Estimation and discrimination of

quantum networks

Paolo Perinotti

in collaboration with
G. Chiribella and G. M. D'Ariano

Summary

- Quantum combs: the theory of quantum networks
- Testers: measurements of network parameters

Four results in quantum network estimation

- Optimal discrimination of two transformations
- Optimal covariant estimation of unitary channels
- Optimal tomography
- Analysis of Quantum Bit Commitment

Quantum channels

A quantum channel is a linear trace-preserving CP map
It is useful to represent quantum channels via their Choi operator $C:=(\mathscr{C} \otimes \mathscr{I})(|\Omega\rangle\langle\Omega|), \quad \mathcal{H}_{\text {out }} \otimes \mathcal{H}_{\text {in }} \ni|\Omega\rangle:=\sum_{n}|n\rangle|n\rangle$

$$
\mathscr{C}(\rho)=\operatorname{Tr}_{\text {in }}\left[\left(I \otimes \rho^{T}\right) C\right]
$$

TRACE PRESERVATION CONDITION $\quad \operatorname{Tr}_{\text {out }}[C]=I_{\text {in }}$

Quantum networks

We want to describe quantum networks
What is the Choi operator of a network?
We start from 2 channels: $-\mathscr{C}_{1}-\mathscr{C}_{2}-=-\mathscr{C}_{3}$

Link product

The definition of link product provides the Choi operator of the composed channel

$$
L=M * N:=\operatorname{Tr}_{\mathcal{H}_{1}}\left[\left(M \otimes I_{0}\right)\left(I_{2} \otimes N^{\theta_{1}}\right)\right]
$$

Link product

The definition of link product provides the Choi operator of the composed channel

$$
L=M * N:=\operatorname{Tr}_{\mathcal{H}_{1}}\left[\left(M \otimes I_{0}\right)\left(I_{2} \otimes N^{\theta_{1}}\right)\right]
$$

Link product

The definition of link product provides the Choi operator of the composed channel

$$
L=M * N:=\operatorname{Tr}_{\mathcal{H}_{1}}\left[\left(M \otimes I_{0}\right)\left(I_{2} \otimes N^{\theta_{1}}\right)\right]
$$

Link product

$\mathrm{B}_{\text {in }}\left[\begin{array}{lll}\boldsymbol{d} \\ e & \mathscr{B} & -f \\ \boldsymbol{e}\end{array}\right] \mathrm{B}_{\text {out }}$

$$
\mathrm{J}=\mathcal{H}_{d}
$$

Choi-operator calculus

$A * B=\operatorname{Tr}_{\jmath}\left[A^{\theta_{\jmath}} B\right] \in \mathrm{B}\left(\mathrm{H}_{\text {out }} \otimes \mathrm{H}_{\text {in }}\right)$

$A B:=\left(A_{a, b, c, d} \otimes I_{e, f, g}\right)\left(I_{a, b, c} \otimes B_{d, e, f, g}\right)$
G. Chiribella, G. M. D'Ariano, and P. P., Phys. Rev. Lett. 101, 060401 (2008).

Networks as combs

All networks can be sorted to form of a "comb network"

G. Chiribella, G. M. D'Ariano, and P. P., Phys. Rev. Lett. 101, 060401 (2008).

The quantum comb

We consider networks of this kind

One can prove that the Choi operator of the network satisfes

$$
\begin{gathered}
\operatorname{Tr}_{2 n-1}\left[R^{(n)}\right]=I_{2 n-2} \otimes R^{(n-1)}, \quad 1 \leq n \leq N \\
R^{(0)}=1
\end{gathered}
$$

Realisation theorem

Also the converse is true: if R satisfies

$$
\begin{gathered}
\operatorname{Tr}_{2 n-1}\left[R^{(n)}\right]=I_{2 n-2} \otimes R^{(n-1)}, \quad 1 \leq n \leq N \\
R^{(0)}=1
\end{gathered}
$$

then it has a realisation scheme as a comb

Testers

We consider networks of this kind

Their Choi operator is T_{i} and satisfies $\sum_{i} T_{i}=T=I_{2 N-2} \otimes \Xi$

$$
\begin{aligned}
\operatorname{Tr}_{2 n-1}\left[\Xi^{(n)}\right]= & I_{2 n-2} \otimes \Xi^{(n-1)}, \quad 1 \leq n \leq N-1 \\
& \Xi^{(N-1)}=\Xi, \quad I_{0}=1
\end{aligned}
$$

$$
R * T_{i}=\operatorname{Tr}\left[R T_{i}^{T}\right]=p(i \mid R), \quad \sum_{i} p(i \mid R)=1
$$

Realisation theorem

Also the converse is true: if T_{i} satisfies

$$
\sum_{i} T_{i}=I_{2 N-2} \otimes \Xi
$$

$$
\begin{aligned}
\operatorname{Tr}_{2 n-1}\left[\Xi^{(n)}\right]= & I_{2 n-2} \otimes \Xi^{(n-1)}, \quad 1 \leq n \leq N-1 \\
& \Xi^{(N-1)}=\Xi, \quad I_{0}=1
\end{aligned}
$$

then for all $\mathrm{R} \quad R * T_{i}=\operatorname{Tr}\left[R T_{i}^{T}\right]=p(i \mid R), \quad \sum_{i} p(i \mid R)=1$ and the operators T_{i} correspond to a tester network

Decomposition of testers

A particularly useful decomposition for testers is

$$
\begin{gathered}
P_{i}:=\left(I \otimes \Xi^{-\frac{1}{2}}\right) T_{i}\left(I \otimes \Xi^{-\frac{1}{2}}\right) \\
\tilde{R}:=\left(I \otimes \Xi^{T \frac{1}{2}}\right) R\left(I \otimes \Xi^{T \frac{1}{2}}\right) \\
\operatorname{Tr}\left[R T_{i}^{T}\right]=\operatorname{Tr}\left[\tilde{R} P_{i}^{T}\right]
\end{gathered}
$$

Discrimination of unitaries

[Problem: provided N uses of a black box which performs either U_{1} or U_{2}, discriminate the two cases

- Procedure I: apply the N uses on a multipartite state and measure

Procedure 2: apply the N uses in sequence on a single system, intercalated with fixed unitaries, and measure

Procedure 3: insert the N uses in a quantum network and measure the output

Procedure
 1

$$
V=U_{1}^{\dagger} U_{2}
$$

$$
N_{1}=\left\lceil\frac{\pi}{\Delta \phi}\right\rceil
$$

G. M. D'Ariano, P. Lo Presti, M. G. A. Paris, PRL 87, 270404 (2001);
A. Acín, PRL 87, 177901 (2001).

Procedure 2

U U U U

$$
V=U_{1}^{\dagger} U_{2}
$$

$N_{2}=N_{1}=\left\lceil\frac{\pi}{\Delta \phi}\right\rceil$
R. Duan, Y. Feng, M. Ying, PRL 98, 100503 (2007)

Procedure 3

Question: what is the optimal disposition of unitaries for discrimination?

Spread lemma

$\Delta(A B) \leq \Delta(A)+\Delta(B)$ A. M. Childs, J. Preskill, and J. Renes, J. Mod. Opt. 47, 155-176 (2000). (U) $W_{1} W_{2}(U)$
$\Delta\left[W(U \otimes I) W^{\dagger}(U \otimes I)\right] \leq \Delta\left(U^{\otimes 2}\right)$
The spread of the tester is not larger than that of $U^{\otimes^{N}}$ and U^{N} The parallel and fully sequential scheme are both optimal No quantum memory or entanglement are required
For optimal unambiguous discrimination only the POVM is different G. Chiribella, G. M. D'Ariano, and P. P., Phys. Rev. Lett. 101, 180501 (2008).

Discrimination of unitaries

What happens for more than two unitaries?
What happens for discrimination between sets of unitaries?

- Quantum computation (e.g. Grover, Deutsh-Jozsa, Simon)

In general quantum memory is required
C. Zalka, Phys. Rev. A 60,2746 (1999)

Condifions for discrimination

Discriminability of multiple use channels and more generally combs is determined by optimized testers

- What are conditions for perfect discriminability?
- Is optimal discrimination parallel?
\star perfect discriminability $C_{0}\left(I_{2 N-1} \otimes \Xi\right) C_{1}=0$ equivalently $\left|(I \otimes \sqrt{\Xi})\left(\sqrt{C_{0}}+\lambda \sqrt{C_{1}}\right)\right|^{2} \geq\left|(I \otimes \sqrt{\Xi}) \sqrt{C_{0}}\right|^{2}, \quad \forall \lambda \in \mathbb{C}$

$$
|X|:=\sqrt{X^{\dagger} X}
$$

G. Chiribella, G. M. D'Ariano, and P. P., Phys. Rev. Lett. 101, 180501 (2008).

Sequential discrimination

t optimal discriminability for combs is not parallel

Example:

$$
\begin{gathered}
\left.C_{0}=\sum_{p, q=0}^{d-1}\left|W_{p, q}^{\dagger}\right\rangle\right\rangle\left\langle\left\langle W_{p, q}^{\dagger}\right| 3,2\right. \\
C_{1}=|0\rangle\left\langle\left. 0\right|_{3} \otimes I_{2} \otimes \frac{|p, q\rangle\left\langle p,\left.q\right|_{1}\right.}{d^{2}} \otimes I_{0},\right. \\
d^{2}
\end{gathered} I_{0}
$$

Operational network distance

Existence of non parallel optimal discrimination schemes

The proper distance for memory channels must be defined in terms of optimal discriminating testers

$$
D\left(\mathscr{C}^{(N)}, \mathscr{D}^{(N)}\right):=\max _{\Xi(N)}\left\|\left(I \otimes \Xi^{(N) \frac{1}{2}}\right) \Delta\left(I \otimes \Xi^{(N) \frac{1}{2}}\right)\right\|_{1}
$$

$$
\Delta:=C-D
$$

CB-norm distance only accounts for parallel discrimination schemes
G. Chiribella, G. M. D'Ariano, and P. P., Phys. Rev. Lett. 101, 180501 (2008).

Covariant estimation of unitaries

Covariant unitary estimation problem:

- A group of unitaries, (Haar-distributed) $\left.\left|U_{g}\right\rangle\right\rangle\left\langle U_{g}\right|$
- A general tester for estimating the group element T_{h}
- What is the optimal tester?

One can prove that the optimal tester is covariant

$$
T=\int_{G} \mathrm{~d} g T_{g}
$$

$$
T_{h}=\left(U_{h}^{\otimes N} \otimes I\right) \Theta\left(U_{h}^{\dagger \otimes N} \otimes I\right) \quad \Rightarrow \quad\left[T, U_{h}^{\otimes N} \otimes I\right]=0
$$

Parallelization

$$
\left.T^{\frac{1}{2}}\left(\left|U_{g}\right\rangle\right\rangle\left\langle\left\langle U_{g}\right|\right)^{\otimes N} T^{\frac{1}{2}}=\left(U_{g}^{\otimes N} \otimes I\right) T^{\frac{1}{2}}|I\rangle\right\rangle\left\langle\langle I| T^{\frac{1}{2}}\left(U_{g}^{\dagger \otimes N} \otimes I\right)\right.
$$

Any covariant tester prepares a set of covariant states

Any covariant tester is equivalent to a parallel scheme

G. Chiribella, G. M. D'Ariano, and P. P., Phys. Rev. Lett. 101, 180501 (2008).

Tomography

The POVM must be informationally complete

Process tomography

Tester T_{i}

$$
\operatorname{Tr}[C X]=\sum_{i} f_{i}[X] \operatorname{Tr}\left[T_{i} C\right]
$$

The tester must be informationally complete

Optimization

Tomogrphy - reconstruction of linear parameters
Problem: how to achieve the minimum statistical error?
In both cases f_{i} is generally not unique

- What is the best processing for a fixed POVM/tester?

Comparing POVMs/testers with optimal processing

- What is the optimal POVM/tester?

Optimal processing

$$
\begin{aligned}
& P_{i} \rightarrow \Lambda: \quad \Lambda c=\sum_{i} c_{i} P_{i} \\
& f[X]=\Gamma(X), \quad \Lambda \Gamma \Lambda=\Lambda
\end{aligned}
$$

Statistical error:

$$
\begin{gathered}
\Delta(X):=\sum_{i}\left|f_{i}[X]\right|^{2} \operatorname{Tr}\left[P_{i} \rho_{\mathcal{E}}\right]-\overline{|\langle X\rangle|^{2}} \mathcal{E} \\
\rho_{\mathcal{E}}:=\int p_{\mathcal{E}}(\mathrm{d} \rho) \rho \overline{g(\rho)_{\mathcal{E}}}:=\int p_{\mathcal{E}}(\mathrm{d} \rho) g(\rho)
\end{gathered}
$$

Optimal processing

$$
\begin{aligned}
& P_{i} \rightarrow \Lambda: \quad \Lambda c=\sum_{i} c_{i} P_{i} \\
& f[X]=\Gamma(X), \quad \Lambda \Gamma \Lambda=\Lambda
\end{aligned}
$$

Statistical error:

$$
\begin{aligned}
& \Delta(X):=\sum_{i}\left|f_{i}[X]\right|^{2} \operatorname{Tr}\left[P_{i} \rho_{\mathcal{E}}\right]-\overline{|\langle X\rangle|^{2}}{ }_{\mathcal{E}} \\
& \varepsilon:=\int p_{\mathcal{E}}(\mathrm{d} \rho) \rho \quad \overline{g(\rho)_{\mathcal{E}}}:=\int p_{\mathcal{E}}(\mathrm{d} \rho) g(\rho)
\end{aligned}
$$

Optimal processing

The only term depending on P_{i} and Γ can be written as a norm

$$
\|f[X]\|_{\pi}^{2}:=\sum_{i} f_{i}^{*}[X] \pi_{i j} f_{j}[X]
$$

The optimal f_{i} must satisfy $\pi \Gamma \Lambda=\Lambda^{\dagger} \Gamma^{\dagger} \pi$
Solution

$$
\begin{aligned}
\Gamma= & \Lambda^{\ddagger}-\left[\left(I-\Lambda^{\ddagger} \Lambda\right) \pi\left(I-\Lambda^{\ddagger} \Lambda\right)\right]^{\ddagger} \pi \Lambda^{\ddagger} \\
& \pi_{i j}=\delta_{i j} \operatorname{Tr}\left[P_{i} \rho_{\mathcal{E}}\right]
\end{aligned}
$$

G. M. D'Ariano and P. P., Phys. Rev. Lett. 98,020403 (2007).

Optimal process fomography

$$
\operatorname{Tr}[C X]=\sum_{i} f_{i}[X] \operatorname{Tr}\left[T_{i} C\right]
$$

Problem: minimum statistical error reconstruction
The problem is formally the same as for states

- the optimal processing can be found in the same way

Optimal tester

Figure of merit: weighted sum of errors for a set of expectation values

Assumption: the average channel/quantum operation of the ensemble is the totally depolarizing

$$
C_{\mathcal{E}}:=\int p(\mathrm{~d} C) C=\frac{I}{d_{\mathrm{out}}}
$$

In this case

$$
\overline{g(C)}_{\mathcal{E}}:=\int p_{\mathcal{E}}(\mathrm{d} C) g(C)
$$

Optimal tester

One can prove that the error in estimating $\operatorname{Tr}[C Z]$ is

$$
\left.\left\langle\langle Z| X^{-1} \mid Z\right\rangle\right\rangle-\overline{\operatorname{Tr}[R Z]^{2}} \varepsilon
$$

And for a set of operators the weighted sum is

$$
\left.\operatorname{Tr}\left[X^{-1} G\right], \quad G:=\sum_{i} w_{i}\left|Z_{i}\right\rangle\right\rangle\left\langle\left\langle Z_{i}\right|\right.
$$

We considered $\quad G=I$
A. Bisio, G. Chiribella, G. M. D'Ariano, S. Facchini, and P. P., Phys. Rev. Lett. 102,010404 (2009).

Optimal tester

One can prove that the error in estimating $\operatorname{Tr}[C Z]$ is

$$
\left\langle\langle Z| X^{-1}\right| Z\left\rangle-\overline{\operatorname{Tr}[R Z]^{2}} \mathcal{\varepsilon}\right.
$$

And for a set of operators the weighted sum is

$$
\left.\operatorname{Tr}\left[X^{-1} G\right], \quad G:=\sum_{i} w_{i}\left|Z_{i}\right\rangle\right\rangle\left\langle\left\langle Z_{i}\right|\right.
$$

We considered $\quad G=I$
A. Bisio, G. Chiribella, G. M. D'Ariano, S. Facchini, and P. P., Phys. Rev. Lett. 102,010404 (2009).

Optimal tester

The choice of Ψ depends on the set we want to tomograph e.g. channels, quantum operations, states, POVMs
A. Bisio, G. Chiribella, G. M. D'Ariano, S. Facchini, and P. P., Phys. Rev. Lett. 102,010404 (2009).

Quantum protocols

Quantum combs describe the most general strategies in multi-party protocols and games

G. Gutoski and J. Watrous, Proc. STOC, 565-574, (2007)

Bit commitment

Quantum combs can describe the most general strategies in a quantum bit commitment protocol

The protocol must be: binding and concealing

Sketch of impossibility proof

[Alice has two strategies with small operational distance (binding)
Then, by a transformation on her ancilla Alice can move from 0 to another comb which has small operational distance from 1 (not concealing)
G. Chiribella, G. M. D'Ariano, P. P., D. Schlingemann, and R. F. Werner, in preparation.

Concluding remarks

The theory of combs allows to account for complex situations (networks) by simple tools (positive operators)

The applications show a wide range of problems that can be solved through the theory of combs and testers

We would like in the future to study the foundational aspects of combs
G. Chiribella, G. M. D'Ariano, and P. P., in preparation

Thank you

for your attention

More information at www.qubit.it

