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Problem

 You find a Bell pair
source in a shop.

« Shall you buy this?

Real Bell pair source ?
Precision? @

p) Bell pair generator
How to check “ | IPY 1.000.000
Tomography?, witness?
Bell's inequality?
Coincidence count? By K. Matsumoto

NO.. 11! PLEASE USE OUR METHOD




Problems with existing methods

Careless treatment of the error.
Often, the conclusion is meaningless
Here, we introduce notion of hypothesis test
which Is used In statistics.

These methods are not optimal. There are more
precise methods, which is easy to implement

We search for optimal test.

Conventional visibility and witness have bias.

(The quality depends not only on the fidelity but
also on the angle.)

We propose symmetric testing.



Who needs precise and efficient test?

Huge number of data Even poor test gives
IS avallable. a precise decision!

However, this Is not always true.
1. Bell pair sharing in the long distance
(repeater, entanglement distillation)

2. At the development stage, some new
Bell pair sources may be very unstable.

Hfudge number Poor test gives Efficient test
of cata a bad decision!l— is needed!

IS not avallable.
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Quantum Hypothesis Testing |

 Two Hypotheses
H,: peS, null hypothesis
H, : p e s, alternative hypothesis
» Two-valued measurementM ={T,1-T}
T : Accept H,
| - T : Accept H, (Reject H,)
e Two error probabilities
First error probability
a(T,p)=21-TrpT (pes,)
Second error probability
B(T.p)=TrpT (pes,)



uantum Hypothesis Testing Il
« Test T is called’level- &

if (T, JSa‘v’ €S
TI é({T/‘) STS'IO,VpOeSO,a(T,p)Sa}

a,S
8.(S,lp) 2 min B(T,p)
e Test T Is calledoa UMP level- ¢ test

tB(T.p)=8,(%p).Vpes,
» TestT iscalledaUMPC ,C, level-@ test

I ,B(T,p)=,B§’2Cl (So Hp),Vpe S

. T satisfies
Bs: (So]p) = min 3 B(T, p) >

TeT
Cl : C2 . conditions

a,S0 . Cl and CZJ



Our setting

e IS the state close to the maximally entangled

d-1 )
State¢AB Z. 0‘I>A‘I> on ﬂAB n
e We assume that ni.i.d. conditioni.e..p =0

o Our hypotheses are
H,loces,, = { ‘1 ¢AB‘G‘¢AB><8}

H, o€ S
. The set of Tevel o tests

T"_ { 0<T<1,Voes, 1- Tra®”T<a}

a,

I/\



Group invariance on #, .

. U(l)-agtion

U, 26" (405 ) (06 |+(1 =826 ) (225 )
 SU(d)-action

U(g)=9g®g, Vge SU(d)

. SU(d)xU(l)-action

U(g,0)= U(g)u,, V(g,0)e SU(d)xU(1)
e U(d?-1)-action

V(g)2 \¢AB><¢AB\+9(I 826)(#25]).
VgeU(d?-1)



Locality restriction
T :G-Inv.

ﬂccx:,n,G (SHO-) =

here G =
év eI\rl% condi

min -
TeT

a,S<¢

S(A,B): A-B separable
L(Az= B):2-way LOCC
L(A—> B):1-way LOCCA— B

,B(TO' )

T satisfies C
Ho(%) SU(d) SU(d)xU(1), U(dz—l)

\
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Binomial distribution
« The data K obeys the distribution

n _ H, H,
Pn k é 1_ n—-k <K ! X
> (K) (k)( p) T p 6 J—
e The testis described byamap T  from
{O,l,...,ﬂ}to [O,l]

B (]a) 2 min{P,
P”(f)éZZ_ P (k)T (k)

 The test Tg . (will be fined in the next slide)
is UMP test, i.e. ,B(T”a, ) =B, (qu) Vp> €.




Definition of T,

[ - n
) ) 1 itk<l, H, H,
n A N - __1n | ”
Tg,a(k)_<7/¢9alfk—l b In k
o £,
0 afk>1.,,
Where}/ and I are deflned as H o'S supported with pro}/g,a

Z P"(k) < 1- a<ZP (k).

yo PN, )=1—a—gi Pe (K).
k=0



Asymptotic theory (small deviation)

 \WWhen the true parameter is close to 0, the

distribution goes to Poisson distribution.

(K)=P. (k)2 e tk

I|m Pt,n

lim B (5 /nt'/n)=B,(5t")
- |vte[o,d],
P (T) N

1-P (T)<a

ﬂa

\
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meorem  GlODAl Test ( 1 samples)
B.nc(€llo) =B (e[ p)

= B(T2(|#26) (86| ) )

where G = U(l) SU(d)XU(l) U(d®-1)

T, (T. &)= Z Pe (M) +724Pn (T)

P! (T)_gl—T)®---®(|—T2®T®---®1

n—k K

+...
+T®-®TO(I-T)®-®(1-T).

K ntk
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A-B locality (One sample)

For a rank-one POVM M = { P; ‘ui><ui ‘}

N A _
the testT(M) 2" p|u ®u;)(y ® |
IS constructed as follows:

1. Alice performs POVM M = { o ‘ui><ui ‘} .
2. Bob performs two-valued POVM

o) (w1 Ju ) (u]

3. |If ‘ui ><Ui ‘ IS observed, accept.
Otherwise, reject




A-B locality (One sample)
Covariant POVM M

cov

M., (do) 2 d|@)(p|v(de)

where v IS Invariant measure.
The POVM M can be realized by randomly

cov
choosing measuring basis

T(M(::Lov) = ‘¢,2,B><¢2,B ‘
+1/(c +1>Q| ~| 2.6 )(825))
TrT (M. )o=1-dp/(d +1),
p = 1_<¢,2.B ‘O-‘¢,2.B>
Thetest T, 5 2T (T(M,,,),de/(d +1))

_ cov
IS level- .



A-B locality (One sample)

,85,1,6 (8H0‘) =TroT "

E.,a

' dp de )\ .. deg
] - ]- 1- f <
( a)( d+1)/( d+1) ! d+1 “
1 ap . de

>
L £ d+1

a

"ee G = SU(d), SU(d)xU (1),U(d? - 1)
C =S(A,B),L(A= B),L(A— B)



A-B locality (Two samples)
Covariant POVM M2 |

I\/Iczov (dgldQZ)
£ (g, ® g,)| ) (u] (5, ® 5,)'v(dg, (o)

where y Is Invariant measure, and U s
maximally entangled on 7, & J{ .

T(MZ,)=|826)(80s|®|8R6) (205
+1/(d?=1)(1 =825 ) (26 ) @ (1 =] 425 (825 )
TIT(MZ2,))o® =1-2p+d°p*/(d*-1)

cov




A-B locality (Two samples)
+ BellPOVYM Mg, on H, ®H,

1-2p+ p’ < TrT (M )™
<1-2p+2p°

Alice Bob
Maximally entangled?




A-B locality (2n samples)
e The teSthnA B ATn(T(M ) 2 d & )
cov d2—1

IS level-

Ilmﬂan6(5/n

_ IIm,B(TZ”A B O_r(]>§2n)
= B,(5[t

where <¢2’B o 0’ >=1_%

G =U(1),SU(d)xU(1),U(d?-1)
C =3,S(A,B),L(A= B),L(A— B)

Hence, ng’g’ is asymptotically UMP C G-inv. Test.




A-B locality ( 2n  samples)

2n,A-B A n 2 d282 )
e The testT _T T(MBeII)125

g,a,Bell d 2 _ 1
IS asymptotically level- o /
lim B2, o (8/nlo,) = lim B(T20 48,02

=,3a(5Ht)

where <¢2’B o 0’ >=1_%

G =U(1),SU(d)xU(1),U(d*-1)
C=d,S(A, B),L(A= B),L(A— B)

Hence, T "

5aBeI

| IS asymptotically UMP C G-inv. Test.



Experiment

] n

1 2 Alice
4-valued Bell 4-valued Bell 4-valued Bell
Measurement Measurement Measurement

Maxin.ally Maximally Maxin.ally
entangled? entangled? entangled?
HE E B EEEEEEER
Maximally Max:mally Max:mally
entangled? entangled? entangled?
2-valued Bell 2-valued Bell 2-valued Bell
Measurement Measurement Measurement

Bob
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Even if the two independent states are

different, this test has the same performance.
' . Alice "

Maximially Maximally Maximally

entangled? entangled? entangled?
Maximally Max:mally Max:mally
entangled? entangled? entangled?

Bob
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A-B locality and sample locality

n samples)
-I-rnA B ﬁTn T(MCOV)
d+1
Ilm,B _Ilm,B(T’nA ° o-r?”)

= ore D) ot = A,(0]t)

where < ¢A i > y

G = SU(d) SU(d)xU(l) U(d?-1)
C=S(A.....A,,B,....,B)),

L(A,,....A B,...,B.),
L(A,,....,A, > B,,...,B)

Hence, TO',Z’A_B is asymptotically UMP C G-inv. Test.




