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Outline:

e Quantum state estimation and optimality
e [Local Asymptotic Normality in classical statistics
e [.ocal Asymptotic Normality for qubits

e [Local Asymptotic Normality for d-dimensional state



Quantum state estimation

Problem: given n identically prepared systems in the state p’ with § € ©, perform
a measurement M (™ and construct an estimator 9 of 0 from the result X (™).
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Risk and Optimality: The quality of the estimation strategy (M, #,,) is given by the risk

R(6,0,) = E|p’ — p™ |} or R(0,0,) =1-EF(p’, p’)



Bayesian vs frequentist optimality

Bayesian: prior 7 (d6)

R.(6,) = / R(0.0,)r(d6)

Ryn := inf R.(6,)
My,
Ry = lim nR;,

Frequentist
R, (6n) = sup  R(6,6,,)
QEB(Qo,n_1/2)
Reo,n = }\5}5 Ry, (9?%)
Ry, = lim nRy, , = C"(0)



A rough classification of state estimation problems

Parametric

Non-parametric

Separate measurements

Joint measurements

Practically feasible
Optimal for pure states
Optimal for one parameter

Rn ~ sep/n

More difficult to implement
Optimal for mixed states

Rn ~ joint/n

Q. Homodyne Tomography,

Direct detection of Wigner fct...

non-parametric rates for
estimation of state as a whole

R, = O((logn)*/n, n==,...)

Conjecture/Program:

L.A.N. = convergence to model
of displaced quasifree states of
infinite dimensional CCR alg.




Asymptotically things become easier...

Idea of using (local) asymptotic normality in optimal estimation:

e as n — oo the n particle model gets ‘close’ to a Gaussian shift model ®q

e the latter has fixed, known variance and unknown mean (related to) 6,

e the mean can be estimated optimally by simple measurements (heterodyne)

e the measurement can be ‘pulled back’ to the n systems
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Motivation / earlier work

e Classical L.A.N. theory of Le Cam

asymptotic equivalence of statistical models
optimal estimation rates

e Central Limit behaviour for quantum systems

Coherent spin states
Gaussian description of atoms-light interaction (Mabuchi, Polzik experiments)

e Work by Hayashi and Matsumoto on asymptotics of state estimation

M. Hayashi,

Quantum estimation and the quantum central limit theorem (in Japanese),
Bull. Math. Soc. Japan 55 (2003)

English translation: quant-ph/0608198

M. Hayashi, K. Matsumoto,

Asymptotic performance of optimal state estimation in quantum two level system
arXiv:quant-ph /0411073



Local Asymptotic Normality for coin toss
Repeated coin toss: Xq,..., X, iid. with P X; =1]=6, PX;=0]=1—-46
Sufficient statistic: 6,, := L 3% | X, unbiased estimator since E(X) = 6

Central Limit Theorem: +/n(6,, — 6) 2, N(0,6(1—0))



Local Asymptotic Normality for coin toss

Binomial n=100 p=0.6

Normal m=60 v=25



Local Asymptotic Normality for coin toss

Binomial n=100 p=0.5

Normal m=50 v=25



Local Asymptotic Normality for coin toss

Binomial n=100 p=0.4

Normal m=40 v=25



Local Asymptotic Normality for coin toss

Binomial n=100 p=0.3

Normal m=30 v=25



Local Asymptotic Normality for coin toss
Repeated coin toss: Xq,...,X, iid. with P[X; =1] =6, P[X; =0]=1-16
Sufficient statistic: 6, ;= 3" X, unbiased estimator since E(X) = 6
Central Limit Theorem: /n(f, — 0) — N(0,6(1 — 9))

Local parameter: let 8 = 0y + u/+/n for a fixed known 6, then

iy = /76y, — 00) 2 N (u, 60 (1 — 6)0) Gaussian shift
model




Local Asymptotic Normality for coin toss
Repeated coin toss: Xq,..., X, iid. with P X; =1]=6, PX;=0]=1—-46
Sufficient statistic: 6,, := L 3% | X, unbiased estimator since E(X) = 6

Central Limit Theorem: +/n(6,, — 6) 2, N(0,6(1—0))

Local parameter: let 8 = 0y + u/+/n for a fixed known 6, then

iy = /76y, — 00) 2 N (u, 60 (1 — 6)0) Gaussian shift
model

Why can we restrict to a local neighbourhood 7
You can construct a 6y from the data and the true 6 will be in a

‘1/+4/n-neighbourhood’ with high probability



Local Asymptotic Normality: general case

Let (Y1,...,Y,) be i.id. with Pf+%/v™ 5 ‘smooth’ family with u € R¥. Then
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Local Asymptotic Normality: general case

Let (Y1,...,Y,) be i.id. with Pf+%/v™ 5 ‘smooth’ family with u € R¥. Then

{(Booe/Vi)" e R} o {N(u, 1)) s u € RF)

Strong convergence: there exist randomizations (Markov kernels) T;,, S,, such that

lim sup ||7T, (IP’QOJFU/\M) — N(u,IQ_Ol) =0
" ull<a tv
and
lim sup ||(BF/VE) T~ 8 N (u, I )| =0
T lull<a by
Importance:

e Shows that for large n the statistical model is ‘locally easy’: Gaussian shift model

e Asymptotically, we only need to solve the statistical problem for the Gaussian shift model



L. A. N.for finite dimensional quantum systems

Let (p90+u/\/ﬁ) “" be the joint state of n i.i.d. systems with py € M (C?) ‘smooth’. Then

{(ﬂewu/\/ﬁ)@n U e Rdz_l} ~~ {‘I)(Ua He_ol) LU € RdQ_l}
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L. A. N.for finite dimensional quantum systems

Let (p90+u/\/ﬁ) “" be the joint state of n i.i.d. systems with py € M (C?) ‘smooth’. Then

{<p90+u/\/ﬁ)®n RIS RdQ‘l} ~ {(P(u, Hy'):ue RdQ—l}

Strong convergence: there exist quantum channels T;,,.5,, such that

lim sup
T ull<a

N —1
Ty (p90+u/\/ﬁ) - (I)(’U,, HQO )Hl =0

and

lim sup
P ull<a

N _
(p90+u/\/ﬁ) o Sﬂq)(“” H@()l)Hl — O
Importance:
e Shows that for large n the statistical model is ‘locally easy’: Gaussian shift model

e Provides a two step adaptive measurement strategy which is asymptotically optimal



Outline:

e Quantum state estimation and optimality
e [Local Asymptotic Normality in classical statistics

e [.ocal Asymptotic Normality for qubits



L.A. N. for qubit states (d=2)

An arbitrary qubit (spin) state:

1 1+r, rp—iry \ 1
pF°__<rm+i7“y 1—r, >—§(1+Tx0-x+ry0-y+rzo-z)7

Non-commuting spin components: 0,0, — 0,05 = 2i0,

P(loa = +1]) = (1 4 ra)/2
Probability distributions :
P(loa = —1]) = (1 —ra)/2

17l <1

Arz
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L.A. N. for qubit states (d=2)

An arbitrary qubit (spin) state:

1( L+r, 1rg—iry

1 —

TZ

Non-commuting spin components: 00, — 040, = 210,

fF’
P(loa = +1]) = (1 4 ra)/2 .
Probability distributions :
P(loa = —1]) = (1 —ra)/2
Y
A local neighborhood of pg := ( 01 0 b ) is parametrised by u = (uy, Uy, u,) € R3

e 6] G [ C) gg

where U(u) € SU(2) is the unitary U(u) := exp(i(ugy0, + uyoy))

y




LAN for qubits: the big ball picture

‘Quantum coin tosss  po =p| DT+ (1 —p) L) | =

P[0, = +1)) = P([o, = £1]) = 1/2, P([o, = 1]) = 4

!
AAlT
1

n identically prepared systems: pg® ---® pg T

>

<

Central Limit Theorem... Collective spin L, , » 1= Z?:l O':Sj,)y,z

L, — N(0,1),

L, — N(0,1),

...with a quantum twist

1

L, L, !
it b

=2i—L, ~2i(2u—1)1
n




Gaussian states

Quantum particle (harmonic oscillator)

. z— Q
vV 2n(12u—1) — [Q,P] =11 Heisenberg commutation relation
\/2n(2 1)Ly P
n(2p—

Thermal equilibrium state: < Q? >=< P? >= m
¢° = (1-p)Y p"lk)(kl, p= < 1
k=0

Quantum Gaussian shift: spin rotations become displacements

#" = D(u)¢° D(u)*,  D(u) = exp (i\/2(2u 1) (uQ + uyP))

Classical Gaussian shift: diagonal parameter behaves like in coin toss

N*™ = N(uz, p(1 — p))



Local Asymptotic Normality for qubit states

Classical Gaussian shift gives info about the eigenvalues of p

N = N(uz, p(1 — p))

Quantum Gaussian shift gives info about the eigenvectors of p

y

Q ~N(—v20@u—Tuy, 1/2(2n-1))

¢" = D(u) ¢° D(u)*, <
P ~N (\/2(2u " ug, 1/2(2 — 1))

\

Theorem: Let p&n) = (pu / \/ﬁ) ®"  Then there exist q. channels (randomiza-
tions) T,,, S, such that for any n < 1/4
lim sup ||7Tn (pl(ln)) —N"®e"|| =0,
T Jull<nn 1
and
lim sup |[[p{™ — S, (N*® ¢¥)| =0.
1

T Jul|<nm



Localisation + Local Asymptotic Normality
= optimal estimation

e localise the state within the small local neighborhood of pg while waisting n < n qubits

e use local asymptotic normality on the bigger ball to design the second stage measurement

n_l/ +77

“Observe” N Do heterodyne on ¢"

n—1/2+€




Implementation with continuous time measurements

Couple the qubits with a Bosonic field, let the state leak into the field and do
heterodyne (quantum part) followed by a L, measurement (classical part)

vacuum \ /
7 "
vacuum Q

n Qubits

Heterodyne
detector

Unitary evolution on (C2)®n ® F(L*(R)) given by the QSDE:

1 1 ;
AU (1) = (andA] = a;dAy = Sajand)Un(t),  an = S ol




|dea of the proof: typical SU(2) representations

“ Papyr e NUE@ON

Two commuting group actions: SU(2) rotations and permutations

()" = P H;ek;

Classical part: measuring j (‘which block’) does not disturb the state

Distribution p2(j) converges to N as in coin toss (L = L, ~ Bin(u 4+ u,//n,n))

T (j) = (J — (0= 1/2)n)/v/n~ N* = N(uz, p(1 — p))




|dea of the proof: typical SU(2) representations
Quantum part: conditional on j we remain with a typical block state py, ;
Structure of 7;:
Spin operators L4 = L, +¢L, act as ladder operators on basis vectors
H; = Lin{|m,j) :m=—j,...,5}
Creation and annihilation operators a*, a act similarly on the number basis {|k) : k£ > 0}
Embed irrep H; into the harmonic oscillator ¢?(N) by isometry
Vj:m,j) —|j —m)
By Quantum Central Limit Theorem, collective observables J+ become Gaussian and

Vipt Vi — ¢t

lJ+ V; _la

m=j- | _TJ— 1) _T_a*

msj 0)
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e Quantum state estimation and optimality
e [Local Asymptotic Normality in classical statistics
e [.ocal Asymptotic Normality for qubits

e [Local Asymptotic Normality for d-dimensional state



Local asymptotic normality for d-dimensional states

Local neighbourhood around pg := Diag(uq, . - .

[ 41 + Uy
| G2
Po = .
| C1d
In first order,
| ¢
Posym i =U (ﬁ

where

(1,2
o + Ug

|

0

Cd—1,d

1+ u/v/n

Cid

Ca—
a 14011

fhd — D iy Uil

0
pi2 + uz/v/n

, Ha) With g > pig > -+ > g >0

0= (5.0) e R x I

0

CikErg = CGrEjk

0

d—1
Hd — 27;:1 wi/+/1]

K — Kk

e SU(d)

U*<

{
NG

)



L.A. N.Theorem

e Diagonal parameters give rise to a classical (d — 1)-dimensional Gaussian

N%:= N(i@,V,)

e Off-diagonal parameters decouple from the diagonal ones and from each other

(I)g — ® ¢£j,k

i<k
where ¢%-* is a displaced thermal equilibrium state with 8 = In Iy

e Total classical-quantum limit model: ®% := N% ® o



L.A. N.Theorem

e Diagonal parameters give rise to a classical (d — 1)-dimensional Gaussian

N%:= N(i@,V,)

e Off-diagonal parameters decouple from the diagonal ones and from each other

(I)g — ® ¢£j,k

i<k
where ¢%-* is a displaced thermal equilibrium state with 8 = In Iy

e Total classical-quantum limit model: ®% := N% ® o

Theorem. Let pén) = pgg’/” Ui Then there exist q. channels T},, S, such that

lim  sup HCIDQ - Tn(,oe’”)H1 =0,
n— 00 0€O,, 5.

lim  sup HSn(CI)Q) — ,09’”H1 =0,
=00 €O, 3,4

where 0,5, = {0 = (£,@) : |€] <P, @] <n7}, B <1/9,y<1/4.



Local asymptotic normality for d-dimensional states

Two commuting group actions: SU(d) rotations and permutations

(CH®" = PHaek,
A

n 1
IO® — @pn()‘)pn,)\ ® —
A

o

SU(d) irreps A are labelled by Young diagrams with d rows and n boxes

A1 R Ny

Classical part: measure ‘which Young diagram \’ Ad R Nl

Distribution p,, ¢(\) converges to multivariate Gaussian shift

{()\Z—n,uz)/\/ﬁ . ZIl,d—l}MN(ﬁ,I/:1>

same as the multinomial model Mult (,u1 + %, o fd — :;%; n) !

. o . . . . 9
Quantum part: conditional on A we remain with a typical block state py



Incursion into SU(d) irreps

Structure of H:

e Write tensors into A-tableaux

€a '= €q(1) R R €a(n) — ta, e.g. eg®ep Qe — -

e Young symmetriser Y is minimal projection in Alg(S(n))

YA:Q)\-P)\:: Z Sgn(T)T- Z o

TEC(A) ogER(N)

e Non-orthogonal basis of H) indexed by semi-standard Young tableaux, e.g.

fa = Y)ea
e ‘Number basis’: ta «— m ={m,;; =tj'sinrowi : i <j}
im, A) := fa/||fall

Lemma: Not far from ’vacuum’ m = 0, basis is almost ON
If |1, m| = O(n"), for some 0 < n < 2/9 then

(m, ALY = O(n~™),  e(n) >0

2]

[co] o]




Incursion into SU(d) irreps

Structure of my:

e ‘Ladder operators’ L; ; = mx(E; ;), Li ;= mA(Ej;) for 1 <i < j <d don’t act as ladder...

. 1[1]2] 1/1]3 1]1[2]
a3 t[2]2] —[2]2] + 2[2]3
ENE] El 3]
e However they do so on ‘typical vectors’ jm| = O(n") < n
. L[1f1]1]1]1]1]2]2]3] 1l1f1]1]1]1]1[2]3]3] L[1]1]1]1]1]1]2]2]3]
55 2/2[2[2[3[3 — O(n')[2]2]2]2[3]3 + O(n)[2[2]2]3]3[3
" [3]3]3 3/3]3 3]3]3

After normalisation first term drops and we get an a; ;

j creation operator

L3 3/v/n: [{mi2,m13,ma3}, \) — /ma 3z +1[{m12,m13,ma3+1}, A) !

e Asymptotically, L; ;/+/n acts only on row ¢ and they all commute with each other...

We have convergence to a tensor product of harmonic oscillators (a; j,aj ;) in the vacuum



Further work:

Local asymptotic normality for i.i.d. infinite dimensional quantum states
e general parametric families of states of light
e optimal estimation rate for states of light

Local asymptotic normality for quantum Markov chains (processes)
e optimal rates for interaction parameters in realistic dynamical models (next talk)
e Central Limit Theorem for quantum Markov chains

Testing with ‘non-discrete’ hypotheses
® eg p=po VS pF o

Weak and strong convergence of quantum statistical experiments

Q,=1{pl :0cO0}~Q={p:0c0O)

Quantum statistical decision theory
e quantum experiment Q = {p? € M(C%) : § € ©}

e non-commuting “loss functions” 0 < Wy € M(CF)
e “decision” C': p’ — C(p%) € M(CF) with risk R(C,0) = Tr(C(p?)Wpy)

e applications in quantum memory, quantum cloning
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