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Summary
Quantum combs: the theory of quantum networks

Testers: measurements of network parameters

Four results in quantum network estimation

Optimal discrimination of two transformations

Optimal covariant estimation of unitary channels

Optimal tomography

Analysis of Quantum Bit Commitment



Quantum channels

It is useful to represent quantum channels via their Choi operator

A quantum channel is a linear trace-preserving CP map

C := (C ⊗I )(|Ω〉〈Ω|), Hout ⊗Hin $ |Ω〉 :=
∑

n

|n〉|n〉

C (ρ) = Trin[(I ⊗ ρT )C]

Trout[C] = IinTRACE PRESERVATION CONDITION



Quantum networks

We want to describe quantum networks

What is the Choi operator of a network?

We start from 2 channels: C2C1 = C3



Link product

The definition of link product provides the 
Choi operator of the composed channel

N
H2H1

M
H0 H1

L = M ∗N := TrH1 [(M ⊗ I0)(I2 ⊗Nθ1)]
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Link product

The definition of link product provides the 
Choi operator of the composed channel

H0 H2

M ◦ N = L

L = M ∗N := TrH1 [(M ⊗ I0)(I2 ⊗Nθ1)]



Link product
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Principle of delayed reading.

Uj . . .

!"!!! ≡
Uj . . .

• !"!!!
Link-product.

M (ρ) ≡ ρ ∗RM = Trin[(Iout ⊗ ρᵀ)RM ] = Trin[(Iout ⊗ ρ)Rθ
M ]
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A ∈ B(Aout ⊗ Ain), B ∈ B(Bout ⊗ Bin), J ≡ Hd

A ∗B = TrJ[AθJB] ∈ B(Hout ⊗ Hin)

R1∗R2 ⇐⇒

|a〉

!"!!!
. . . . . . . . . . . .

!"!!!
R1 ∗R2 ∗R3 ⇐⇒

Realization theorem.

V1 V2 V3

. . .
VN−1 VN

|a〉 . . . !"!!!
1

Choi-operator calculus

AB := (Aa,b,c,d ⊗ Ie,f,g)(Ia,b,c ⊗Bd,e,f,g)

G. Chiribella, G. M. D'Ariano, and P. P., Phys. Rev. Lett. 101, 060401 (2008).



Networks as combs

T1

T2

T3

T4

T5

All networks can be sorted to form of a “comb network”

T1 T2 T3 T4 T5

G. Chiribella, G. M. D'Ariano, and P. P., Phys. Rev. Lett. 101, 060401 (2008).

R = T1 ∗ T2 ∗ T3 ∗ T4 ∗ T5



The quantum comb
We consider networks of this kind

One can prove that the Choi operator of the network satisfes

V0 V1 VN−2 VN−1

10 2 3 2N − 3 2N − 2 2N − 12N − 4

Tr2n−1[R(n)] = I2n−2 ⊗R(n−1), 1 ≤ n ≤ N

R(0) = 1



Realisation theorem
Also the converse is true: if R satisfies

Tr2n−1[R(n)] = I2n−2 ⊗R(n−1), 1 ≤ n ≤ N

R(0) = 1

then it has a realisation scheme as a comb
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G. Chiribella, G. M. D'Ariano, and P. P., Phys. Rev. Lett. 101, 060401 (2008).
G. Chiribella, G. M. D'Ariano, and P. P., in preparation.



Testers
We consider networks of this kind

Their Choi operator is Ti and satisfies
∑

i

Ti = T = I2N−2 ⊗ Ξ

R ∗ Ti = Tr[RTT
i ] = p(i|R),

∑

i

p(i|R) = 1

C1 C2 C3ρ Pi

Tr2n−1[Ξ(n)] = I2n−2 ⊗ Ξ(n−1), 1 ≤ n ≤ N − 1

Ξ(N−1) = Ξ, I0 = 1



Realisation theorem

then for all R

Tr2n−1[Ξ(n)] = I2n−2 ⊗ Ξ(n−1), 1 ≤ n ≤ N − 1

Ξ(N−1) = Ξ, I0 = 1

Also the converse is true: if Ti satisfies
∑

i

Ti = I2N−2 ⊗ Ξ

R ∗ Ti = Tr[RTT
i ] = p(i|R),

∑

i

p(i|R) = 1

and the operators Ti correspond to a tester network



Decomposition of testers
A particularly useful decomposition for testers is

Pi := (I ⊗ Ξ−
1
2 )Ti(I ⊗ Ξ−

1
2 )

R̃ := (I ⊗ ΞT 1
2 )R(I ⊗ ΞT 1

2 )

Tr[RTT
i ] = Tr[R̃PT

i ]

C1 C2 C3ρ Pi



Discrimination of unitaries
Problem: provided N uses of a black box which performs 
either U1 or U2, discriminate the two cases

Procedure 1: apply the N uses on a multipartite state and 
measure

Procedure 2: apply the N uses in sequence on a single 
system, intercalated with fixed unitaries, and measure

Procedure 3: insert the N uses in a quantum network and 
measure the output



Procedure 1

U
U

U

G. M. D’Ariano, P. Lo Presti, M. G. A. Paris, PRL 87, 270404 (2001);
A. Acín, PRL 87, 177901(2001). 

V = U†
1U2

N1 =
⌈

π

∆φ

⌉



Procedure 2

R. Duan, Y. Feng, M. Ying, PRL 98, 100503 (2007)

UU U U

V = U†
1U2

N2 = N1 =
⌈

π

∆φ

⌉



Procedure 3

U
U

U
U

Question: what is the optimal disposition of unitaries for 
discrimination?



Spread lemma
∆(AB) ≤ ∆(A) + ∆(B)

U U U U
W1 W2 W3

∆[W (U ⊗ I)W †(U ⊗ I)] ≤ ∆(U⊗2)

The spread of the tester is not larger than that of U⊗N UNand

A. M. Childs, J. Preskill, and J. Renes, J. Mod. Opt. 47, 155-176 (2000). 

The parallel and fully sequential scheme are both optimal
No quantum memory or entanglement are required

G. Chiribella, G. M. D’Ariano, and P. P., Phys. Rev. Lett. 101, 180501 (2008).

For optimal unambiguous discrimination only the POVM is different



Discrimination of unitaries
What happens for more than two unitaries?

What happens for discrimination between sets of unitaries?

Quantum computation (e.g. Grover, Deutsh-Jozsa, Simon)

Oracle calls

U U U U

In general quantum memory is required C. Zalka, Phys. Rev. A 60, 2746 (1999)



Conditions for discrimination
Discriminability of multiple use channels and more generally 
combs is determined by optimized testers

What are conditions for perfect discriminability?

Is optimal discrimination parallel?

G. Chiribella, G. M. D’Ariano, and P. P., Phys. Rev. Lett. 101, 180501 (2008).

★ perfect discriminability C0(I2N−1 ⊗ Ξ)C1 = 0

equivalently |(I ⊗
√

Ξ)(
√

C0 + λ
√

C1)|2 ≥ |(I ⊗
√

Ξ)
√

C0|2, ∀λ ∈ C

|X| :=
√

X†X



Sequential discrimination
★ optimal discriminability for combs is not parallel

Example:

C0 =
d−1∑

p,q=0

|W †
p,q〉〉〈〈W †

p,q|3,2 ⊗
|p, q〉〈p, q|1

d2
⊗ I0,

0 1 2 3

C1 = |0〉〈0|3 ⊗ I2 ⊗
I1

d2
⊗ I0



Operational network distance
Existence of non parallel optimal discrimination schemes

The proper distance for memory channels must be 
defined in terms of optimal discriminating testers

3

exists that perfectly discriminates among them. The first
channel acts as follows on the first use

C0(ρ0) =
I

d2
= TrE

[
d−1∑

p,q=0

|p, q〉〈p, q|
d2

⊗(Wp,qρ0W
†
p,q ⊗ |p, q〉〈p, q|)E

]
,

(10)

where the input space has dimension d, |p, q〉 is an or-
thonormal basis in a d2 dimensional Hilbert space, the
unitaries Wp,q := ZpUq are the customary shift and mul-
tiply unitary group, where Z|n〉 = |n + 1〉 and U |n〉 =
e

2πi
d n|n〉, and the traced space is labeled by E because it

describes the environment, which is not directly acessible
but remains correlated with the first output and succes-
sively interacts with the second input. We now split the
second use in two steps. The first step provides

ρ2 $→ ρ′2 =
1
2

TrE1 [ρ2⊗ρE +(E⊗IE2)(ρ2⊗ρE)(E⊗IE2)],
(11)

where E denotes the swap operator E|φ〉|ψ〉 = |ψ〉|φ〉, the
partial trace is taken only on the first system composing
the environment, denoted by E1, and the second part of
the environment, denoted by E2 is untouched. In the
second step, the second part of the environment is used
as follows

C2(ρ2) =
d−1∑

p,q=1

W †
p,q TrE2 [ρ

′
2(I ⊗ |p, q〉〈p, q|)]Wp,q. (12)

The second channel simply provides

D0(ρ0) =
I

d2
, D2(ρ2) = (|0〉〈0|)⊗2. (13)

We will now show that the two channels are not distin-
guishable as customary channels, whereas there exists a
causal scheme allowing for perfect discrimination. The
Choi operators of the two channels are

RC =
d−1∑

p,q=1

|p, q〉〈p, q|1
2d2

⊗
(
|I〉〉〈〈I|3,0 ⊗ I2 + |W †

p,q〉〉〈〈W †
p,q|3,2 ⊗ I0

)
,

RD =
I⊗2
1

d2
⊗ |0〉〈0|3 ⊗ I⊗2

0,2 ,

(14)

where 1, 3 denote the output spaces with dimension d2

and d, respectively. Suppose that the channels are per-
fectly discriminable, then by condition Eq. (7) there ex-
ists ρ02 such that

RC (I1,3 ⊗ ρ0,2)RD = RC RD(I1,3 ⊗ ρ0,2) = 0, (15)

where the second equality comes from the expression of
RD in Eq. (14). Tracing both sides on the output spaces
1 and 3 one has Tr1,3[RC RD ]ρ0,2 = 0. However,

Tr1,3[RC RD ] =
1
2

(
|0〉〈0|0 ⊗ I2 +

d−1∑

p,q=1

I0

d
⊗ I2

)
, (16)

is invertible, and consequently there cannot exist any
state ρ0,2 supported on its kernel. This proves by contra-
diction that the cb-norm distance of C and D is strictly
smaller than 2. We will now show a simple causal scheme
which allows perfect discrimination of channels C and
D . The first use of the channel is applied to the state
|1〉〈1|, then the measurement with POVM {|p, q〉〈p, q|}
is performed at the output. Depending on the outcome
p̄, q̄, the second use of the channel is applied to the state
Wp̄,q̄|1〉〈1|W †

p̄,q̄. It is clear that the output of channel C2

is the state |1〉〈1|, whereas the output of D2 is |0〉〈0|.
This example shows that the correct discriminability

criterion for memory channels cannot be the maximum
cb-norm distance, which is based on customary setups in
which a state is prepared, transformed by the channel and
measured. On the other hand, we propose as a suitable
notion of distance the following one, which is based on
the possibility of discrimination through testers

D(C (N), D(N)) := max
Ξ(N)

∣∣∣
∣∣∣
(
I ⊗ Ξ(N) 1

2

)
∆

(
I ⊗ Ξ(N) 1

2

)∣∣∣
∣∣∣
1
,

(17)
where the maximum is over those Ξ(N) satisfying the
conditions in Eq. (4), and ∆ := (RC (N) −RD(N)). It can
be easily shown that for N = 1 this notion reduces to the
usual cb-norm distance.

The most elementary application of testers is the dis-
crimination of sets of unitary channels. Let us first con-
sider the case of sets of two unitaries. Without loss of
generality we can always reduce to the discrimination
of U, V from I, I. By referring to the scheme in Fig.
2 we can restate the problem as the discrimination of
W †(U ⊗ I)W (V ⊗ I) from I on a bipartite system, where
W describes the interaction with an ancillary system.
It is well known that optimal discriminability of a uni-
tary X from the identity is related to the angular spread
Θ(X), defined as the maximum relative phase between
two eigenvalues of X [3]. Apart from the degenerate case
in which X has only two different eigenvalues, X the
discriminability of X from I is assessed by the quantity
max{0, cosΘ(X)/2}, namely it is perfect if Θ(X) ≥ π.
A theorem proved in Ref. [15] states that for the angular
spread of the product of two unitaries X,Y , the following
bound holds

Θ(XY ) ≤ Θ(X) + Θ(Y ). (18)

Moreover, it is clear that conjugation by a unitary W
leaves the angular spread unchanged. This implies that
the spread of W †(U⊗I)W (V ⊗I) is smaller than or equal
to the one of U ⊗V . Consequently, no causal scheme can
perform better than the parallel one. Notice that this
argument provides the solution to the problem of dis-
criminating the sequence U, V from V,U . By a recursive
argument, one can solve the case of sets of N > 2 uni-
taries. Indeed, considering W †XN−1W (UN ⊗ I), where
XN−1 is the product of the tester unitaries alternated

∆ := C −D

G. Chiribella, G. M. D’Ariano, and P. P., Phys. Rev. Lett. 101, 180501 (2008).

CB-norm distance only accounts for parallel discrimination schemes



Covariant estimation of unitaries
Covariant unitary estimation problem:

A group of unitaries, (Haar-distributed)

A general tester for estimating the group element

What is the optimal tester?
One can prove that the optimal tester is covariant

Th

Th = (U⊗N
h ⊗ I)Θ(U†⊗N

h ⊗ I) ⇒ [T,U⊗N
h ⊗ I] = 0

|Ug〉〉〈〈Ug|

T =
∫

G
d gTg



Parallelization

Any covariant tester prepares a set of covariant states

Any covariant tester is equivalent to a parallel scheme

U U U U

U
U
U
U

!

G. Chiribella, G. M. D’Ariano, and P. P., Phys. Rev. Lett. 101, 180501 (2008).

T
1
2 (|Ug〉〉〈〈Ug|)⊗NT

1
2 = (U⊗N

g ⊗ I)T
1
2 |I〉〉〈〈I|T 1

2 (U†⊗N
g ⊗ I)



Tomography

i<f >
ρ Pi

〈O〉 =
∑

i

fi(O) Tr[Piρ]

The POVM must be informationally complete



Process tomography

The tester must be informationally complete

Tr[CX] =
∑

i

fi[X] Tr[TiC]

l(T ) = 〈f [T ]〉

ρ Pi
C

Tester Ti



Optimization
Tomogrphy - reconstruction of linear parameters

Problem: how to achieve the minimum statistical error?

In both cases fi is generally not unique

What is the best processing for a fixed POVM/tester?

Comparing POVMs/testers with optimal processing

What is the optimal POVM/tester?



Optimal processing
Pi → Λ : Λc =

∑

i

ciPi

Statistical error:

∆(X) :=
∑

i

|fi[X]|2 Tr[PiρE ] − |〈X〉|2E

ρE :=
∫

pE(d ρ)ρ g(ρ)E :=
∫

pE(d ρ)g(ρ)

f [X] = Γ(X), ΛΓΛ = Λ
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∑

i

|fi[X]|2 Tr[PiρE ] − |〈X〉|2E

ρE :=
∫

pE(d ρ)ρ g(ρ)E :=
∫

pE(d ρ)g(ρ)

f [X] = Γ(X), ΛΓΛ = Λ



Optimal processing

G. M. D’Ariano and P. P., Phys. Rev. Lett. 98, 020403 (2007).

The optimal fi must satisfy πΓΛ = Λ†Γ†π

Solution Γ = Λ‡ − [(I − Λ‡Λ)π(I − Λ‡Λ)]‡πΛ‡

πij = δij Tr[PiρE ]

The only term depending on Pi and Γcan be written as a norm

||f [X]||2π :=
∑

i

f∗
i [X]πijfj [X]



Optimal process tomography

Tr[CX] =
∑

i

fi[X] Tr[TiC]

Problem: minimum statistical error reconstruction

The problem is formally the same as for states

the optimal processing can be found in the same way



Optimal tester

Figure of merit: weighted sum of errors for a set of 
expectation values

Assumption: the average channel/quantum operation of the 
ensemble is the totally depolarizing

CE :=
∫

p(dC)C =
I

dout

g(C)E :=
∫

pE(dC)g(C)In this case



Optimal tester

A. Bisio, G. Chiribella, G. M. D’Ariano, S. Facchini, and P. P., Phys. Rev. Lett. 102, 010404 (2009).

One can prove that the error in estimating isTr[CZ]

And for a set of operators the weighted sum is

Tr[X−1G], G :=
∑

i

wi|Zi〉〉〈〈Zi|

We considered G = I

〈〈Z|X−1|Z〉〉 − Tr[RZ]2E
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Optimal tester

A. Bisio, G. Chiribella, G. M. D’Ariano, S. Facchini, and P. P., Phys. Rev. Lett. 102, 010404 (2009).

|Ψ〉〉
1√
d

|I〉〉

A1

A2

S2

S1 U1

U2

C

The choice of depends on the set we want to tomographΨ

e.g. channels, quantum operations, states, POVMs

Bi

Bi



Quantum protocols

Quantum combs describe the most general strategies 
in multi-party protocols and games

G. Gutoski and J. Watrous, Proc. STOC, 565-574, (2007)



Bit commitment

Quantum combs can describe the most general strategies 
in a quantum bit commitment protocol

The protocol must be: binding and concealing



Sketch of impossibility proof

Alice has two strategies with small operational distance (binding)

Then, by a transformation on her ancilla Alice can move from 0 to another 
comb which has small operational distance from 1(not concealing)

G. Chiribella, G. M. D’Ariano, P. P., D. Schlingemann, and R. F. Werner, in preparation.



Concluding remarks
The theory of combs allows to account for complex situations 
(networks) by simple tools (positive operators)

The applications show a wide range of problems that can be 
solved through the theory of combs and testers

We would like in the future to study the foundational aspects 
of combs

G. Chiribella, G. M. D’Ariano, and P. P., in preparation
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