Parabolic Deligne-Lusztig varieties and Broué's conjectures for reductive groups

Jean Michel (joint work with F. Digne)

University Paris VII

Nagoya, March 2012

Motivation

To simplify we consider just the case of the principal block.

Conjecture (Broué)

Jean Michel (joint work with F. Digne) () Parabolic Delig

If the ℓ -Sylow S of the finite group G is abelian, then the principal ℓ -block B of $\overline{\mathbb{Z}}_{\ell}G$ is derived-equivalent to the principal block b of $\overline{\mathbb{Z}}_{\ell}N_G(S)$.

By Rickard's theorem there exists then a *tilting complex* T, a complex in $D^b(B)$ of finitely generated and projective *B*-modules, such that

- Hom_{D^b(B)}(T, T[k]) = 0 for k ≠ 0.
- End_{$D^b(B)$} $(T) \simeq b$.

For a reductive group in characteristic $p \neq \ell$, T should be the ℓ -adic cohomology complex of some Deligne-Lusztig variety, and $\operatorname{End}_{D^b(\mathcal{B})(T)} \simeq b$ should come through the action on that cohomology of a cyclotomic Hecke algebra associated to $N_G(S)/C_G(S)$, which is a complex reflection group.

Nagova, March 2012

Finite reductive groups

Let **G** be a connected reductive algebraic group over the algebraic closure of a finite field of characteristic p, and F an isogeny such that some power F^{δ} is a split Frobenius for an $\mathbb{F}_{q^{\delta}}$ -structure on **G**; this defines δ and a positive real number q which is a power of \sqrt{p} if **G** is simple. We choose an F-stable pair $\mathbf{T} \subset \mathbf{B}$ of a maximal torus and a Borel subgroup;

- the Weyl group W = N_G(T)/T acts as a reflection group on the complex vector space V = X(T) ⊗ C,
- The action of F on V is of the form $q\phi$ where q is a power of \sqrt{p} and $\phi \in M_{GL(V)}(W)$ is of finite order. The action of $W\phi$ is defined on $X(\mathbf{T}) \otimes \mathbb{Q}_{W\phi}$ where $\mathbb{Q}_{W\phi} = \mathbb{Q}$ except for the Suzuki and Ree groups where $\mathbb{Q}_{W\phi} = \mathbb{Q}(\sqrt{2})$ or $\mathbb{Q}(\sqrt{3})$ (we denote $\mathbb{Z}_{W\phi}$ the ring of integers of $\mathbb{Q}_{W\phi}$).
- The polynomial invariants $S(V)^W$ are a polynomial algebra $\mathbb{C}[f_1, \ldots, f_n]$ where $n = \dim V$. We denote by d_i the degree of f_i ; they can be chosen eigenvectors of ϕ_i and we denote ε_i the corresponding eigenvalues.

Polynomial order

Jean Michel (joint work with F. Digne) ()

We have $|\mathbf{G}^F| = q \sum_{i=1}^{r} (d_i - 1) \prod_{i=1}^{n} (q^{d_i} - \varepsilon_i) = q \sum_{i=1}^{n} (d_i - 1) \prod_{\Phi} \Phi(q)^{|a(\Phi)|}$ where Φ runs over the irreducible cyclotomic polynomials over $\mathbb{Q}_{W\phi}$, and $a(\Phi) = a(\zeta) = \{d_i \mid \zeta^{d_i} = \varepsilon_i\}$, where ζ is a root of Φ .

In $\mathbb{Q}(\sqrt{2})[x]$ we have $\Phi_8 = x^4 + 1 = (x^2 - \sqrt{2}q + 1)(x^2 + \sqrt{2}q + 1)$. We have the following theorem for an arbitrary complex reflection group W

(Springer)

- |a(ζ)| is the dimension of a maximal ζ-eigenspace of an element of Wφ ⊂ GL(V).
- Two maximal ζ-eigenspaces are W-conjugate.
- For a maximal ζ -eigenspace V_{ζ} , the group $W_{\zeta} := N_W(V_{\zeta})/C_W(V_{\zeta})$, acting on V_{ζ} , is a complex reflection group with reflection degrees $a(\zeta)$. (Lehrer-Springer)

Geometric Sylows

Assume that $w\phi \in W\phi$ has an eigenspace of dimension $a = |a(\zeta)|$. Let (\mathbf{T}_w, F) be G-conjugate to (\mathbf{T}, wF) . The factor Φ^a of the characteristic polynomial of $w\phi$ defines a wF-stable sublattice of $X(\mathbf{T}) \otimes \mathbb{Z}_{W\phi}$, thus an *F*-stable subtorus **S** of \mathbf{T}_w such that $|\mathbf{S}^F| = \Phi(q)^a$. In the previous situation

We say that **S** is a Φ -Sylow.

From the Springer theorem they form a single orbit under G^{F} -conjugacy.

For $\ell \neq p$ assume that a ℓ -Sylow S of \mathbf{G}^F is abelian. Then |S| divides a unique factor $\Phi(q)^{|a(\Phi)|}$ of \mathbf{G}^F , and there is a unique Φ -Sylow $\mathbf{S} \supset S$.

It follows that

- C_G(S) = C_G(S) is a Levi subgroup L.
- $N_{\mathbf{G}^F}(S)/C_{\mathbf{G}^F}(S) = N_W(V_{\zeta})/C_W(V_{\zeta}) = W_{\zeta}$, attached to the ζ -eigenspace V_{ζ} of some element of $W\phi$.

The principal block b of $N_{\mathbf{G}^F}(S)$ is isomorphic to $\overline{\mathbb{Z}}_{\ell}(S \rtimes W_{\mathcal{C}})$.

Jean Michel (joint work with F. Digne) () Parabolic Deligne-Lusztig varieties Nagoya, March 2012 5 / 19

Deligne-Lusztig varieties

Let P be a parabolic subgroup with F-stable Levi L and unipotent radical V. The Deligne-Lusztig variety

$$\mathbf{Y}_{\mathbf{V}} = \{ g\mathbf{V} \in \mathbf{G}/\mathbf{V} \mid g\mathbf{V} \cap F(g\mathbf{V}) \neq \emptyset \}$$

has a left action of \mathbf{G}^F and a right action of \mathbf{L}^F . The (virtual) \mathbf{G}^F -module- \mathbf{L}^F given by $\sum_i (-1)^i H_c^i(\mathbf{Y}_\mathbf{V},\overline{\mathbb{Z}}_\ell)$ defines the Deligne-Lusztig induction $R_{L}^{\mathbf{G}^F}$. If $F(\mathbf{V}) = \mathbf{V}$ the variety $\mathbf{X}_\mathbf{V}$ reduces to the discrete variety $\mathbf{G}^F/\mathbf{V}^F$ and the alternating sum reduces to $\overline{\mathbb{Z}}_\ell[\mathbf{G}^F/\mathbf{V}^F]$, giving Harish-Chandra induction.

Conjecture (Geometric version)

There exists **P** of Levi **L** = $C_{\mathbf{G}}(\mathbf{S})$ such that $R\Gamma_{c}(\mathbf{Y}_{\mathbf{V}}, \overline{\mathbb{Z}}_{\ell})$ considered as an object of $D^{b}(\overline{\mathbb{Z}}_{\ell}\mathbf{G}^{F} \otimes (\overline{\mathbb{Z}}_{\ell}\mathbf{L}^{F})^{opp})$, and restricted to *B*, is tilting between *B* and $\overline{\mathbb{Z}}_{\ell}[S \rtimes W_{\zeta}]$.

Shadow on unipotent characters

The map $g \mathbf{V} \mapsto g \mathbf{P}$ makes $\mathbf{Y}_{\mathbf{V}}$ an \mathbf{L}^F -torsor over the variety

$$\mathbf{X}_{\mathbf{P}} = \{ g\mathbf{P} \in \mathbf{G}/\mathbf{P} \mid g\mathbf{P} \cap F(g\mathbf{P})
eq \emptyset \}$$

- For any λ ∈ Irr(L^F) we have Hⁱ_c(X_V, Z
 _ℓ)_χ = Hⁱ_c(X_P, F_λ).
- The conjecture can be mostly reduced to the study of X_P with sheaves \mathcal{F}_{λ} associated to unipotent characters. We will look at the case $\chi = \mathrm{Id}$, and further, discard any torsion by going from $\overline{\mathbb{Z}}_{\ell}$ to $\overline{\mathbb{Q}}_{\ell}$.

Conjecture (Restricted)

Jean Michel (joint work with F. Digne) () Par

- $(2) \operatorname{End}_{\mathbf{G}^F} \oplus_i H^i_c(\mathbf{X}_{\mathbf{P}}, \overline{\mathbb{Q}}_\ell) \simeq \overline{\mathbb{Q}}_\ell W_{\zeta}.$

A braid monoid attached to the complex reflection group W_{ζ} acts on $\mathbf{X}_{\mathbf{P}}$ as \mathbf{G}^{F} -endomorphisms, such that on the cohomology the action factors through a cyclotomic Hecke algebra for W_{ζ} .

Choice of P

Let (W, S) be the Coxeter system associated to the BN-pair $(\mathbf{B}, N_{\mathbf{G}}(\mathbf{T}))$. We can conjugate \mathbf{P} to a standard parabolic subgroup \mathbf{P}_{l} . This conjugates the ζ -eigenspace to a V_{ζ} such that $C_W(V_{\zeta}) = W_l$, the Weyl group of \mathbf{L}_l . The $w\phi \in W\phi$ with ζ -eigenspace V_{ζ} form a class $W_lw\phi$. We choose $w\phi$ to be *l*-reduced.

 $\begin{array}{l} \textbf{X}_{\textbf{P}} \text{ is isomorphic to } \{\textbf{P} \mid \textbf{P} \xrightarrow{I,w,\diamond I} F\textbf{P}\} \text{ which means that} \\ (\textbf{P}, ^{F}\textbf{P}) \sim_{\textbf{G}} (\textbf{P}_{I}, ^{w}\textbf{P}_{\diamond I}) \text{ (we have } ^{w \diamond I} = I). \end{array}$

We denote this variety $X(I \xrightarrow{w} \phi I)$.

The choice of a parabolic subgroup with Levi $C_{\mathbf{G}}(\mathbf{S})$ corresponds to the choice of a class $W_I w \phi$ up to W-conjugacy, or to the choice of an I-reduced element w such that ${}^{w \phi I}I = I$ up to W-conjugacy of such pairs (w, I); for such an element we have dim $\mathbf{X}(I \xrightarrow{w} \phi I) = I(w)$.

Craven's formula

Block theory and the work of Rouquier and Craven in constructing "perverse equivalences" led to a very specific conjecture for the cohomology of the variety $\mathbf{X}_{\mathbf{P}}$ we are looking for. Let ρ be a unipotent character which occurs in $H^{i}(\mathbf{X}_{\mathbf{P}}, \mathcal{F}_{\lambda})$, where \mathbf{P} is the

Let ρ be a unipotent character which occurs in $P(\mathbf{x}_{P}, \varphi_{\lambda})$, where P is the "right" parabolic subgroup of Levi $C_{\mathbf{G}}(\mathbf{S})$, where \mathbf{S} is a Φ -Sylow. Choose ζ as the root of Φ with minimal argument and write $\zeta = e^{2ik\pi/d}$. Let $P = \deg \rho/\deg \lambda$, a polynomial in q.

Then

Conjecture (Craven)

Jean Michel (joint work with F. Digne) ()

$$\begin{split} i &= k/d(\operatorname{degree}(P) + \operatorname{valuation}(P)) + \\ \{ number \ of \ roots \ of \ P \ of \ argument \ less \ than \ that \ of \ \zeta \} \\ &- 1/2 \{ number \ of \ times \ 1 \ is \ a \ root \ of \ P \} \end{split}$$

Further, we should have dim $\mathbf{X}_{\mathbf{P}} = 2k/d(l(w_0) - l(w_l))$ where w_0 (resp. w_l) is the longest element of W (resp. W_l).

G^{*F*}-endomorphisms of **X**($I \xrightarrow{w} \phi I$)

The idea for constructing **G**^{*F*}-endomorphisms of **X**($I \xrightarrow{w} \phi I$) is:

- If w = xy with l(w) = l(x) + l(y),
- and $I^{\times} = J \subset S$,

when $\mathbf{P} \xrightarrow{I,w,\phi_I} {}^{F}\mathbf{P}$ there is a unique \mathbf{P}' such that $\mathbf{P} \xrightarrow{I,x,J} {}^{P'} \xrightarrow{J,y,\phi_I} {}^{F}\mathbf{P}$.

• If we have also $l(y\phi(x)) = l(y) + l(\phi(x))$,

then since $\mathbf{P}' \xrightarrow{J,y,\phi_l} F(\mathbf{P}) \xrightarrow{\phi_l,\phi(x),\phi_J} F(\mathbf{P}')$, we have $\mathbf{P}' \in \mathbf{X}(J \xrightarrow{y\phi(x)} \phi_J)$, thus $\mathbf{P} \mapsto \mathbf{P}'$ defines a map $\mathbf{X}(I \xrightarrow{w} \phi_l) \xrightarrow{D_x} \mathbf{X}(J \xrightarrow{y\phi(x)} \phi_J)$ which is \mathbf{G}^F -equivariant.

- If in addition $I^{\times} = I$
- and x commutes to $w\phi$

we get an endomorphism. There are too many conditions so this do not construct enough endomorphisms.

gova. March 2012

The ribbon category

 $\begin{array}{l} \text{If } W = \langle S \mid s^2 = 1, \underbrace{st...}_{m_{b,t}} = \underbrace{ts...}_{m_{b,t}} \text{ for } s, t \in S \rangle \\ \text{The braid monoid is } B^+ = \langle \mathbf{S} \mid \underbrace{\mathbf{st...}}_{m_{s,t}} = \underbrace{\mathbf{ts...}}_{m_{s,t}} \text{ for } \mathbf{s}, \mathbf{t} \in \mathbf{S} \rangle. \end{array}$

There is a natural section $w \mapsto \mathbf{w} : W \xrightarrow{\sim} \mathbf{W}$ obtained by replacing each s by \mathbf{s} in a reduced expression of w.

Let \mathcal{I} be the set of conjugates in S of $I \subset S$. We define a category $B(\mathcal{I})$ whose objects are the elements of \mathcal{I} , and morphisms $I \xrightarrow{b} J$ are $b \in B^+$ such that

• I^b = J.

Jean Michel (joint work with F. Digne) ()

No element of I divides b on the left (we say b is I-reduced).

Varieties associated to ribbons

The morphisms of $\mathcal{B}(\mathcal{I})$ are generated by those where $\mathbf{b} \in \mathbf{W}$. To the variety $\mathbf{X}(I \xrightarrow{w} \phi^l)$ we associate the map $I \xrightarrow{w} \phi^l \mathbf{J}$. Conversely, to a map $I \xrightarrow{b} \phi^l \mathbf{J} = I \xrightarrow{w_1} \mathbf{1}_1 \dots \mathbf{1}_{n-1} \xrightarrow{w_n} \phi^l \mathbf{I}$ with $\mathbf{w}_i \in \mathbf{W}$ we associate the variety $\{\mathbf{P}, \mathbf{P}_1, \dots, \mathbf{P}_n \mid \mathbf{P} \xrightarrow{l,w,i} \mathbf{P}_1 \dots, \mathbf{P}_n \xrightarrow{l_{n-1},w_n,\phi_l} \mathcal{F}\mathbf{P}\}$. By extending to the category $\mathcal{B}(\mathcal{I})$ a theorem of Deligne on representations of the braid monoid in a category, one can show that there is a canonical isomorphism between the varieties attached to two decompositions of b. This allows to attach "parabolic Deligne-Lusztig varieties" $\mathbf{X}(I \xrightarrow{b} \phi^l)$ to morphism in $\mathcal{B}(\mathcal{I})$. Now, whenever we have a divisor \mathbf{x} of \mathbf{b} in $\mathcal{B}(\mathcal{I})$ there is a well-defined morphism $\mathbf{X}(I \xrightarrow{b} \phi^l) \xrightarrow{D} \mathcal{K}_i (I^{\kappa} \xrightarrow{x^{-1} b \phi \kappa} \phi^{\kappa})$.

Let $\mathcal{D}(\mathcal{I})$ be the category with objects the morphisms of $B(\mathcal{I})$ and morphisms compositions of the $D_x.$

In $\mathcal{D}(\mathcal{I})$ there will be enough endomorphisms of $\mathbf{I} \xrightarrow{\mathbf{b}} \phi \mathbf{I}$.

Eigenspaces and roots in the braid group

For any finite Coxeter group W, with diagram automorphism ϕ .

Proposition (Digne-M., He-Nie)

Let $\zeta = e^{2ik\pi/d}$, where $2k \leq d$ (k prime to d). Let $V_{\zeta} \subset V$ be a subspace on which $w\phi \in W\phi$ acts by ζ . Then, up to W-conjugacy we have

- C_W(V_ζ) = W_I for some I ⊂ S (thus ^{wφ}I = I).
- For the I-reduced element w the lift w to the braid monoid satisfies $(w\phi)^d=\phi^d(w_0^2/w_1^2)^k$

If w is as above, we have $l(w) = 2k/d(l(w_0) - l(w_l))$, the length predicted in Craven's formula.

The theorems of He and Nie

Given an element $w\phi$ with eigenvalue $\zeta=e^{2ik\pi/d},$ the proposition gives a conjugate $vw_1\phi$ where

- $l(w_1) = 2\frac{k}{d}(l(w_0 l(w_l))).$
- w₁φ gives a diagram automorphism of W_I = C_W(V_ζ).
- $v \in W_I$.

Jean Michel (joint work with F. Digne) ()

If we pick another eigenvalue, we can apply again the proposition to the element $vw_1\phi$ of the coset $W_Iw_1\phi$.

Let $\theta_0 < \theta_1 \dots < \theta_r$ be the arguments $\leq \pi$ of eigenvalues of $w\phi$.

Theorem (He and Nie)

- If we apply the proposition taking the θ_i in increasing order, we end up with an element of minimal length in the conjugacy class of wφ.
- If we take the θ_i in decreasing order, we end up with an element of maximal length in the conjugacy class of wφ.

Further they show the lifts in W of minimal length (resp. maximal length) elements in the class are conjugate in B.

Roots

We have a kind of converse

Let $w\in B^+$ and d such that $(w\phi)^d=\phi^d(w_0^2/w_1^2)$ for some $\phi^d\mbox{-stable}\ I\subset S.$ Then

- w^φI = I, thus w defines a morphism (I → ^φI) ∈ B(I).
- Let V_d be the $\zeta_d = e^{2i\pi/d}$ -eigenspace of $w\phi$. Then $C_W(V) \subset W_I$

Further, the following conditions are equivalent

- wφ is "not extendible", that is there does not exist a φ^d-stable J ⊂ I and v ∈ B₁⁺ such that (vwφ)^d = φ^d(w₀²/w₁²).
- C_W(V) = W_I, and V_d is a maximal ζ_d-eigenspace of Wφ.

Varieties for roots

Jean Michel (joint work with F. Digne) () Paral

The previous results suggest that one should take varieties attached to roots. One more result

Assume that $(\mathbf{I} \xrightarrow{w} \phi \mathbf{I}) \in B(\mathcal{I})$ is such that some power of $(\mathbf{w}\phi)^d \phi^{-d}$ is divisible by $\mathbf{w}_0/\mathbf{w}_1$. Then $\operatorname{End}_{\mathcal{D}(\mathcal{I})}(\mathbf{I} \xrightarrow{w} \phi \mathbf{I}) = \{D_x \mid x \in C_{B^+}(\mathbf{w}\phi)\}$ (and the other conditions: $\mathbf{I}^x = \mathbf{I}$ and x is I-reduced).

When $\mathbf{I} = \emptyset$ the above is $C_{B^+}(\mathbf{w}\phi)$ and by Lusztig (case by case) and He and Nie the morphism $C_{B^+}(\mathbf{w}\phi) \rightarrow C_{W}(w\phi)$ is surjective. When $(\mathbf{w}\phi)^d = \phi^d \mathbf{w}_0^2$ then $W_{\zeta} = C_W(w\phi)$. Thus we get closer to have enough endomorphisms.

Conjecture

 $\{\mathbf{x} \in C_{B^+}(\mathbf{w}\phi) \mid \mathbf{I}^{\mathbf{x}} = \mathbf{I} \text{ and } \mathbf{x} \text{ is } \mathbf{I}\text{-reduced}\}$ is a monoid for the braid group of W_{ζ} .

This is true by the work of David Bessis when $I = \emptyset$ and $\phi = Id$.

Nagova, March 2012

The variety X_{π}

The conjectures on the cohomology are already interesting for $\zeta = 1$. This corresponds to the case $\ell | q - 1$, and to the variety $\mathbf{X}(\emptyset \xrightarrow{\mathbf{w}_{0}^{2}} \emptyset)$. We set $\pi = \mathbf{w}_{0}^{2}$; the variety is

$$X_{\pi} = \{B_1, B_2 \mid B_1 \xrightarrow{w_0} B_2 \xrightarrow{w_0} F(B_1)\}$$

If $\mathbf{B} = \mathbf{UT}$ is the Levi decomposition of \mathbf{B} , by Puig(1985) there is a Morita equivalence through $\overline{\mathbb{Q}}_{\ell}[\mathbf{G}^{F}/\mathbf{U}^{F}] = H_{c}^{*}(\mathbf{Y}_{U})$ between the principal block of \mathbf{G}^{F} and that of $\mathbf{N}_{\mathbf{G}^{F}}(\mathbf{T})$. This uses the isomorphism with the ordinary Hecke algebra $W^{\phi} \simeq H_{d}(W^{\phi}) = \operatorname{End}_{\mathbf{G}^{F}}(H_{c}^{*}(\mathbf{X}_{B}))$.

The conjecture says instead to consider X_{π} , *i.e.* that its cohomology is only in even degrees with G^{F} -endomorphisms a graded version of $H_{a}(W^{\phi})$.

```
(Broué-M. 1995)
```

Jean Michel (joint work with F. Digne)

 $(B+)^{\phi}$ acts on X_{π} , factoring on $H^*_c(X_{\pi}, \overline{\mathbb{Q}}_{\ell})$ through $H_q(W^{\phi})$.

The variety X_{π} (continued)

(Digne-M. 2005)

For GL_n and small rank groups, for $T \in H_a(W^{\phi})$

• $\sum_{i}(-1)^{i} \operatorname{Trace}(T \mid H_{c}^{i}(\mathbf{X}_{\pi}, \overline{\mathbb{Q}}_{\ell}))$ is the canonical trace of $H_{q}(W^{\phi})$.

This means that the above virtual module is isomorphic as a representation of $\mathbb{G}^F \times H_q(W^{\phi})$ to $\overline{\mathbb{Q}}_\ell[\mathbb{G}^F/\mathbb{B}^F]$. Actually the isomorphism is Galois-twisted; for irrational characters of $H_q(E_7)$ and $H_q(E_8)$ the correspondence with unipotent characters is through the specialization $q^{1/2} \mapsto -1$ (instead of $q^{1/2} \mapsto 1$ for the correspondence in $\overline{\mathbb{Q}}_\ell[\mathbb{G}^F/\mathbb{F}]$).

• In [Digne-M.-Rouquier] we prove that the cohomology of X_{π} is concentrated in even degree for groups **G** of rank 1 or 2.

By Craven's formula a character χ_q of the Hecke algebra should occur in $H_c^{4l(w_0)-2A_\chi}(\mathbf{X}_{\pi})$ where A_{χ} is the degree of the generic degree.

Dudas on GL_n

Proposition (Dudas)

Let $\boldsymbol{\mathsf{G}}=\operatorname{GL}_n$ and assume

The cohomology of X_π is concentrated in even degrees.

then the geometric version of the Broué conjectures hold for GL_n over $\overline{\mathbb{Q}}_{\ell}$.

That is, Dudas proves that for every $\zeta = e^{2i\pi/d}$ and any unipotent sheaf \mathcal{F}_{λ} on the associated variety, the cohomology is as predicted by Craven's formula.

If $\mathbf{X}_{n,d}$ is the variety in GL_n associated to a $e^{2i\pi/d}$, he does it by relating the cohomology of $\mathbf{X}_{n,d}$ to that of $\mathbf{X}_{n-1,d-1}$ and $\mathbf{X}_{n-1,d}$.

The extreme cases needed for the induction are $\mathbf{X}_{n,n+1}$ which is the Coxeter variety whose cohomology is known by Lusztig, and $\mathbf{X}_{n,1}$ which is \mathbf{X}_{π} .

Jean Michel (joint work with F. Digne) () Parabolic Deligne-Lusztig varieties

Nagoya, March 2012 19 / 19