[λ] if tλ1 +
tλ2 ≤ N.



Properties of orthogonal universal characters

• Cauchy–type identity :∑
λ

s[λ](X)sλ(U) =

∏
i≤j(1− uiuj)∏
i,j(1− xiuj)

.

• Schur function expansion :

s[λ] =
∑
µ

 ∑
κ=(α+1|α)

(−1)|κ|/2 LRλ
µ,κ

 sµ.

where LRλ
µ,ν is the Littlewood–Richardson coefficient.

• Dual Jacobi–Trudi type identity :

s[λ] =
1

2
det
(
etλi−i+j + etλi−i−j+2

)
,

where ek is the kth elementary symmetric function.



Specialization

By the dual Jacobi–Trudi type identity, we have

πN (s[λ]) =
1

2
det
(
Etλi−i+j + Etλi−i−j+2

)
,

where

Ek = character of the kth exterior power
∧k(CN ).

This can be rewritten as

πN (s[λ]) = det t
(−→
E α1,

−→
E α2, · · · ,

−→
E αr

)
,

where
α = (tλ1,

tλ2 − 1, · · · , tλr − (r − 1)), r = l(tλ),

and
−→
E k is the row vector given by

−→
E k = (Ek, Ek+1 + Ek−1, Ek+2 + Ek−2, · · · , Ek+(r−1) + Ek−(r−1)).



By using the relations
−→
E k = 0 for k ≥ N + r, EN

−→
E k =

−→
EN−k,

we can express

πN (s[λ]) = det t
(−→
E α1,

−→
E α2, · · · ,

−→
E αr

)
(tλ1 +

tλ2 > N)

in terms of irreducible characters S[µ] of ON .

(1) If αi ≥ N + r for some i, then we have

πN (s[λ]) = 0.

(2) If αi + αj = N for some i and j, then we have

πN (s[λ]) = 0.

(3) Otherwise we can find a permutation σ ∈ Sr and an N -orthogonal
partition µ such that

πN (s[λ]) = sgn(σ)S[µ].



Tensor product

In the ring Λ of symmetric functions, we can show that

s[µ]s[ν] =
∑
λ

∑
τ,ξ,η

LR
µ
τ,ξ LR

ν
τ,η LR

λ
ξ,η

 s[λ],

where λ and τ , ξ, η run over all partitions.
If µ and ν are N -orthogonal partitions, then we have

S[µ]S[ν] =
∑
λ

∑
τ,ξ,η

LR
µ
τ,ξ LR

ν
τ,η LR

λ
ξ,η

 πN (s[λ]).

Together with the algorithm computing πN (s[λ]), we obtain the actual

decomposition of S[µ]S[ν] in the representation ring Rep(ON ).



Stability of tensor product decomposition

Note that
LRα

β,γ = 0

unless

tβ1 +
tβ2 +

tγ1 +
tγ2 ≥ tα1 +

tα2 ≥ max(tβ1 +
tβ2,

tγ1 +
tγ2).

Hence we see that, if tµ1 +
tµ2 +

tν1 +
tν2 ≤ N , then we have

S[µ]S[ν] =
∑
λ

∑
τ,ξ,η

LR
µ
τ,ξ LR

ν
τ,η LR

λ
ξ,η

S[λ],

where λ runs over all N -orthogonal partitions, i.e., the decomposition
rule of tensor products is stable in N .



Restriction

Let ∆ : Λ → Λ⊗ Λ be the ring homomorphism defined by

∆(hk) =

k∑
i=0

hi ⊗ hk−i.

Note that

hk(X ∪ Y ) =

k∑
i=0

hi(X)hk−i(Y ).

Then we have the following commutative diagram:

Λ
∆−→ Λ⊗ Λ

πM+N

y yπM⊗πN

Rep(OM+N ) −−→
Res

Rep(OM )⊗ Rep(ON )



For the orthogonal universal characters, we have

s[λ](X ∪ Y ) =
∑
µ,ν

(∑
κ

LRλ
µ,ν,κ

)
s[µ](X)s[ν](Y ),

where µ, ν run over all partitions and κ runs over all partitions such that
all parts are even. And LRλ

µ,ν,κ denotes the coefficients of sλ in the
product sµsνsκ. Hence we have, for (M +N)-orthogonal partition λ,

Res
OM+N
OM×ON

S[λ] =
∑
µ,ν

(∑
κ

LRλ
µ,ν,κ

)
πM (s[µ])πN (s[ν]).

If l(λ) ≤ min(M,N), then we have

Res
OM+N
OM×ON

S[λ] =
∑
µ,ν

(∑
κ

LRλ
µ,ν,κ

)
S[µ] ⊗ S[ν].



Spinor Universal Characters
and

Spinor Representations of PinN



Representations of PinN
Let PinN be the pin group :

1 −→ {±1} −→ PinN
π−→ ON −→ 1.

So any representation ofON can be viewed as a representation of PinN .
We use the same symbol to represent the character of PinN which is
obtained by lifting the character of ON .

S[λ] = lift of the irreducible character of ON

(for an N -orthogonal partition λ),

Hk = lift of the character of ON -module Sk(CN ),

Ek = lift of the character of ON -module
∧k(CN ).

Note that EN is a one-dimensional character and

SpinN = KerEN .



We say that an irreducible representation of PinN is

• a tensor representation if it factors through ON ,

• a spinor representation otherwise.

We put

Rep(PinN ) = the representation ring of PinN ,

Rep+(PinN ) = span of the tensor irreducible characters,

Rep−(PinN ) = span of the spinor irreducible characters.

Then we have

Rep(PinN ) = Rep+(PinN )⊕ Rep−(PinN ),

and
Rep+(PinN ) ∼= Rep(ON ).



Spin representation

Let ∆N be the character of the spin representation of PinN , whose
dimension is 2⌊N/2⌋.
If N is odd, then

EN ·∆N ̸= ∆N ,

and

∆N |SpinN = irred. character with h. w.

(
1

2
,
1

2
, · · · , 1

2

)
.

If N is even, then
EN ·∆N = ∆N ,

and

∆N |SpinN = irred. character with h. w.

(
1

2
,
1

2
, · · · , 1

2
,
1

2

)
+ irred. character with h. w.

(
1

2
,
1

2
, · · · , 1

2
,−1

2

)
.



Irreducible spinor characters

Theorem 1 For a partition λ of length ≤ N/2, we define a class
function S[λ+1/2] on PinN by

S[λ+1/2] = ∆N · det
(
Hλi−i+j − ENHλi−i−j+1

)
1≤i,j≤l(λ)

.

Then S[λ+1/2] is an irreducible character of PinN . Moreover

(1) If N is odd, then Rep−(PinN ) has a basis

S[λ+1/2], EN · S[λ+1/2] (l(λ) ≤ N/2).

(2) If N is even, then Rep−(PinN ) has a basis

S[λ+1/2] (l(λ) ≤ N/2).



Idea of Proof of Theorem 1 : It is enough to show that

• S[λ+1/2] is a virtual character, i.e., an integral linear combination of
characters,

• If ⟨ , ⟩ is the canonical symmetric bilinear form on the space of
class functions of PinN , then

⟨S[λ+1/2], S[λ+1/2]⟩ = 1,

• The value of S[λ+1/2] at the identity element of PinN is positive.



Spinor universal characters

We work in the ring Λ̃ of symmetric functions with coefficients in the
ring Z[ε]/(ε2 − 1) :

Λ̃ = Λ⊗Z Z[ε]/(ε2 − 1).

For any partition λ, we define a symmetric function s′
[λ]

(called a spinor

universal character) by putting

s′[λ] = det
(
hλi−i+j − εhλi−i−j+1

)
1≤i,j≤l(λ)

.

Let π̃N : Λ̃ → Rep(PinN ) be the ring homomorphism given by

π̃N (hk) = Hk (k ≥ 0) and π̃N (ε) = EN .

Then we have, for a partition λ of length ≤ N/2,

S[λ+1/2] = ∆N · π̃N (s′[λ]).



Properties of spinor universal characters s′
[λ]

• Cauchy–type identity :∑
λ

s′[λ](X)sλ(U) =

∏
i(1− εui)

∏
i<j(1− uiuj)∏

i,j(1− xiuj)
.

• Schur function expansion :

s′[λ] =
∑
µ

∑
ν=tν

(−1)(|ν|+l(ν))/2ε|ν| LRλ
µ,ν

 sµ,

where the inner summation is taken over all self-conjugate partitions
ν.

• {s′
[λ]
, εs′

[λ]
}λ form a Z-basis of Λ̃.



Properties of spinor universal characters s′
[λ]

(cont.)

• Duality :
ω(s′[λ]) = s′[tλ].

• Dual Jacobi–Trudi type identity

s′[λ] = det
(
etλi−i+j − εetλi−i−j+1

)
.



Specialization

By the dual Jacobi–Trudi type identity, we have

π̃N (s′[λ]) = det
(
Etλi−i+j − ENEtλi−i−j+1

)
1≤i,j≤r

,

where r = l(tλ).
We put

E′
k = Ek − ENEk−1,

and define a row vector
−→
E ′

k by
−→
E ′

k =
(
E′
k, E

′
k+1 + E′

k−1, · · · , E
′
k+(r−1) + E′

k−(r−1)

)
.

Then the above determinant can be rewritten as

π̃N (s′[λ]) = det t
(−→
E ′

α1,
−→
E ′

α2, · · · ,
−→
E ′

αr

)
where

α = (tλ1,
tλ2 − 1, · · · , tλr − (r − 1)).



By using the relations
−→
E ′

k = 0 for k ≥ N + r,
−→
E ′

k +
−→
E ′

N+1−k = 0,

we can compute

π̃N (s′[λ]) = det t
(−→
E ′

α1,
−→
E ′

α2, · · · ,
−→
E ′

αr

)
for a partition λ with length > N/2.
(1) If αi ≥ N + r for some i, then we have

π̃N (s′[λ]) = 0.

(2) If αi + αj = N + 1 for some i and j, then we have

π̃N (s′[λ]) = 0.

(3) Otherwise we can find an index p, a permutation σ and a partition
µ of length ≤ N/2 such that

∆N · π̃N (s′[λ]) = (−1)p sgn(σ)S[µ+1/2].



Here p, σ and µ are given as follows. Let p be an index such that

α1 > · · · > αp >
N + 1

2
≥ αp+1 > · · · > αr,

and define a new sequence β by

β = (N + 1− α1, · · · , N + 1− αp, αp+1, · · · , αr).
Let γ be the sequence obtained from β by rearranging components in
decreasing order, and σ be a permutation such that γ = σ(β). Finally
a partition µ is given by

γ = (tµ1,
tµ2 − 1, · · · , tµr − (r − 1))



Example Let λ = (4, 3, 3, 3, 2, 2, 1, 1) and N = 8. Then tλ =
(8, 6, 4, 1) and

α = (8, 6− 1, 4− 2, 1− 3) = (8, 5, 2,−2).

There are two components larger than (N + 1)/2 = 9/2, so p = 2 and

β = (9− 8, 9− 5, 2,−2) = (1, 4, 2,−2).

Hence

γ = (4, 2, 1,−2), σ =

(
1 2 3 4
3 1 2 4

)
and

tµ = (4, 2 + 1, 1 + 2,−2 + 3) = (4, 3, 3, 1), µ = (4, 3, 3, 1).

Hence we have

∆ · π̃8(s′[4,3,3,3,2,2,1,1]) = (−1)2 · (−1)2 · S[(4,3,3,1)+1/2].



Tensor Products and Restrictions



Tensor product of a spinor repr. and a tensor repr.

In order to compute the product

S[µ+1/2] · S[ν] = ∆ · π̃N (s′[µ]s[ν]) in Rep(PinN ),

it is enough to compute

s′[µ] · s[ν] in Λ̃.

Theorem 2 (See [King, 1975].) In the ring Λ̃, we have

s′[µ] · s[ν] =
∑
λ

 ∑
ξ,η,τ

ν/σ : v-strip

LRλ
ξ,η LR

µ
τ,ξ LR

σ
τ,η ε

|ν|−|σ|

 s′[λ],

where ξ, η, τ run over all partitions and σ runs over all partitions such
that ν/σ is a vertical strip.



Proof of Theorem 2 Consider the generating function with respect
to Schur functions.∑

µ,ν

s′[µ](X)s[ν](X)sµ(U)sν(V )

=

∏
i(1− εui)

∏
i<j(1− uiuj)∏

i,j(1− xiuj)
·
∏

i≤j(1− vivj)∏
i,j(1− xivj)

=
∏
i

(1 + εvi) ·
1∏

i,j(1− uivj)

·
∏

i(1− εui)
∏

i(1− εvi)
∏

i<j(1− uiuj)
∏

i,j(1− uivj)
∏

i<j(1− vivj)∏
i,j(1− xiuj)

∏
i,j(1− xivj)

=

∑
k≥0

εkek(V )

 ·

(∑
τ

sτ(U)sτ(V )

)
·

(∑
λ

s′[λ](X)sλ(U ∪ V )

)
.



Now we expand

ek(V ) · sτ (U)sτ (V ) · sλ(U ∪ V )

as a linear combination of the product of Schur functions in U and V .
Finally we get∑
µ,ν

s′[µ](X)s[ν](X)sµ(U)sν(V )

=
∑
µ,ν

∑
λ

 ∑
ξ,η,τ,σ

ε|ν|−|σ| LRλ
ξ,η LR

µ
τ,ξ LR

σ
τ,η

 s′[λ](X)sµ(U)sν(V ),

where ν runs over all partitions such that ν/σ is a vertical strip. By
comparing the coefficient of sµ(U)sν(V ), we obtain the desired identity.



By applying the specialization π̃N , we obtain

Corollary If l(µ) + l(ν) ≤ N/2, then we have

S[µ+1/2] · S[ν] =
∑
λ

 ∑
ξ,η,τ,σ

LRλ
ξ,η LR

µ
τ,ξ LR

σ
τ,ηE

|ν|−|σ|
N

S[λ+1/2],

where λ runs over all partitions of length ≤ N/2.
In this case, the decomposition depends only on µ and ν (and the

parity of N).



Tensor product of two spinor repr.

We consider the product

S[µ+1/2] · S[ν+1/2] = ∆2
N · π̃N (s′[µ]s

′
[ν]) in Rep(PinN ).

It is known that

∆2
N =


1

2

N∑
r=0

Er
NEr if N is odd,

N∑
r=0

Er
NEr if N is even.

Hence the tensor product of two spinor representations can be computed
by using the following two formulae.



Theorem 3 (See [King, 1975].) In the ring Λ̃, we have

s′[µ] · s
′
[ν] =

∑
λ

∑
ξ,η,τ

LRλ
ξ,η LR

µ
τ,ξ LR

ν
τ,η

 s′[λ].

Also we have ∑
k≥0

εkek · s′[µ] =
∑
λ

ε|λ|−|µ|s[λ],

where λ runs over all partitions such that λ/µ is a vertical strip.



By applying the specialization π̃N , we obtain

Corollary If N is odd and l(µ) + l(ν) ≤ N/2, then we have

S[µ+1/2] · S[ν+1/2]

=
∑

l(λ)≤N/2

 ∑
λ/σ : even v-strip

∑
ξ,η,τ

LRσ
ξ,η LR

µ
τ,ξ LR

ν
τ,η

S[λ]

+
∑

λ/σ : odd v-strip

∑
ξ,η,τ

LRσ
ξ,η LR

µ
τ,ξ LR

ν
τ,η

EN · S[λ]

 .

In this case, the decomposition itself is not stable in N , but the tensor
product multiplicities are stable.



Corollary If N is even and l(µ) + l(ν) ≤ N/2, then we have

S[µ+1/2] · S[ν+1/2]

=
∑

l(λ)=N/2

∑
λ/σ : v-strip

∑
ξ,η,τ

LRσ
ξ,η LR

µ
τ,ξ LR

ν
τ,η

S[λ]

+
∑

l(λ)<N/2

∑
λ/σ : v-strip

∑
ξ,η,τ

LRσ
ξ,η LR

µ
τ,ξ LR

ν
τ,η

 (S[λ] + ENS[λ]).



Restriction

We consider the restriction from PinM+N to the subgroup

PinM ∗PinN = π−1(OM ×ON )

corresponding to OM ×ON ⊂ OM+N .

1 −→ {±1} −→ PinM+N
π−→ OM+N −→ 1∪ ∪

1 −→ {±1} −→ PinM ∗PinN
π−→ OM ×ON −→ 1

Note that the subgroupPinM∗PinN is not the direct product ofPinM
and PinN , but it is the twisted central product.



Twisted central product
The twisted central product G1 ∗G2 is defined for groups G1 and G2

equipped with

• homomorphisms p1 : G1 → Z/2Z and p2 : G2 → Z/2Z,
• central elements z1 ∈ G1 and z2 ∈ G2 of order 2.

The Cartesian product G1 × G2 admits a group structure with respect
to the multiplication given by

(x1, x2)(y1, y2) =
(
z
p2(x2)p1(y1)
1 x1y1, x2y2

)
.

Then the twisted central product G1 ∗G2 is defined by

G1 ∗G2 = (G1 ×G2)/Z,

where Z = {(1, 1), (z1, z2)} is a central subgroup.



Irreducible characters of PinM ∗PinN

Let H
[M ]
k , E

[M ]
k , H

[N ]
k and E

[N ]
k be the characters of PinM ∗PinN

given by

H
[M ]
k = pull-back of the character of OM -module Sk(CM ),

E
[M ]
k = pull-back of the character of OM -module

∧k(CM ),

H
[N ]
k = pull-back of the character of ON -module Sk(CN ),

E
[N ]
k = pull-back of the character of ON -module

∧k(CN ),

via the maps PinM ∗PinN → PinM → OM and PinM ∗PinN →
PinN → ON .

Note that E
[M ]
M · E[N ]

n is a one-dimensional character and

E
[M ]
M · E[N ]

N = Res
PinM+N
PinM∗PinN

EM+N .



Theorem 4 For partitions µ and ν with l(µ) ≤ M/2 and l(ν) ≤ N/2,
we define S[µ+1/2]∗[ν+1/2] ∈ Rep(PinM ∗PinN ) by putting

S[µ+1/2]∗[ν+1/2] =
(
Res

PinM+N
PinM∗PinN

∆M+N

)
× det

(
H

[M ]
µi−i+j − E

[M ]
M E

[N ]
N H

[M ]
µi−i−j+1

)
1≤i,j≤l(µ)

× det
(
H

[N ]
νi−i+j − E

[M ]
M E

[N ]
N H

[N ]
νi−i−j+1

)
1≤i,j≤l(ν)

.

Then S[µ+1/2]∗[ν+1/2] is an irreducible character of PinM ∗PinN and

(1) if M ≡ N mod 2, then Rep−(PinM ∗PinN ) has a basis

S[µ+1/2]∗[ν+1/2] (l(µ) ≤ M/2, l(ν) ≤ N/2).

(2) if M ̸≡ N mod 2, then Rep−(PinM ∗PinN ) has a basis(
E
[M ]
M E

[N ]
N

)r
S[µ+1/2]∗[ν+1/2] (r = 0, 1, l(µ) ≤ M/2, l(ν) ≤ N/2).



Restriction

Let π̃M,N : (Λ ⊗ Λ)[ε]/(ε2 − 1) → Rep(PinM ∗ PinN ) be the ring
homomorphism defined by

π̃M,N (hk ⊗ 1) = H
[M ]
k ,

π̃M,N (1⊗ hk) = H
[N ]
k ,

π̃M,N (ε) = E
[M ]
M · E[N ]

N .

Then we have, for partitions µ and ν with l(µ) ≤ M/2 and l(ν) ≤ N/2,

S[µ+1/2]∗[ν+1/2]. =
(
Res

PinM+N
PinM∗PinN

∆M+N

)
· π̃M,N (s′[µ] ⊗ s′[ν]).



Let ∆̃ : Λ[ε]/(ε2−1) → (Λ⊗Λ)[ε]/(ε2−1) be the ring homomorphism
defined by

∆̃(hk) =

k∑
i=0

hi ⊗ hk−i, ∆̃(ε) = ε.

Then we have the following commutative diagram:

Λ[ε]/(ε2 − 1)
∆̃−→ (Λ⊗ Λ)[ε]/(ε2 − 1)

π̃M+N

y yπ̃M,N

Rep(PinM+N ) −−→
Res

Rep(PinM ∗PinN )

·∆M+N

y y·Res∆M+N

Rep(PinM+N ) −−→
Res

Rep(PinM ∗PinN )



Theorem 5

s′[λ](X ∪ Y ) =
∑
µ,ν

(∑
κ

LRλ
µ,ν,κ ε

|κ|
)
s′[µ](X)s′[ν](Y ),

where µ, ν, κ run over all partitions.

Corollary If l(λ) ≤ min(M/2, N/2), then we have

Res
PinM+N
PinM∗PinN

S[λ+1/2]

=
∑
µ,ν

(∑
κ

LRλ
µ,ν,κ

)(
E
[M ]
M E

[N ]
N

)|λ|−|µ|−|ν|
S[µ+1/2]∗[ν+1/2],

where µ and ν run over all partitions with l(µ) ≤ M/2 and l(ν) ≤ N/2.


