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Introduction
Quantum teleportation and Quantum memory.

Both processing can be written down the following processing:
Alice and Bob are spatially or temporally separated.
Alice wants to send an unknown quantum state to Bob.
They known an unknown state is in                  .    
They may be also know the prior probability               .
An error is caused by an inevitable noise, and Bob gets         .
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Ideal case: is an identity channelΓ Impossible in a real experiment



Introduction
Quantum teleportation and Quantum memory.

Suppose an experiment is done, and we have data of      and     .
However,       looks far from the identity channel.

Question: Is this process really “quantum”?

At least, it should not be simulated by a “classical” scheme.
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Introduction
Quantum teleportation and Quantum memory.

Classical scheme (or Measure and Preparing scheme): 
(also called Entanglement breaking channel)
1. Alice measure       by POVM . 
2. Alice send a result of the measurement “i” to Bob.
3. Bob choose a state        depending on a classical information “i”.
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Introduction
Quantum teleportation and Quantum memory.

Classical scheme               Entanglement breaking (EB) channel

Suppose there exists another system 
For all                             ,                          is separable. 
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Introduction
Quantum teleportation and Quantum memory.

Our aim: 
By using experimental data (data of input      and output states ), 
we want to show “a given channel can not simulated by classical scheme”.
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Introduction
Quantum teleportation and Quantum memory.

Our aim: 
By using experimental data (data of input      and output states ), 
we want to show “a given channel can not simulated by classical scheme”.
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The optimal average fidelity

Most natural quantum benchmark is the optimal average fidelity between 
input and output states.

For a given channel        and an input ensemble                , 
an average fidelity is given as:

Then, the optimal average fidelity is derived as
,            : a set of all EB channels

is a legitimate quantum benchmark:
1. can be calculated by only experimental data of      and           .
2. If                , then,       is not EB channel.  

This experiment can not simulated by a classical scheme.
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The optimal worst fidelity

Another popular quantum benchmark is the optimal worst fidelity 
between input and output states.

For a given channel        and an input ensemble                , 
an worst fidelity is given as:

Then, the optimal worst fidelity is defined as

The optimal average fidelity      is a legitimate quantum benchmark, too.
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is not depend on prior probability. 
Therefore, even in the case where we cannot define a reasonable prior probability,
We can use     .
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Known results: finite dimension

For an ensemble of pure states                            distributed 
according to Haar measure          in a D-dimensional system. 
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In this talk, I concentrate on a infinite dimensional system. 

Driving       or      is equal to solving a normal estimation problem of                 .
Many results have been derived as the state estimation problem. 

F 0F Ω∈ωωρ }{

(example)



Known results: infinite dimension
Of course, quantum benchmark in an infinite dimensional system is 

also really important as an technological application.

Difference between infinite and finite dimensional systems:
A set of pure states is non-compact. 
It is impossible to make all pure states in an experiment.

We are interested in a particular set of states.



Quantum benchmark for a set of coherent states

For an ensemble of coherent states                     , 
where                                             : 

Especially, in the limit of flat distribution               ,   
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However, a coherent state is a “classical” state.
People are interested in a quantum teleportation and quantum memory 
for more quantum states 

So, we want to derive a quantum benchmark for squeezed states. 



Quantum benchmark for squeezed states
(Difficulty) 

Hammerer et al.’s trick does not work for squeezed states.
In experiment, a pure squeezed states rapidly becomes mixed, 
because of attenuation of light fields. 
Therefore, we should treat mixed states  

However, the fidelity for mixed states is non-linear!

Under two restrictions, we will give a way to calculate a benchmark!
(Restriction)

States became mixed by a fixed rotationally covariant noisy channel.
for a noisy channel      .

The ensemble is rotationally invariant. 
Λ

Ω∈Ω∈ Ν= ωωωωωωω ψψρ }),({},{ pp

⎥⎦
⎤

⎢⎣
⎡= ρσρσρ TrF )||(



The optimal average fidelity between an ideal input pure state and a output state:

Discussion about the first restriction

(The first restriction)
: States became mixed by a fixed rotationally covariant noisy channel.

for a noisy channel      s.t.                                          .
This is a natural assumption for experiment (e.g. attenuation channel).

Under this restriction, we can redefine a quantum benchmark as follows:
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Discussion about the rotational invariance
(The second restriction) The ensemble is rotationally invariant.
=We should rotate a input state randomly in the phase space.

But, this is easily done in an experiment. 
We do not need to do anything, but just wait for a short time!
(Rotation in the phase space is just a natural time evolution.)

However, the rotational invariance makes the problem much simpler!

Group invariance of an ensemble Group covariance of the optimal strategy



Group invariance and Group covariance

Suppose                       is invariant under the action of a symmetric group    .
That is,                                      

and      unitary representation s.t.                           .       

Then, we can choose an group covariant optimal strategy. 
is covariant w.r.t.         

(Proof for a compact group)
Suppose       is a optimal classical strategy.
Define a covariant      by                                      .
Then,

We can do the same discussion for       .
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Main results 
Under the two restriction,

States became mixed by a fixed rotationally covariant noisy channel.
The ensemble is rotationally invariant.

We derive the following results for an ensemble of squeezed states:

1. For input states with uniform rotations and displacement,
we derive an analytical formula of       .

2. For input states with uniform rotations and general displacement, 
we derive an upper-bound of     described as a finite dimensional SDP.
So, we can efficiently calculate it by a numerical calculation.
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Notations
An ensemble of squeezed states                         ,

,
is characterized by the covariant matrix (CM) 

and the displacement vector        :

In other words,        is derived from a squeezed vacuum       as
, where          is a displacement (Weyl) operator,

and           is a phase-rotation operator.
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Main theorem: Uniform displacement

Main theorem (pure states):

Main theorem (mixed states):
For a noisy channel       s.t.                               and                   ,
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Proof of the main theorem
(Proof for a pure ensemble)
From the phase space invariance of the ensemble, 

We just need to optimize over squeezed vacuums.

Then, we use the following lemma.
Lemma (Holevo 96) For a phase space covariant channel     ,

is completely positive, iff there exist a state     s.t.
it has the form                                                 ,
where      is the time reversal operator defined by             . 
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Proof of the main theorem
By using the lemma and the Parseval relation: 

Thus,

Since                               consists of just diagonal elements of     , 
we can conclude                                         .
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The same optimal strategy w.r.t. the coherent states case. 

Moreover, the following strategy can achieve this upperbound!



Finite displacement 
So far, we have derived an analytical formula of the benchmark in the 

case of uniform rotation and uniform displacement in phase space. 

However, uniform displacement is impossible in an experiment!
We need to find a way to calculate a value of benchmark for an 

ensemble with finite (or exponentially dumping) displacement.

Here, we give an upper-bound of      which is in the form of a finite
dimensional SDP. (Therefore, efficiently calculable)

F



Main theorem: finite displacement
For an ensemble of squeezed states                              ,
where                          , we derived the following theorem:
Main theorem 
For any probability density           and rotationally covariant noise 

channel      , we have 

,

where                                                           ,
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can be also derived by a numerical calculation.cc PPη



Relation with Miguel’s talk
Suppose

,
where              is the set of all PPT      - extendible positive operators. 
Then, we derive                 and                        .

However, from our experience, when our memory is limited,
by increasing      , we can decrease        more than by increasing     .

Practically, we should choose .
(             is the set of all PPT positive operators.) 
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Numerical result 1
When           and                                  , our ensemble coincides Hammerer et 

al.’s ensemble of coherent states.                   We can compare them.
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Numerical result 2:
The numerical results for                                  and  .
A noisy channel      is chosen as an attenuation channel:
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Proof of the main theorem
First, we use the following well-known lemma about the Jamiolkowski

isomorphism of EB channels:

Lemma 
A channel      on      is entanglement breaking,
if and only if 

there exist a unique separable positive operator            on  
such that

and                    
for all                 and                    .
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We can reduce an optimization over entanglement breaking channels 
to an optimization over separable states.



Proof of the main theorem
By using the lemma, we derive:

,

where                                                           .

We succeeded to reduce the problem to an infinite dimensional SDP.

However, we could not numerically solve an infinite dim. SDP.
So, then, we reduce the above infinite dim. SDP to a finite dim. SDP. 
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Proof of the main theorem
We need the following lemma:
Lemma. If a positive separable operator                       satisfies                ,      
then,               .

By using the above lemma, we derive

,

where                         and                               . 

In the third line, we use                                       ; this can be seem 
from                                                        .

( )HH ⊗∈Ω B AB I=ΩTr
1≤Ω

op

( ) ( ) ( )( )
( )
( ) ( )
( ) ( )cccc

ccopcc

trcopcc

cccc

PPTrPPTr
PPTrPPTr

PPPPTr
PPTrPPTrTr

ηη
ηηη

ηηη
ηηηη

−+Ω≤
−⋅Ω+Ω=

−⋅Ω+Ω≤
−Ω+Ω=Ω

1

∑=
=

c

i cc QP
0 ∑ =+

⊗=
clkc llkkQ

∑∞

+=
≥=−

1
0

ci iicc QQPP ηηη
( ) ( )( )∑ ∫

∞

= ∈
⊗Ν=

0 ,,i issi QdqQ
Cξ ξξ ξρρξη

We used the rotationally covariance of     .Ν



Proof of the main theorem
Finally, by using the previous inequality, we derive

,

where                                               .

We have completed the proof!
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Summary

Under the two restriction,
States became mixed by a fixed rotationally covariant noisy channel.
The ensemble is rotationally invariant.

We derived the following results for an ensemble of squeezed states:

1. For input states with uniform rotations and displacement,
we derived an analytical formula:

2. For input states with uniform rotations and general displacement, 
we derived an upper-bound of     described as a finite dimensional SDP.
So, we can efficiently calculate it by a numerical calculation.
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Future works

Now Copenhagen Group is running an experiment of an 
atomic ensemble quantum memory for a rotationally 
invariant set of squeezed states.

The experimental result may appear soon.


