Visualization of Quantum Operations

Yu Watanabe (Tokyo Institute of Technology)

Takahiro Sagawa (Univ. of Tokyo) Masahito Ueda (Univ. of Tokyo, JST-ERATO)

Outline

- Introduction and motivation
- Idea for visualization of quantum operations
 - Definition of information flow
- Examples
 - Single-qubit system → Single-qubit system
 - Single-qubit system → Multi-qubit system
- Summary and Future Issues

Introduction

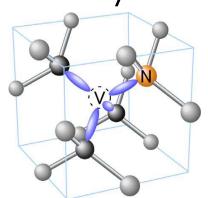
Experiments of transferring quantum states between different systems

- Nuclear Spin \(\infty \) Electron Spin
 - NV Center
 M.V.Dutt et al., Science 315, 1312 (2007).
- Laser-Cooled Atoms \(\bigsip \) Photon
 - Electromagnetically Induced Transparency (EIT)

K.Honda *et al.*, Phys. Rev. Lett. **100**, 093601 (2008).

Motivation

How to characterize quantum operations?



Motivation

 Quantum state tomography (QST) and the Wigner function

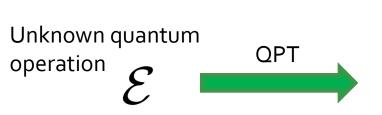
We can visually understand the results of quantum state tomography by plotting the Wigner function.

E. P. Wigner, Phys. Rev. **40**, 749 (1932). K. Voqel and H. Risken, Phys. Rev. A **40**, 2847 (1989).

Motivation

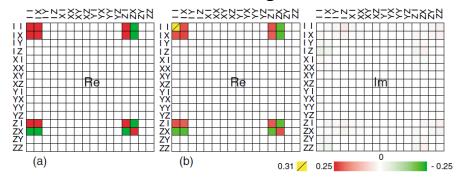
Quantum process tomography (QPT)

 and visualization of quantum operation



Results of QPT

Ex. Process matrix of CNOT gate



J. L. O'Brien *et al.*, Phys. Rev. Lett. **93**, 080502 (2004).

How to understand the results of quantum process tomography? How to extract characteristics of quantum operations?

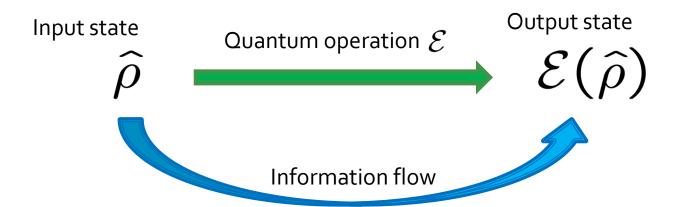
Outline

- Introduction and motivation
- Idea for visualization of quantum operations
 - Definition of information flow
- Examples
 - Single-qubit system → Single-qubit system
 - Single-qubit system → Multi-qubit system
- Summary and Future Issues

Idea for Characterizing Quantum Operations

Characterization of quantum operation \mathcal{E} by information flow.
Information flow :

Information about input state transferred to output state.



The information flow is large

→ We can estimate the input state from the output state accurately.

The information flow is small

→ Accuracy of the estimation is low.

Estimation of the Expectation Value of an Observable

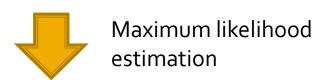
- Estimation of $\langle \widehat{X} \rangle$ from the output states of ${\cal E}$
 - $\langle \hat{X} \rangle = {\rm Tr} \left[\hat{X} \hat{\rho} \right]$: the expectation value of an observable \hat{X}
 - ${\cal E}$: an quantum operation

Input states \mathcal{E} Output states \mathcal{E} \mathcal{E} Output states \mathcal{E} \mathcal

 $\widehat{\rho} \in \mathcal{S}(\mathcal{H}_N)$

: N Level Quantum State

Accuracy of X^* is measured by the Fisher information.



POVM Measurement

 X^* : Estimated value of $\langle \hat{X} \rangle$ $\lim_{n \to \infty} X^* = \langle \hat{X} \rangle$

The Fisher Information and the Cramer-Rao Inequality

The Cramer-Rao inequality

$$Var(X^*) \ge \frac{1}{nJ} + o\left(\frac{1}{n}\right)$$

For the maximum likelihood estimator X^*

$$\lim_{n\to\infty} n \operatorname{Var}(X^*) = J^{-1}$$

 $Var(X^*)$: Variance of the estimated value

 $\,n\,\,$: Number of the samples

J : the Fisher information

- The Fisher information is large. \rightarrow Accuracy of X^* is high.
- The Fisher information is small. \rightarrow Accuracy of X^* is low.

Definition of the Fisher Information (1) --- The Fisher Information Matrix ---

The Fisher information matrix G

$$G(M) \equiv \sum_{i} p_{i}(\nabla_{\boldsymbol{\theta}} \log p_{i})(\nabla_{\boldsymbol{\theta}} \log p_{i})^{\mathsf{T}}$$

 $m{ heta}$: Parameter of the input state $\hat{
ho}=\hat{
ho}_{m{ heta}}=rac{1}{N}\hat{I}+rac{1}{2}m{ heta}\cdot\hat{m{\lambda}}$

 $\hat{\pmb{\lambda}} = (\hat{\lambda}_1, \dots, \hat{\lambda}_{N^2-1})^\mathsf{T}$: Generators of the Lie algebra $\mathfrak{su}(N)$

In the case of N=2, $\hat{\lambda}_i$ are the Pauli matrices.

In the case of N=3, $\hat{\lambda}_i$ are the German matrices.

M. S. Byrd and N. Khaneja, Phys. Rev. A **68**, 062322 (2003). G. Kimura, Phys. Lett. A **314**, 339 (2003).

 $p_i = {
m Tr}\left[{\cal E}(\widehat{
ho}) \widehat{M}_i
ight]$: Probability of getting the ith result

 \hat{M}_i : An element of the POVM $m{M} = \{\hat{M}_1, \hat{M}_2, \dots\}$

Definition of the Fisher Information (2) --- The Fisher Information ---

- The Fisher information J about an observable \hat{X}

$$J(x; M) \equiv \frac{1}{x \cdot [G(M)]^{-1}x}$$

 $m{x}$: Parameter of the observable $\hat{X} = x_0 \hat{I} + x \cdot \hat{m{\lambda}}$

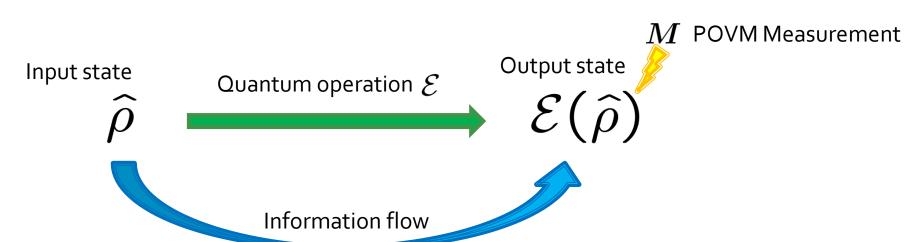
 $\hat{\pmb{\lambda}} = (\hat{\lambda}_1, \dots, \hat{\lambda}_{N^2-1})^\mathsf{T}$: Generators of the Lie algebra $\mathfrak{su}(N)$

Definition of the Information Flow

- The information flow about an observable \hat{X}

$$\chi(m{x}) \equiv \max_{m{M}} \left\{ J(m{x};m{M})
ight\}$$
 $m{x}$: Parameter of the observable \hat{X}

 We define information flow as maximal fisher information about the input state obtained from the output state.



Visualization of Quantum Operation by Information Flow

Normalization

$$|x| = \sqrt{N/2}$$

$$\hat{\rho} = \hat{I}/N$$

$$\longrightarrow 0 \leq \chi(x) \leq 1$$

No information about $\langle \hat{X} \rangle$ is transferred to the output state

Information about $\langle \hat{X} \rangle$ is perfectly transferred to the output state

T. Sagawa and M. Ueda, Phys. Rev. A 77, 012313 (2008).

 $\hat{X} = x_0 \hat{I} + x \cdot \hat{\lambda}$

Visualization of Quantum Operation by Information Flow

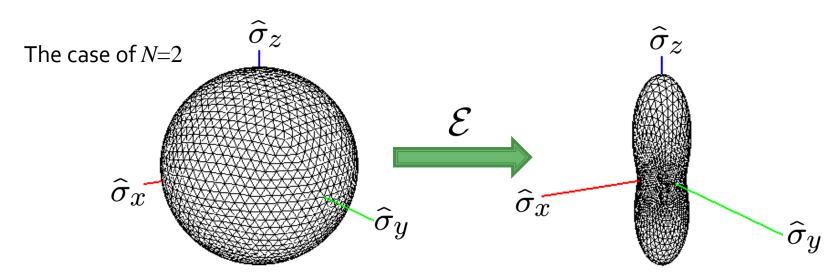
Normalization

$$|x| = \sqrt{N/2}$$

$$\hat{X} = x_0 \hat{I} + x \cdot \hat{\lambda}$$

$$\widehat{\rho} = \widehat{I}/N$$

$$\longrightarrow$$
 $0 \le \chi(x) \le 1$



Before the quantum operation

After the quantum operation

Outline

- Introduction and motivation
- Idea for visualization of quantum operations
 - Definition of information flow
- Examples
 - Single-qubit system → Single-qubit system
 - Single-qubit system → Multi-qubit system
- Summary and Future Issues

Example (1)

--- Unitary Operations ---

A unitary operation

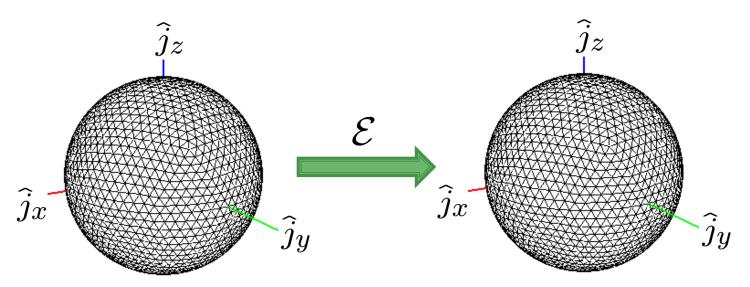
$$\mathcal{E}(\hat{\rho}) = \hat{U}\hat{\rho}\hat{U}^{\dagger}$$

 $\widehat{U}\,$: a unitary operator

For all $oldsymbol{x}$, such that $|oldsymbol{x}| = \sqrt{N/2}$

$$\chi(x) = 1$$

Any unitary operations conserve information.



Before the quantum operation

After the quantum operation

Example (2)

--- Bit Flip and Phase Flip Channel ---

Bit flip with probability p

$$\mathcal{E}(\hat{\rho}) = p \, \hat{\sigma}_x \hat{\rho} \hat{\sigma}_x + (1 - p) \hat{\rho}$$

Phase flip with probability p

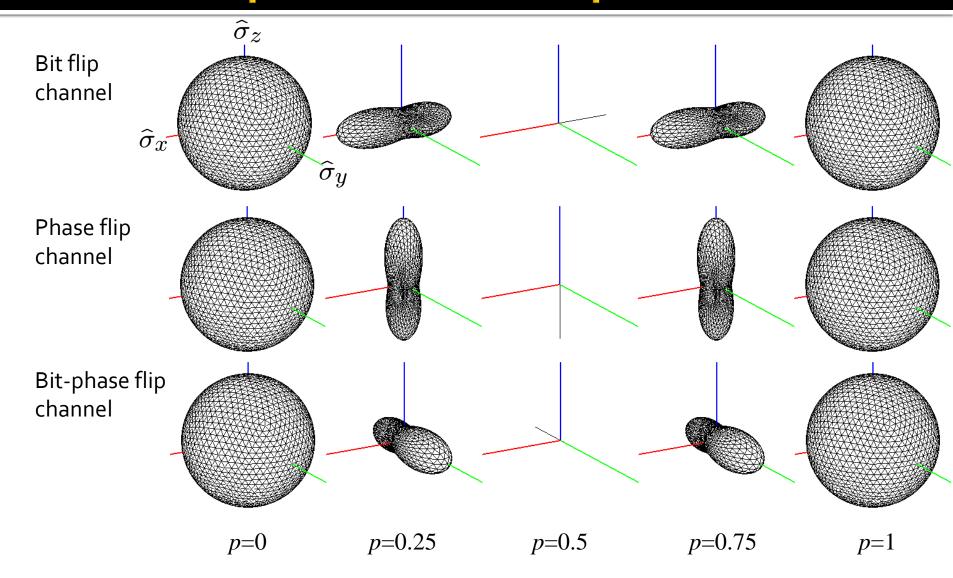
$$\mathcal{E}(\hat{\rho}) = p \,\hat{\sigma}_z \hat{\rho} \hat{\sigma}_z + (1-p)\hat{\rho}$$

Bit-phase flip with probability p

$$\mathcal{E}(\hat{\rho}) = p \, \hat{\sigma}_y \hat{\rho} \hat{\sigma}_y + (1 - p) \hat{\rho}$$

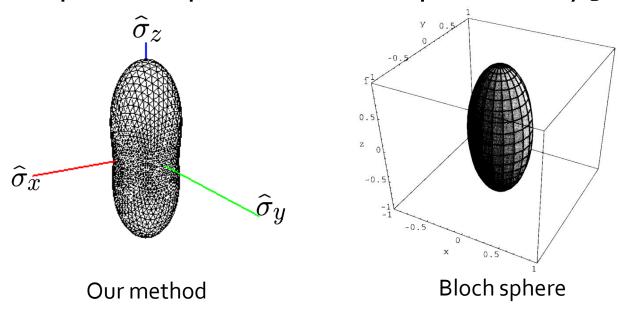
Example (2)

--- Bit Flip and Phase Flip Channel ---



Comparison with Bloch Sphere

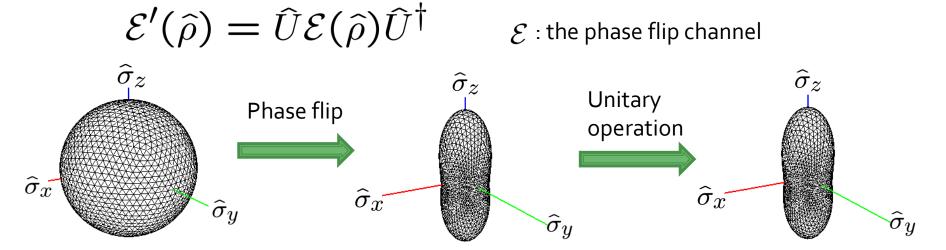
Ex. The phase flip channel with probability p=0.3



What is the deference between Bloch sphere and our visualizing method?

Advantages of our method

A unitary operation after the phase flip channel



- Our visualizing method can extract effects of decoherence and noise by quantum operations.
- Our method can be also applied to the case that input system and output system are different.

Example (3)

--- Decoherence by a Head Bath ---

- Single qubit interacting with a heat bath
 - Hamiltonian

L. Viola and S. Lloyd, Phys. Rev. A 58, 2733 (1998).

$$\hat{H} = \hat{H}_S + \hat{H}_B + \hat{H}_{SB}$$

$$\hat{H}_S = \hbar \omega_0 \frac{\hat{\sigma}_z}{2} \qquad \hat{H}_B = \sum_k \hbar \omega_k \hat{b}_k^{\dagger} \hat{b}_k$$

$$\hat{H}_{SB} = \sum_k \hbar \hat{\sigma}_z (g_k \hat{b}_k^{\dagger} + g_k^* \hat{b}_k)$$

The initial state of the heat bath

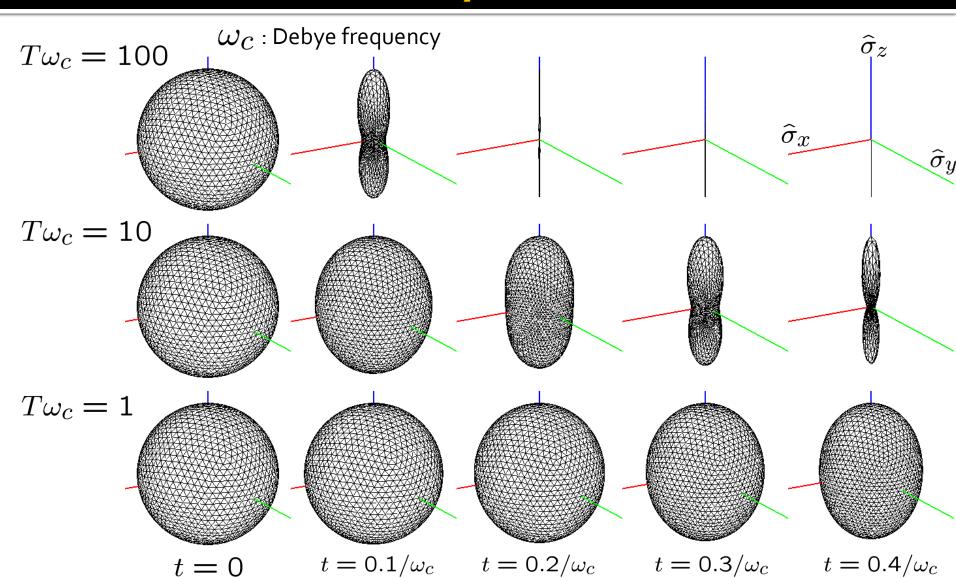
$$\hat{\rho}_B = \prod_k (1 - e^{-\beta \hbar \omega_k}) e^{-\beta \hbar \omega_k \hat{b}_k^{\dagger} \hat{b}_k}$$

Quantum operation

$$\mathcal{E}(\hat{\rho}) = \operatorname{Tr}_{B} \left[e^{-i\hat{H}t/\hbar} (\hat{\rho} \otimes \hat{\rho}_{B}) e^{i\hat{H}t/\hbar} \right]$$

Example (3)

--- Decoherence by a Head Bath ---



Example (4)

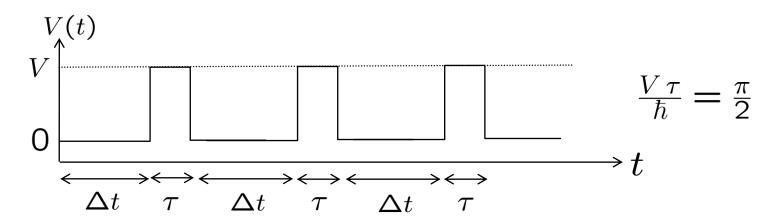
--- Dynamical Decoupling (Spin Echo) ---

- Time evolution with sequence of pulses
 - Hamiltonian

L. Viola and S. Lloyd, Phys. Rev. A **58**, 2733 (1998). L. Viola *et αl.*, Phys. Rev. Lett. **82**, 2417 (1999).

$$\hat{H} = \hat{H}_S + \hat{H}_B + \hat{H}_{SB} + \hat{H}_{rf}(t)$$

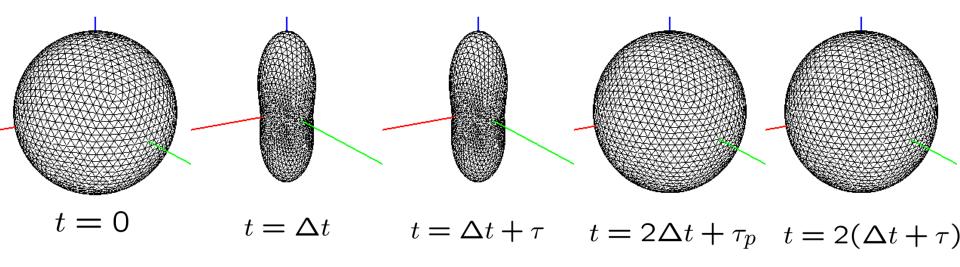
$$\hat{H}_{rf}(t) = V(t)(\hat{\sigma}_x \cos \omega_0 t + \hat{\sigma}_y \sin \omega_0 t)$$



Example (4)

--- Dynamical Decoupling (Spin Echo) ---

The sequence of pulses, decoherence is suppressed.



Using our method, effects of decoherence and its suppression by the sequence of pulses are visually understood.

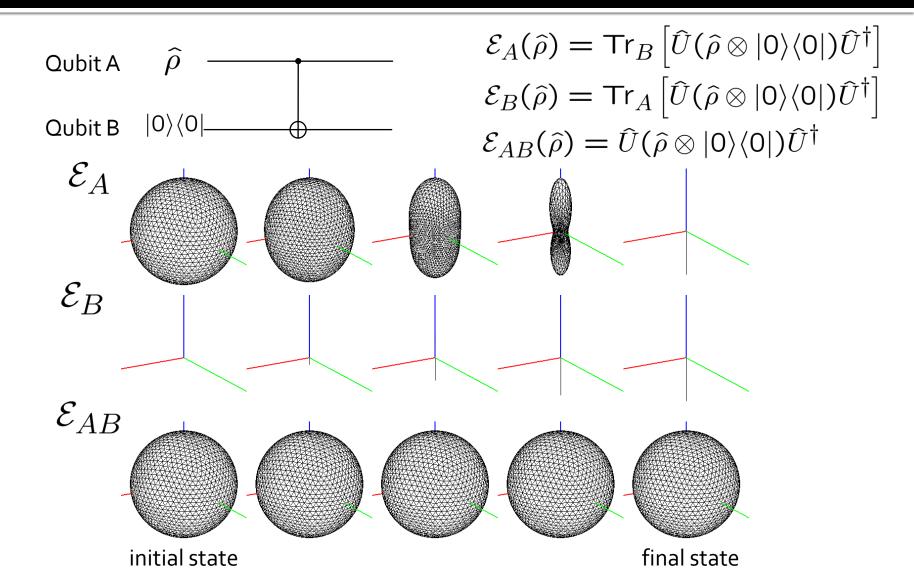
$$\Delta t = 0.25/\omega_c$$
$$\tau = 0.1\Delta t$$
$$T = 10\omega_c$$

Outline

- Introduction and motivation
- Idea for visualization of quantum operations
 - Definition of information flow
- Examples
 - Single-qubit system → Single-qubit system
 - Single-qubit system → Multi-qubit system
- Summary and Future Issues

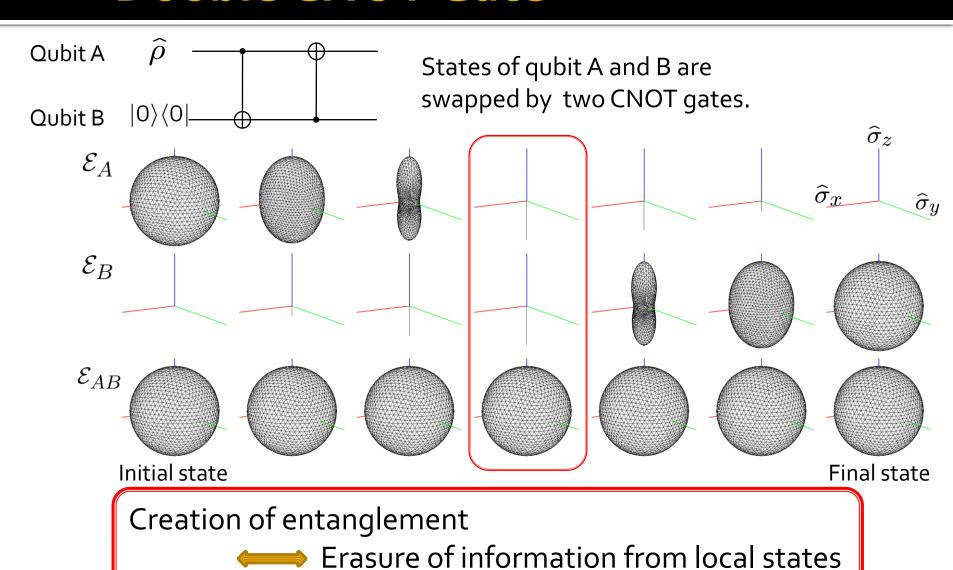
Example (5)

--- the CNOT Gate ---



Example (6)

--- Double CNOT Gate ---



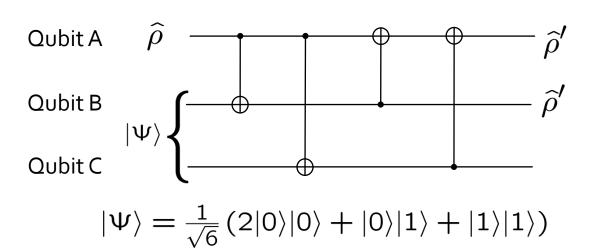
Example (7)

--- Quantum State Cloning ---

Optimal symmetric cloning (1 qubit → 2 qubit)

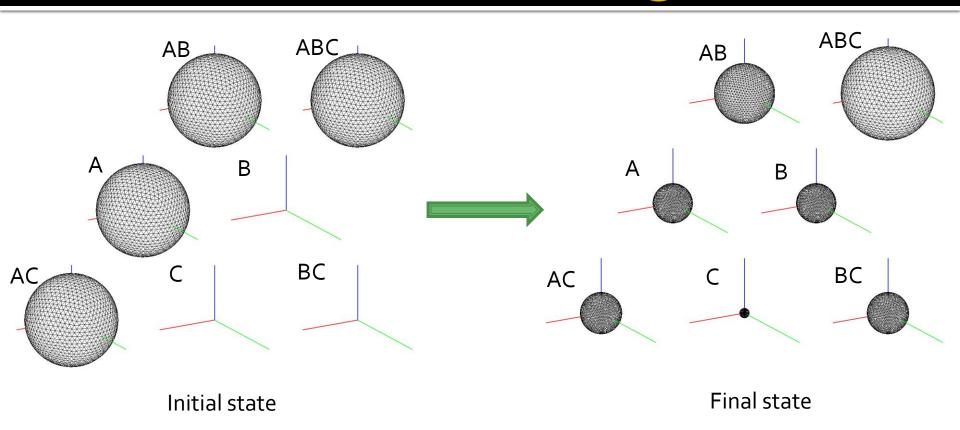
Chi-Sheng Niu and Robert B. Griffiths, Phys. Rev. A **58**, 4377 (1998). V. Buzek and M. Hillery, Phys. Rev. Lett. **81**, 5003 (1998).

N. J. Cref, Acta Phys. Slov. 48, 115 (1998).



Example (7)

--- Quantum State Cloning ---



No cloning theorem = Information can not be distributed perfectly.

Summary and Future Issues

- We define the information flow.
 - Information flow =
 Maximal Fisher information about the input state
 obtained from the output state of quantum operations.
- We propose a method of visualization of quantum operations by plotting the information flow.
 - Effects of decoherence and noise can be visually understood.
 - Generation of entanglements can be visually understood.

Future Issues:

Are there any relations between entanglement measures and our visualizing method of quantum operations?