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Introduction

and

Both processing can be written down the following processing:
Alice and Bob are spatially or temporally separated.
Alice wants to send an unknown quantum state to Bob.
They known an unknown state is in {0, ocer .
They may be also know the prior probability {P,},.0.
An error is caused by an inevitable noise, and Bob gets I'(p,) # p,, .

ldeal case:T" is an identity channel :> Impossible in a real experiment



‘ Introduction

Quantum teleportation and Quantum memory.

Suppose an experiment is done, and we have data of p, and I'(p,).
However, I looks far from the identity channel.

Question: Is this process really “quantum”™?

At least, it should not be simulated by a “classical” scheme.
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‘ Introduction

Quantum teleportation and Quantum memory.

Classical scheme (or Measure and Preparing scheme):

(also called Entanglement breaking channel)

. Alice measure 2,, by POVM {M.}\,.

. Alice send a result of the measurement “i” to Bob.

3. Bob choose a state oJ depending on a classical information “I”.
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In probTr(p, M,)

They want an average output state ZTI’(pri)-O'i to be similar to 2, .
i=1



‘ Introduction

Quantum teleportation and Quantum memory.

Classical scheme<I> Entanglement breaking (EB) channel

Suppose there exists another system p,. € H A 03¢ HC
Forall Pac EHA®He T®I_(p,) is separable.
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‘ Introduction

Quantum teleportation and Quantum memory.

Our aim:
By using experimental data (data of input 2, and output states I'(p,)),

we want to show “a given channel can not simulated by classical scheme”.

e
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‘ Introduction

Quantum teleportation and Quantum memory.

Our aim:
By using experimental data (data of input 2, and output states I'(p,)),

we want to show “a given channel can not simulated by classical scheme”.

Quantum Benchmark

= Classical channel g




‘ The optimal average fidelity

Most natural quantum benchmark is the optimal average fidelity between
iInput and output states.

For a given channel T" and an input ensemble {0, P, }..q .
an average fidelity F (I") is given as:

FN =] _F(p,IT(p,)) do

Then, the optimal average fidelity is derived as

F = sup IE(F) , E, :asetofall EB channels
I'eE,

F is a legitimate quantum benchmark:
© F(I) can be calculated by only experimental data of PoandI'(p,,).
> If F()>F,then, I" is not EB channel.

L~ This experiment can not simulated by a classical scheme.




The optimal worst fidelity

Another popular quantum benchmark is the optimal worst fidelity
between input and output states.

For a given channel T" and an input ensemble {o_}
an worst fidelity F,(I') is given as:

(D) =inf F(p, |T(p,))

Then, the optimal worst fidelity is defined as

F, =supk, (I')

FeEb

we) !

The optimal average fidelity Fo IS a legitimate quantum benchmark, too.

FO IS not depend on prior probability.
Therefore, even in the case where we cannot define a reasonable prior probability,
We can use FO.

By definition, F (') > F,(T") , and thus, F >F, .



Known results: finite dimension

Driving F or I, is equal to solving a normal estimation problem of {0, }
Many results have been derived as the state estimation problem.

(example) o
For an ensemble of pure states {U|y),dU}, s, o, distributed

according to Haar measure dU in a D-dimensional system.
— 2 (Werner 98, Horodecki*3 99)

F=h =01

v

In this talk, | concentrate on a infinite dimensional system.

we)



Known results: infinite dimension

Of course, quantum benchmark in an infinite dimensional system is
also really important as an technological application.

Difference between infinite and finite dimensional systems:
A set of pure states is non-compact.
It is impossible to make all pure states in an experiment.

v

We are interested in a particular set of states.



Quantum benchmark for a set of coherent states

For an ensemble of coherent states {‘ 05>, pa}ae@
where p(a) = Zexp(~2 |a )
T

|f — 1+4 (Braunstein et al. 2000, Hammerer et al. 2005)
2+ A
Especially, in the limit of flat distribution ; — oo, |f — i
2

However, a coherent state is a “classical’ state.

People are interested in a guantum teleportation and qguantum memory
for more quantum states

.

So, we want to derive a quantum benchmark for squeezed states.




Quantum benchmark for squeezed states

(Difficulty)
Hammerer et al.’s trick does not work for squeezed states.

In experiment, a pure squeezed states rapidly becomes mixed,
because of attenuation of light fields.

Therefore, we should treat mixed states F(p| o) :Tr[ ﬁgﬁ}
However, the fidelity for mixed states is non-linear!

- .

Under two restrictions, we will give a way to calculate a benchmark!

(Restriction)
States became mixed by a fixed rotationally covariant noisy channel.

{0 Potoca ={N(v,, Xw, I), p,} foranoisy channel A.

The ensemble is rotationally invariant.




Discussion about the first restriction

(The first restriction)
. States became mixed by a fixed rotationally covariant noisy channel.

{IOa)’ pa)}a)eQ :{N(‘ l)”a)><l//a) ‘)’ pa)}a)eQ
for a noisy channel N s.t. N(Ug,oU;)=UgN(,0lJ; :
This is a natural assumption for experiment (e.g. attenuation channel).

Under this restriction, we can redefine a quantum benchmark as follows:

The optimal average fidelity between an ideal input pure state and a output state:

FM=[ Flw.)w.|IT(p,)do=] Tr(y,)Xy,|T(p,))do

F =supF(T)

TEEb

F is still a legitimate quantum benchmark.

We succeeded to remove non-linearity from the definition of benchmark!




Discussion about the rotational invariance

(The second restriction) The ensemble is rotationally invariant.
=We should rotate a input state randomly in the phase space.
But, this is easily done in an experiment.

We do not need to do anything, but just wait for a short time!
(Rotation in the phase space is just a natural time evolution.)

Group invariance of an ensemble ” Group covariance of the optimal strategy




Group invariance and Group covariance

Suppose{pw, pw}wegis invariant under the action of a symmetric groupG.
Thatis, Vg € G, p, = Py
and 3 unitary representation s.t. p, ,=U o U

- .

Then, we can choose an group covariant optimal strategy.

[ is covariant w.r.t. G < Vp,U T(p)U, =T pU))
(Proof for a compact group)

Suppose I is a optimal classical strategy.

Define a covariant T by T(p)= J dgU I'(U,pU U,

Then, F(T") = [de p,F(p, IIT(p,))

> [[dadg p,F (g IT(Py())

= {[dadg p,.,F (e, IT(p,) =F(T)
We can do the same discussion for FO :

*
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Even for a “non-compact” group this statement is valid!



Main results

Under the two restriction,
States became mixed by a fixed rotationally covariant noisy channel.
The ensemble is rotationally invariant.

We derive the following results for an ensemble of squeezed states:

1. For input states with uniform rotations and displacement,
we derive an analytical formula of Fo-

2. For input states with uniform rotations and general displacement,
we derive an upper-bound of F described as a finite dimensional SDP.
So, we can efficiently calculate it by a numerical calculation.



Notations

An ensemble of squeezed states {2, P},

w=(£,0) Q=Cx|0, 27] (Fixed squeezing)
P, is characterized by the covariant matrix (CM) Y o,
and the displacement vector d

B cosd sin@d\s 0 \cos@d -sin@ ’
"o | Zsing cos@ )0 1/s)\sing cose
dpwzf

In other words, P, is derived from a squeezed vacuum O, as

0., :W(:U ePsU ;\Nf , Where Wg i's a displacemeht (Weyl) operator,
and Ue IS a phase-rotation operator.



‘Main theorem: Uniform displacement
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Main theorem (pure states): 0.5

Fo(s) = sup inf Tr[,o 1“(,0@)]_1i l
I'eE,

Main theorem (mixed states):
For a noisy channel N s.t. 7y, =%, +7l and dy,, =d,

Fo(s) =sup inf Tr[p, T(N(p w))]:{(1+%+%j(l+%+sﬂm

I'eE,

For pure squeezing states, F,(s) <1/2 foranys=1 .
Without the rotation, F,(S) =1/2 forany s .




Proof of the main theorem

(Proof for a pure ensemble)
From the phase space invariance of the ensemble,

Fo (S) =Sup Inf TFBNQEU Q,OSU ;\Ng ]_’(WEKU g,OSU ;\Ng* )]
I'eE, (£,60)eCX[0, 2r]

=sup i[nf ]Tr[U P, T(U Hpsu;)] (E, is a set of all covariant EBs)
T<E 0€|0, 2
We just need to optimize over sgueezed vacuums.

Then, we use the following lemma.

Lemma (Holevo 96) For a phase space covariant channel I,
['o9 is completely positive, iff there exist a state 7T s.t.

it has the form r*(wg):Tr (Twﬁé)wg ,

where g is the time reversal operator defined by S(Wg):Wzg.

All EB channel T satisfies the complete positivity of 1 04.



Proof of the main theorem

By using the lemma and the Parseval relation:

Tr(pT(p))= i [d2zTr(pw, ) Tr(T(p)W,)
1 .

:g.
1 ¢

:E.

Thus, F, SSUDTF(LU%UQ/)SUZW j=Hi r”UQ/DSUZd@)

d?eTr(pw. Tr(rW @)

d?& Tr(pw @)Tr(fw @)z %Tr(p 7)

op

Since —j U,oU, dé?l consists of j% diagonal elements of o,

we can conclude F, < <O|:0s| 0)= 1+s

Moreover, the following strategy can achieve this upperbound!

(Optimal strategy)
Bob Prepares W |0> after Alice’s heterodyne measurement {\Ngl (OW. / 2%}.

g‘ The same optimal strategy w.r.t. the coherent states case.



Finite displacement

So far, we have derived an analytical formula of the benchmark in the
case of uniform rotation and uniform displacement in phase space.

— =

However,

We need to find a way to calculate a value of benchmark for an
ensemble with finite (or exponentially dumping) displacement.

— =

Here, we give an upper-bound of |f which is in the form of a finite
dimensional SDP. (Therefore, efficiently calculable)



Main theorem: finite displacement

For an ensemble of squeezed states {U,0, .U, 4(&)}: 0)ccxo.24]
where p . :WépSWg: , we derived the following theorem:

Main theorem

For any probability density d($) and rotationally covariant noise
s«channelN , we have

F =sup j _[ q(f)Tr[T(N(Uepng;)) U,p U e}d_gdf
T€Ep ge[0, 2] £eC -
< sup {Tr(QP»PR)IQ>0,Q" 20,Tr,Q=1,|+1-Tr(PyP,)
QeB(suggRC)
where 77=f j J-q((f)U N(,Osg)U ®U9'035U*gid§

0€[0,2x] eC

25305 SIS IR
aa Re=0liil)e (5 fiil)

This bound only includes a finite dimensional SDP.
P.nP. can be also derived by a numerical calculation.



Relation with Miguel's talk

Suppose

F.u= sup {Tr(QPsR)QeS, .. TrQ=1,j+1-Tr(PsP,)
QeB(RanR.) .

where SN’Wt is the set of all PPT N - extendible positive operators.

Then, we derive F,, >F and F= lim F,,, .

Cc,N—w

However, from our experience, when our memory is limited,
by increasing C , we can decrease F., more than by increasing N.

Practically, we should choose N =1 .
( Sl - IS the set of all PPT positive operators.)




Numerical result 1

(94 2
When S=1 and a(&) =;exp(— a|é| ) our ensemble coincides Hammerer et
al.’s ensemble of coherent states. ‘ We can compare them.

Duantum benchmarks for coherent states
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Numerical result 2:

The numerical results for q(&) =%eXp(— aHéHZ) and S = 8.

A noisy channelN is chosen as an attenuation channel: 7y, =7, + 41
dye,y =440,

N(p)

uantum benchmarks for noisy squeesad states
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In the case of squeezed states, F can be less than o for a finite displacement.



Proof of the main theorem

First, we use the following well-known lemma about the Jamiolkowski
Isomorphism of EB channels:

Lemma
A channel T" onH is entanglement breaking,
if and only if

there exist a unique separable positive operator Q(T) on H ®H
such that

TrB QI :lB an _
(0=l and T (Br(A)-Tr (2)AGE)

We can reduce an optimization over entanglement breaking channels
to an optimization over separable states.




Proof of the main theorem

By using the lemma, we derive:
F= sup {Tr(Qn)|QeSep, Tr,Q=1,]}

QeB( H)

< sup {Tr(Qy)|Q>0,Q" >0, Tr,Q=1,|
QeB( H) ’
def . . d(9
where 1 = _[ jQ(f) UeN(ps,§ )Ue ®U,p, Y, 2—d§_
0<[0, 2] £cC T

We succeeded to reduce the problem to an infinite dimensional SDP.

However, we could not numerically solve an infinite dim. SDP.,
So, then, we reduce the above infinite dim. SDP to a finite dim. SDP.




Proof of the main theorem

We need the following lemma:

Lemma. If a positive separable operator QeB (H ®H ) satisfies Tr,Q=1,,
then, Q] <1.

By using the above lemma, we derive

Tr(Qn)= Tr(QPnP)+Tr(Q (n—P.nP.)
r(QPP)+ - Pnpﬁu

Tr(QP.7P. )+HQH Tr(n-PzP,)

Tr(QP.7P.)+1- Tr(PnP)

where F. = Z?:OQC and Q; = Zk+|:c k><k‘®“><l‘ '
In the third line, we use 77— R1F, = ZicﬂQinQi 20 this can be seem

fromy=%" Q[ a&)N(p,. )@ p, a0 -
—&_ We used the rotationally covariance of N .

I/\
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Proof of the main theorem
Finally, by using the previous inequality, we derive

F < sup {Tr(QP7P,)|QeSep, TroQ =1, }+1-Tr(PP,)
QZElSij){TF(RCQRC PCUPC)| QeSep, TryQ = IA}+1—TI’(PC77PC)
<"sup {Tr(QPP,)|Q cSep, T <1, }+1-Tr(RP.)

QeB( suppR,)

< sup {Tr(QPP)|Q>0,Q" >0, Tr,Q<I, [+1-Tr(PyP.)

QeB( suppR,) ’
where R, =(3" [i)il}® (7 li)il)

We have completed the proof!



Summary

Under the two restriction,
States became mixed by a fixed rotationally covariant noisy channel.
The ensemble is rotationally invariant.

We derived the following results for an ensemble of squeezed states:

1. For input states with uniform rotations and displacement,

| | | -1/2
we derived an analytical formula.FO (s) = Kl+g+lj(l+%+ Sﬂ
S

2. For input states with uniform rotations and general displacement,
we derived an upper-bound of F described as a finite dimensional SDP.
So, we can efficiently calculate it by a numerical calculation.



Future works

Now Copenhagen Group is running an experiment of an
atomic ensemble quantum memory for a rotationally
Invariant set of squeezed states.

v

The experimental result may appear soon.



