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M 15 a probabilistic

theory + something more




to understand what 1s the
something more, and derive

M solely trom

operational principles




Operational framework

Axioms:

L. . General principles for
(primitive notions)

mathematical representation

¥ probability ... ¢ all mathematical objects must be

& events defined operationally

¢ mathematical completion is for
convenience (e.g. algebraic closure,
& norm closure, linear span, etc.)

¢ independent systems

In this talk w.l.g. we consider only:

¢ finite dimension
¢ only one kind of “system”




Postulates

¢ NSF: No signaling from the future.
¢ NS: No signaling (=existence of independent systems)

¢ PFAITH: There exists preparationally faithful states

¢ AE: Atomicity of evolution

¢ CJ: Choi-Jamiolkowski isomorphism mathematical




Postulates under exploration

¢ FAITHE: There exists a faithful effect

¢ PURIFY: There exists a purification for each state




Probabilistic theories

Test:= set of
probabilistic events ’




(deterministic test/transformation: D = {Z})

Notice: the same event can occur in different tests




TESTS

Unions of events: &/ U A Dy = U ;
ol €A

coarse-graining
refinement

A: {%7%7%}

A" = {A, o5 U o5}

Atomic: an event that cannot be refined in any test

Time-cascade:

B o A = {HB; o4} cascade of tests A = { A },

composition of events: A o &




SYSTEM

S={AB,C,...}
collection of tests closed under
¢ coarse-graining
¢ conditioning

¢ cascading (mono-systemic)
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Probabilistic theories

Test:= set of
probabilistic events ’




STATES

State w: probability rule w(.27') for any possible event .27
In any test

Normalization: Z w(j) =1
A EA

Convex set of states of a system: 6 |

States will also be regarded as tests themselves ¥
“preparation-tests”.




OUL Probabilistic theories

Test:= set of Events as
probabilistic events transformations

Evolution as
conditioning




Events = translormations

Cascade: Event Bo .o event B € B following &/ € A I

(Bjod)=w(d),

Vv

B, Vol , Yw

=> conditional probability: p(AB|. ) = w(B o )/ w( )
—> conditional state: W, = w(- O JZ/)/LU(JZ%)

—> evolution = state conditioning: &7 = w(- o )

— |events = transformations IConvex monoid of transformations: S




QUL Probabilistic theories

Test:= set of Events as
probabilistic events transformations

NSF

Evolution as
conditioning
Observable




% 2 equivalence classes for transtormations

Two transformations .27 and &4 are conditioning

equivalent if
Weg — W YweGBS

Conditioning-equivalence class

Two transformations 27 and &8 are probabilistically
equivalent if
w() = w(AB) YVweb

Probabilistic equivalence class




¢ 2 equivalence classes for transformations

A transformation is completely specified by the two classes:

A w = w( A )Wy

A A
Z“X A

probabilistic

conditi

variable

l

= w(- o . )




Eflects

Fffect .7 : equivalence class of transformations occurring with the
same probability as .27 for all states.

YVoeB: wd)

Q effect o/ € a means w(&f )

QE = convex set of effects

Duality: effects @& positive linear functionals over states (bounded by 1)
ae¢ wel, w()=alw)

€ deterministic effect  |.e. w(e) — 1 Yw €6




Eflects

Boao € Bo.gf (Heisenberg picture)

State-conditioning = Transformations act linearly over eftects: |

Effects will also be regarded as tests themselves: “effect-tests” J

i3




Observables

Observable I = {li}: complete set of effects of a test |

Normalization: ZiE]L lz — €

Informationally complete observable:

Er = Spang(




QU

quantum in formation

“#% Convex sets, Cones and [Linear spaces

Convex set of states: 6, cone. 6_|_
Convex set of effects: QE, cone: QE_|_

Convex monoid of transformations: 3, COne: z_|_

Linear spaces:

Gr = Spany S
Sc = Spanc6
€R7 6@7 ‘ZR, ‘ZCC

No-restriction hypotesis:
(no limitations to preparability)




OUn

quantum information
theory group

Probabilistic theories

(

Test:= set of
probabilistic events

Events as
transformations

Addition of
transformations

Evolution as
conditioning
' Observable >




Addition ol transformations

Two transformations* .a7'and 24 are test-compatible if for every state (wone
has

w()+w(A) <1

For any two test-compatible transformations o7 and .75 we define the

transformation |.a7] + .o | as the union event o] U 275
(the apparatus signals that either g7 or.a#5 occurred)

w(&/l -+ %) — w(%) -+ w(JZ/Q) (probabilistic class)
(Qfl -+ %)w = szlw -+ JZ/QW (conditioning class)

SEmRSESNAREEHa’ (. EEARACARNSEANR 1L, ) EaRaES
TR W+ ) T w(h k) T

wbo (e +9b)) =wbodh)+wlboah), Vbe & YVwes

(*) occurring also in different tests



OUIL Probabilistic theories

Test:= set of Events as
probabilistic events transformations

Evolution as
conditioning
Observable
\4

Linear span

[ =

NSF

Addition of
transformations

,

l scalar product |

Linear span
(*-algebra of transformations
as linear operators over effects




OUn

s (C*-algebra of transformations (finite dim.)

Transformations/events are linear maps over effects, i.e.
they make a matrix algebra over effects

One can introduce a scalar product over effects ...
=> transformations become a C*-algebra ...




INDEPENDENT SYSTEMS

Two systems are independent it on each system it is possible to
perform local tests for which on every joint state one has the
commutativity of the pertaining transformations

LGP L 20 . o
(%,%,Cg,...)i@%u)o%’(mo%ﬂ(g)o...

(A, B,€,...)]




We compost the two systems S;and S into the ]‘
Hipartite system S1 © So|by embedding the ]_
ocal tests S1 X S into the bipartite system

S1 ®S9asS; ®Sy DSy x Sy and closing

w.r.t. coarse graining, convex combination and
cascading.

Nonlocal tests: S1 ® So \ S1 X So




For a multipartite system we define the marginal state () ‘ n, of the n-th
system the state that gives the probability of any local transformation af
on the n-th system with all other systems untouched, namely

() =QUI,.... I o I,
~—

\/
Gty =

nth

NS: (no-signaling) any local test on a system is equivalent to no-test on an
another independent system.




Probabilistic theory?

Matrix algebra of

transformations over eftects!

Independent
Systems =
no-signaling




Review ol notation
S — {A,B,C,...)

System  tests

z transformations - W(f

o of ) o/ € q - effect

cones: S & . S variable transformation

Bipartite: €(S; ® Sy) € deterministic effect

2 ©2
QEG) @(S ) waé@ Q(I)EGQZ
a,bec ¢ Eeé@Q

Uo, (A, I) € TO? |




Review of notation

%120w

%@ ‘e




FAITHEUL STATES
A state @ of a bipartite system is dynamically faithful when the output

state (.o7 , . )® from a local transformation .7 on one system is in
1-to-1 correspondence with the transformation .o/

@
o

(o, F)D

preparationally fait
state \IJ can be ac

>

A state d of a bipartite system is

nful it every joint

local transformation -7\ on one system
occurring with nonzero probability

nieved by a suitable




Postulate PIFAITTH

PFAITH: For any couple of identical systems, there exist a
symmetric” state (P that is preparationally faithful.

(") under permutation of the two systems

Theorem: @ is also dynamically taithtul. '




OUis

theory grou

= Consequences of PEFAITH

Calibrability & Preparability l
Impossibility of secure bit commitment l

Marg
frans

inal state| x = ®(e, -) |internal and invariant under a

nosed channel

Local observability: There exist global info-complete observables made
of local info-complete

~\/
Holism Reductionism

s



= (Consequences of PEAITH
Sr(S”%) = Tx()

Weak self-duality: State and effect cones are isomorphic:
L da— w, =P(a,) € G

Space of transformations is complete: Tr = Lin(€p)

There exist states that are purifiable (e.g. &/, with & atomic)




Consequences of PEAITH

The faithful state P provides a non-degenerate scalar product
over effects via its Jordan form (G Jordan involution):

[t allows to introduce an operational notion of transposition for

transtormations: (A B) =+ B

(‘Q%/)/:‘Qfa

(y7j)q): (j7y,)q) (of 0o B) =B o'

oy
G & (T, 9D —

R




ies of
marginal state

purifiable
states

Impossibility of

bit commitment

R ——

PFAITH

calibrability

& preparability

local
observability

y

scalar product

:

weak
self-duality

transposition




£xploring Postulates:

FAITHE ana PURIFY




Faithlul ellect

9 Remind the cone-isomorphism from the
G < faithful state q:)

€+9ana:<I>(a,-)€6+

FAITHE: There exist a bipartite effect /¢ achieving the inverse of the
isomorphism a — w, = ®(a, -) namely:




Consequences of FAITHIE

Teleportation:
o ..
F

Fis completely faithful, ie. Foy := F o (I, ) < o
realizes the cone-isomorphism: & (SQQ) ~ T, (S)

E1(S9?) 3 A Qy == Ans(D, @) € &(S7?)
realizes the cone-isomorphism: 6+(S@2) ~ ¢ (5@2)




Consequences of FAITHIE

Teleportation: €
_5 — axf

O, D) (e, E
Eergggg%{( ,®)(e, E,e)}

is a property of the system and depends on the particular

probabilistic theory




Exploring PURIEFY

PURIFY: Every state has a purification on two identical systems. '

Each state can be obtained by applying an atomic transformation to

the marginal state x = ®(e, -)

Fach effect contains an atomic transformation. '

¢ is pure. l
Y is atomic. l




What 1s the

something more?

PFAI'TH
+FAI'THE




What 1s the

something more?

It must g1ve that:
effects make a C*-algebra




Reconstructing QM

[rom probabilities

The axiomatic short-circuit of CJ4+AE
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Quantum Tomography for Measuring Experimentally the Matrix Elements
of an Arbitrary Quantum Operation

G.M. D’Ariano and P. Lo Presti

at our disposal a general method Tor experimentally deter-
mining the quantum operation matrix, using any available
quantum-tomographic scheme for the system in consid-
eration, and a single fixed state at the input, which is
an entangled (not even maximally) state. In the optical
domain we show that one can achieve the tomographic
reconstruction of the operation using exactly the same ap-
paratus of the recently performed experiment of Ref. [9].

Let us consider for simplicity a “pure” quantum opera-
tion in the form (5). Given an orthonormal basis {| j)}
corresponding to some physical observable, how can
we determine the matrix A;; = (i|A|j) experimentally?
Instead of acting with the contraction A on an “isolated”
system, we perform the map on a system which is en-
tangled in the state |¢)) € H ® FH with an identical
system; 1.e.,

AR IY))
) — ) = A s (6)

With the double ket we denote bipartite vectors |¢f)) €

H ® FH, which, keeping the basis {| j)} as fixed, are in
one-to-one correspondence with matrices as follows:

) =D wliy @ 1)) )
ij

A;; = k(Eij(¥))), (10)
where the operator E;;(¢) is given by

E;j(p) = lio) il ® | jo) < ()l (11)

and the proportionality constant 1s given by

_ it pa()
« \/ i jo) ios job) =

Since A;; 1s written only in terms of output ensemble av-
erages, 1t can be estimated through quantum tomography.
Quantum tomography [10,11] i1s a method to estimate
the ensemble average (H) of any arbitrary operator
H on H by using only measurement outcomes of a
quorum of observables {O(l)}. A quorum is just a set of
operators {O(/)} which are observable (i.e., have orthonor-
mal resolution) and span the linear space of operators on
JH . This means that any operator H can be expanded
as H =Y, Ti[QT())H]O(I), where {Q(])} and {O(])}
form a biorthogonal set such that Tr[QT(i))O(j)] = §; .
Hence, the tomographic estimation of the ensemble
average (H) is obtained as the double average—over
both the ensemble and the quorum—of the unbiased

—_— T ~F+ N e~ s —_—




Big problem:
howto introduce
composition of effects?

ath. short-circuit:
use Choi-Jamiolkowski
1Isomorphism

7

I: z; i Lin+(Q3<c)

\
\. J




OUll

=g CJ Isomorphism = composition of effects

(Effects are identified with \
‘atomic’ events

(apart from a phase) i.e. events that
_cannot be written as sum of other events,

N\

AE (Atomicity of evolution):
the composition of “atomic” events is

atomic

J

One can prove that the phase (two-cocycle) is trivial.
Introduce the generalized transtormation via the polar identity:

3
REERY | -k
Tab = 7 E 2 T kb
k=0

compositon of effects as: ab = e o T 4 0 T p



OUn

events transformations

NSF

evolution = conditioning

C*-algebra of
transformations

Probabilistic

e SUMM AI{Y Properties of purifiable

marginal state states

Impossibility of
bit commitment

calibrability

framework & preparability

independent systems
= no-signaling

( +FA|THE )_.< TELEPORTATION )

effects Quantum

= "atomic" C*-algebra of
transformations effects

weak
self-duality

+PURIFY

local
observability

scalar product

transposition

States are orbit of
> atomic transformations
on the marginal state

j is atomic

Each effect contains an
atomic transformation




