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QM is a probabilistic 
theory + something more

BACKROUND



to understand what is the 
something more, and derive 

QM solely from 
operational principles

OBJECTIVE



Operational framework 

all mathematical objects must be 
defined operationally
mathematical completion is for 
convenience (e.g. algebraic closure, 
norm closure, linear span, etc.)

General principles for  
mathematical representation

probability ...

events

independent systems

...

(primitive notions)
Axioms:

In this talk w.l.g. we consider only:

finite dimension
only one kind of  “system”



NSF: No signaling from the future.

NS: No signaling (=existence of  independent systems)

PFAITH: There exists preparationally faithful states

Postulates

AE: Atomicity of  evolution

CJ: Choi-Jamiolkowski isomorphism mathematical



Postulates under exploration

FAITHE: There exists a faithful effect

PURIFY: There exists a purification for each state



Test:= set of  

probabilistic events 

Probabilistic theories



(deterministic test/transformation:                  ) 

TESTS
Test/experiment:                          set of  possible events

Postulate 2 (Symmetric faithful state) For every composite system made of two iden-
tical physical systems there exist a symmetric joint state that is both dynamically and
preparationally faithful.

3. THE STATISTICAL AND DYNAMICAL STRUCTURE

The starting point of the axiomatization is the identification experiment ≡set of trans-
formations A ≡ {A j} that can occur on the object. The apparatus signals which trans-
formation actually occurs. Now, since the knowledge of the state of a physical system
allows us to predict the results of forthcoming experiments on the object, then it would
allow us to evaluate the probability of any possible transformation in any conceivable
experiment. Therefore, by definition, a state ω of a system is a rule providing probabil-
ities of transformation, and ω(A ) is the probability that the transformation A occurs.
We clearly have the completeness ∑A j∈A ω(A j) = 1, and assume ω(I ) = 1 for the
identical transformation I , corresponding to adopting I as the free evolution (this is
the Dirac picture, i. e. a suitable choice of the lab reference frame). In the following for
a given physical system we will denote by S the set of all possible states and by T the
set of all possible transformations.

When composing two transformations A and B, the probability p(B|A ) that B
occurs conditional on the previous occurrence of A is given by the rule for conditional
probabilities p(B|A ) = ω(B◦A )/ω(A ). This sets a new probability rule correspond-
ing to the notion of conditional state ωA which gives the probability that a transforma-
tion B occurs knowing that the transformation A has occurred on the object in the
state ω , namely ωA

.= ω(· ◦A )/ω(A ) 2 (in the following the central dot “·” will al-
ways denote the pertinent variable). We can see that the notion of “state” itself logi-
cally implies the identification evolution≡state-conditioning, entailing a linear action of
transformations on states (apart from normalization) A ω := ω(·◦A ): this is the same
concept of operation that we have in Quantum Mechanics, which gives the conditioning
ωA = A ω/A ω(I ). In other words, this is the analogous of the Schrödinger picture
evolution of states in Quantum Mechanics (clearly such identification of evolution as
state-conditioning also includes the deterministic case U ω = ω(· ◦U ) of transforma-
tions U with ω(U ) = 1∀ω ∈ S—the analogous of quantum unitary evolutions and
channels.

2 M. Ozawa noticed that the definition of conditional state needs to assume that

∑
B j∈B

ω(B j ◦A ) = ω(A ), ∀B, ∀A .

Such assumption which seems not implicit in the present axiomatization, would correspond to a kind
of “no-signaling from the future”. Presently, it is under consideration if this must be considered as an
additional postulate. Notice that such assumption seems to be needed whenever a notion of conditional
state is considered which involves transformations of the system. In the present context the notion of
conditional state is intimately related to that of “effect” and to the action of transformations over effects.
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D = {D}

Notice: the same event can occur in different tests



TESTS
A ∪BUnions of  events: 

A′ = {A1,A2 ∪A3}
coarse-graining 

A = {A1,A2,A3} refinement

cascade of  testsB ◦ A = {Bj ◦ Ai} A = {Ai}, B = {Bj},

B ◦ Acomposition of  events:

Atomic: an event that cannot be refined in any test
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Ai∈A
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BTime-cascade: A B
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STATES

Normalization:

Convex set of  states of  a system: S

∑

Aj∈A

ω(Aj) = 1

State    :  probability rule               for any possible event         
in any test 

ω(A ) Aω

S = {ω1,ω2, . . . , A, B, C, . . .}

States will also be regarded as tests themselves 
“preparation-tests”.

ω
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Events ≣ transformations

⇒ events ≡ transformations Convex monoid of  transformations:

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned

local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-

dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)

⇒ conditional probability: p(B|A ) = ω(B ◦ A )/ω(A )

⇒ conditional state: ωA := ω(· ◦ A )/ω(A )

    NSF 
(Ozawa)

∑

Bj∈B

ω(Bj ◦ A ) = ω(A ), ∀B, ∀A , ∀ω

Cascade: Event              :  event                 following   A ∈ AB ∈ B
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We clearly have the completeness ∑A j∈A ω(A j) = 1, and assume ω(I ) = 1 for the
identical transformation I , corresponding to adopting I as the free evolution (this is
the Dirac picture, i. e. a suitable choice of the lab reference frame). In the following for
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additional postulate. Notice that such assumption seems to be needed whenever a notion of conditional
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⇒ evolution ≡ state conditioning: A ω := ω(· ◦ A )
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2 equivalence classes for transformations

Two transformations      and      are probabilistically 
equivalent if               
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an

10 GIACOMO MAURO D’ARIANO

The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an

10 GIACOMO MAURO D’ARIANO

The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an

∀ω ∈ S

Two transformations      and       are conditioning 
equivalent if

10 GIACOMO MAURO D’ARIANO

The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an

10 GIACOMO MAURO D’ARIANO

The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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a ∈ E, ω ∈ S, ω(a) ≡ a(ω)

A ∈ aeffecta means ω(A ) ≡ ω(a)

E := convex set of  effects



Effects

Effects will also be regarded as tests themselves: “effect-tests”

ω

Postulate 2 (Symmetric faithful state) For every composite system made of two iden-
tical physical systems there exist a symmetric joint state that is both dynamically and
preparationally faithful.

3. THE STATISTICAL AND DYNAMICAL STRUCTURE

The starting point of the axiomatization is the identification experiment ≡set of trans-
formations A ≡ {A j} that can occur on the object. The apparatus signals which trans-
formation actually occurs. Now, since the knowledge of the state of a physical system
allows us to predict the results of forthcoming experiments on the object, then it would
allow us to evaluate the probability of any possible transformation in any conceivable
experiment. Therefore, by definition, a state ω of a system is a rule providing probabil-
ities of transformation, and ω(A ) is the probability that the transformation A occurs.
We clearly have the completeness ∑A j∈A ω(A j) = 1, and assume ω(I ) = 1 for the
identical transformation I , corresponding to adopting I as the free evolution (this is
the Dirac picture, i. e. a suitable choice of the lab reference frame). In the following for
a given physical system we will denote by S the set of all possible states and by T the
set of all possible transformations.

When composing two transformations A and B, the probability p(B|A ) that B
occurs conditional on the previous occurrence of A is given by the rule for conditional
probabilities p(B|A ) = ω(B◦A )/ω(A ). This sets a new probability rule correspond-
ing to the notion of conditional state ωA which gives the probability that a transforma-
tion B occurs knowing that the transformation A has occurred on the object in the
state ω , namely ωA

.= ω(· ◦A )/ω(A ) 2 (in the following the central dot “·” will al-
ways denote the pertinent variable). We can see that the notion of “state” itself logi-
cally implies the identification evolution≡state-conditioning, entailing a linear action of
transformations on states (apart from normalization) A ω := ω(·◦A ): this is the same
concept of operation that we have in Quantum Mechanics, which gives the conditioning
ωA = A ω/A ω(I ). In other words, this is the analogous of the Schrödinger picture
evolution of states in Quantum Mechanics (clearly such identification of evolution as
state-conditioning also includes the deterministic case U ω = ω(· ◦U ) of transforma-
tions U with ω(U ) = 1∀ω ∈ S—the analogous of quantum unitary evolutions and
channels.

2 M. Ozawa noticed that the definition of conditional state needs to assume that

∑
B j∈B

ω(B j ◦A ) = ω(A ), ∀B, ∀A .

Such assumption which seems not implicit in the present axiomatization, would correspond to a kind
of “no-signaling from the future”. Presently, it is under consideration if this must be considered as an
additional postulate. Notice that such assumption seems to be needed whenever a notion of conditional
state is considered which involves transformations of the system. In the present context the notion of
conditional state is intimately related to that of “effect” and to the action of transformations over effects.

a

From the state-conditioning rule it follows that we can define two complementary
types of equivalences for transformations: dynamical and informational. The transfor-
mations A1 and A2 are dynamically equivalent when ωA1 = ωA2 ∀ω ∈ S, whereas
they are informationally equivalent when ω(A1) = ω(A2) ∀ω ∈S. The two transfor-
mations are then completely equivalent (write A1 = A2) when they are both dynamically
and informationally equivalent, corresponding to the identity ω(B ◦A1) = ω(B ◦A2),
∀ω ∈ S, ∀B ∈ T. We call effect the informational equivalence class of transforma-
tions3. In the following we will denote effects with the underlined symbols A , B, etc.,
or as [A ]eff, and we will write A0 ∈ A meaning that "the transformation A belongs
to the equivalence class A ", or "A0 has effect A ”, or "A0 is informationally equiv-
alent to A ". Since, by definition one has ω(A ) ≡ ω(A ), we will legitimately write
ω(A ) instead of ω(A ). Similarly, one has ωA (B) ≡ ωA (B), which implies that
ω(B ◦A ) = ω(B ◦A ), leading to the chaining rule B ◦A ∈ B ◦A corresponding
to the "Heisenberg picture" evolution of transformations acting on effects (notice how
transformations act on effects from the right). Now, by definitions effects are linear func-
tionals over states with range [0,1], and, by duality, we have a convex structure over ef-
fects, and we will denote their convex set as P. An observable is just a complete set of
effects L = {li} of an experiment A = {A j}, namely one has li = A j ∀ j (clearly, one has
the completeness relation ∑i li = 1). We will call the observable L = {li} is information-
ally complete when each effect l can be written as a linear combination l = ∑i ci(l)li. of
elements of L, and when these are linearly independent we will call the informationally
complete observable minimal.4

The fact that we necessarily work in the presence of partial knowledge about both
object and apparatus corresponds to the possibility of incomplete specification of both

3 This is the same notion of “effect” introduced by Ludwig[1]
4 It is easy to show that, starting from a set of available experiments, it is always possible to construct
a minimal informationally complete observable. The proof is by induction as follows. By definition
PR = SpanR(P), whence there must exists a spanning set for PR that is contained in P. The maximal
number of elements of this set that are linearly independent will constitute a basis, which we suppose has
finite cardinality dim(PR). It remains to be shown that it is possible to have a basis with sum of elements
equal to I , and that such basis is obtained operationally starting from the available observables from
which we constructed P.

If all observables are uninformative (i. e. with all effects proportional to I ) , then PR = Span(I ), I
is a minimal infocomplete observable, and the statement of the theorem is proved. Otherwise, there exists
at least an observable E = {li} with n ! 2 linearly independent effects. If this is the only observable, again
the theorem is proved. Otherwise, take a new binary observable E2 = {x,y} from the set of available ones
(you can take different binary observables out of a given observable with more than two outcomes by
summing up effects to yes-no observables). If x ∈ Span(E) discard it. If x %∈ Span(E), then necessarily
also y %∈ Span(E) [since if there exists coefficients λi such that y = ∑i λili, then x = ∑i(1−λi)li]. Now,
consider the observable

E′ =
{ 1

2 y, 1
2 (l1 + x), 1

2 l2, . . . , ln
}

(which operationally corresponds to the random choice between the observables E and E2 with probability
1
2 , and with the events corresponding to x and l1 made indistinguishable). This new observable has
now |E′| = n + 1 linearly independent effects (since y is linearly independent on the li and one has
y = ∑n

i=1 li − x = ∑n
i=2 li + l1 − x). By iterating the above procedure we reach |E′| = dim(PR), and we

have so realized an apparatus that measures a minimal informationally complete observable."

(Heisenberg picture)
State-conditioning ⇒ Transformations act linearly over effects:



Observables

Observable                       : complete set of  effects of  a testL = {li}
∑

i∈L
li = eNormalization:

Informationally complete observable:          L

ER = SpanR(L)

1



Convex sets, Cones and Linear spaces

Convex set of  effects: ,  cone:

Convex monoid of  transformations:

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned

local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-

dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)T+,  cone:

Convex set of  states: ,  cone: S+S

E E+

Linear spaces:
SR = SpanRS

SC = SpanCS

ER,EC,TR,TC

No-restriction hypotesis: S+ = (E+)∗(no limitations to preparability)
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.

Definition 14 (Informational equivalence of transformations). Two transformations A
and B are informationally equivalent if ω(A ) = ω(B) for all possible states ω of the
system.

6. Informational compatibility

The concept of dynamical equivalence of transformations leads to introduce a convex
structure also for transformations. We first need the notion of informational compatibility.

Definition 15 (Informational compatibility or coexistence). We say that two transfor-
mations A and B are coexistent or informationally compatible if one has

(17) ω(A ) + ω(B) ≤ 1, ∀ω ∈ S,

The fact that two transformations are coexistent means that in principle they can occur
in the same experiment, namely there exists at least an action containing both of them. We
have named the present kind of compatibility ”informational” since it is actually defined
on the informationally equivalence classes of transformations. Notice that the relation of
coexistence is symmetric, but is not reflexive, since a transformation can be coexistent
with itself only if ω(A ) ≤ 1/2. The present notion of coexistence is the analogous of
that introduced by Ludwig [6] for the ”effects”. This notion is also related to that of
”exclusive” transformations, since they correspond to exclusive outcomes [see also Ref. [4]
in regards ”exclusive” implies ”coexistent”, but generally not the reverse].

We are now in position to define the ”addition” of coexistent transformations.

Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
posable, if there are no coexistent transformations summing to it.

Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
ferent outcomes j that are signaled by the apparatus. If such an experiment had an
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The above observation leads us to the following definitions of dynamical and informational
equivalences of transformations.

Definition 13 (Dynamical equivalence of transformations). Two transformations A and
B are dynamically equivalent if ωA = ωB for all possible states ω of the system.
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Rule 5 (Addition of coexistent transformations). For any two coexistent transformations
A1 and A2 we define the transformation A = A1+A2 as the transformation corresponding
to the event e = {1, 2}, namely the apparatus signals that either A1 or A2 occurred, but
doesn’t specify which one. By definition, one has the distributivity rule

(18) ω(A + B) = ω(A ) + ω(B).

Addition of compatible transformations is the core for the description of partial knowl-
edge on the experimental apparatus. Notice also that same notion of coexistence can
extended to ”propensities” as well (see Definition 17).

Definition 16 (Indecomposable transformation). We call a transformation T indecom-
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Rule 6 (Multiplication of a transformation by a scalar). For each transformation A the
transformation λA for 0 ≤ λ ≤ 1 is defined as the transformation which is dynamically
equivalent to A , but which occurs with probability ω(λA ) = λω(A ).

Remark 4 (No-information from identity transformations). At this point a warning is
in order, as regards the transformations that are dynamically equivalent to the identity,
namely the probabilistic identity transformations. According to the Rule 6 for multiplica-
tion of transformations by a scalar, a probabilistic identity transformation will be of the
form pI , where p is the probability that the transformation occurs, namely p = ω(pI ).
One could now imagine an hypothetical situation of a ”classical” experiment which leaves
the object identically undisturbed, independently on its state, but still with many dif-
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ω(b ◦ (A1 + A2)) = ω(b ◦A1) + ω(b ◦A2), ∀b ∈ E, ∀ω ∈ S

For any two test-compatible transformations       and        we define the 
transformation                      as the union event                      
(the apparatus signals that either       or       occurred)
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Theorem 1 Let X be a real finite-dimensional normed space with unitary sphere SX , and let L(X) be the linear
operators from X into itself. It is proved that X is an inner product space if and only if for A,C ∈ L(X)

A⊥C⇔∃u ∈ SX : ||A|| = ||Au||, Au⊥Cu,

where ⊥ denotes Birkhoff orthogonality.

Theorem 2 (Existence of an infocomplete observable) There always exists a minimal informationally complete ob-

servable.

Proof. By definition PR = SpanR(P), whence there must exists a spanning set for PR that is contained in P. The
maximal number of elements of this set that are linearly independent will constitute a basis, which we suppose has

finite cardinality dim(PR). It remains to be shown that it is possible to have a basis with sum of elements equal to I ,

and that such basis is obtained operationally starting from the available observables from which we constructed P.
If all observables are uninformative (i. e. with all effects proportional to I ) , thenPR = Span(I ), I is a minimal

infocomplete observable, and the statement of the theorem is proved. Otherwise, there exists at least an observable

E = {li} with n! 2 linearly independent effects. If this is the only observable, again the theorem is proved. Otherwise,
take a new binary observable E2 = {x,y} from the set of available ones (you can take different binary observables out
of a given observable with more than two outcomes by summing up effects to yes-no observables). If x ∈ Span(E)
discard it. If x %∈ Span(E), then necessarily also y %∈ Span(E) [since if there exists coefficients !i such that y= !i!ili,
then x= !i(1−!i)li]. Now, consider the observable

E′ =
{
1
2
y, 1
2
(l1+ x), 1

2
l2, . . . , ln

}
(1)

(which operationally corresponds to the random choice between the observables E and E2 with probability 1
2
, and

with the events corresponding to x and l − 1 made indistinguishable). This new observable has now |E′| = n+ 1
linearly independent effects (since y is linearly independent on the li and one has y=!ni=1 li−x=!ni=2 li+ l1−x). By
iterating the above procedure we reach |E′| = dim(PR), and we have so realized an apparatus that measures a minimal
informationally complete observable."

Theorem 3 (Convex set of dynamical faithful states) If a faithful state is mixed, each component state (i. e. each

state in its possible expansions as convex combination) must be faithful.

A1 ∪A2

ω(A1 + A2) = ω(A1) + ω(A2)
(A1 + A2)ω = A1ω + A2ω

(probabilistic class)

(conditioning class)

ωA1+A2 =
ω(A1)

ω(A1 + A2)
ωA 1 +

ω(A2)
ω(A1 + A2)

ωA 2

(*) occurring also in different tests



State
Test:= set of  

probabilistic events 

Probabilistic theories

NSF

Events as 

transformations

Evolution as 

conditioning

Evolution as 
conditioning

EffectEffect

Observable

Linear span

C*-algebra of  transformations
as linear operators over effects

Linear span
scalar product

Test:= set of  

probabilistic events 

Addition of  

transformations



C*-algebra of transformations (finite dim.)

Transformations/events are linear maps over effects, i.e. 
they make a matrix algebra over effects

One can introduce a scalar product over effects ... 
⇒ transformations become a C*-algebra ...
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In the following, when we have more than one independent systems, we will denote
local transformations as ordered strings of transformations as follows

(10) (A , B, C , . . .)
.
= A (1) ◦B(2) ◦ C (3) ◦ . . .

i. e. the transformation in parenthesis corresponds to the local transformation A on
system 1, B on system 2, etc.

Rule 4 (Bayes). When composing two transformations A and B, the probability p(B|A )
that B occurs conditioned that A happened before is given by the Bayes rule

(11) p(B|A ) =
ω(B ◦A )

ω(A )
.

The Bayes rule leads to the concept of conditional state:

Definition 10 (Conditional state). The conditional state ωA gives the probability that a
transformation B occurs on the physical system in the state ω after the transformation A
occurred, namely

(12) ωA (B)
.
=

ω(B ◦A )
ω(A )

.

Remark 3 (Linearity of evolution). At this point it is worth noticing that the present
definition of “state”, which logically follows from the definition of experiment, leads to a
notion of evolution as state conditioning. In this way, each transformation acts linearly on
the state space (in addition, since states are probability functionals on transformations, by
dualism (equivalence classes of) transformations are linear functionals over the probability
space). Indeed, a common misconception is that one cannot mimic Quantum Mechanics
as a mere classical probabilistic mechanics in terms of evolutions on a probability space,
because Quantum Mechanics restricts to linear evolution only, whereas classical mechanics
give evolutions which are generally nonlinear.

In the following we will make extensive use of the functional notation

(13) ωA
.
=

ω(· ◦A )
ω(A )

,

where the centered dot stands for the argument of the map. The notion of conditional
state describes the most general evolution.

For the following it is convenient to extend the notion of state to that of weight, namely
nonnegative bounded functionals ω̃ over T with 0 < ω̃(I ) < +∞. To each weight ω̃ it
corresponds the properly normalized state

(14) ω =
ω̃

ω̃(I )
.

Weights make the convex cone S̃ which is generated by the convex set of states S. We
are now in position to introduce the concept of operation.

Definition 11 (Operation). To each transformation A we can associate a linear map
OpA : S −→ S̃ which sends a state ω into the unnormalized state ω̃A

.
= OpA ω ∈ S̃

defined by the relation

(15) ω̃A (B) = ω(B ◦A ).

Similarly to a state, the linear form ω̃A ∈ S̃ for fixed A maps from the set of transfor-
mations T to the interval [0, 1]. It is not strictly a state only due to lack of normalization,

Two systems are independent if  on each system it is possible to 
perform local tests for which on every joint state one has the 
commutativity of  the pertaining transformations
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Rule 2. The faces of a ”complete” set of states are themselves ”complete” sets of states.

The problem is to define what does it mean ”completeness”. This can only be defined
in terms of all possible invertible dynamical maps (i. e. isometric transformations of the
set: see the following).

Definition 7 (Maximally chaotic state). The maximally chaotic state χ(S) of the convex
set S is the baricenter of the set, i. e. it can be obtained by averaging over all pure states
with the uniform measure, namely

(6) χ(S)
.
=

Z

Extr S

d ψ ψ

where Extr S denotes the set of extremal points of S, and d ψ is the measure which is
invariant under isomorphisms of S.

Definition 8 (Alternative definition of maximally chaotic state). The maximally chaotic
state χ(S) of S is the most mixed state of S, in the sense that if ζ ! ω, then ζ ∼ ω.

From the definition it follows that the maximally chaotic state is full-rank, i. e.
rank[χ(S)] =

p
dim(S) + 1.

It is then easy to prove the following theorem

Theorem 1. The group of isomorphisms of S leave the state χ(S) invariant. Moreover,
χ(S) is the only state that is left invariant.

Proof. Upon denoting by U the transformation corresponding to a particular isomor-
phism, by definition the convex set of states is left invariant, namely SU ≡ S. On the
other hand, [χ(S)]U ≡ χ(S), whence χ(S) is left invariant, and this must be true for
every isomorphism. We now prove that χ(S) is the only invariant state.

Any nontrivial isomorphism maps extremal states to extremal states, and for each
couple of extremal states there is always an isomorphism connecting them. The same
is no longer true for mixed states, since each isomorphism maps distinct extremal states
into distinct extremal states preserving convex combination, whence it cannot change the
coefficients of the expansion of the state into extremal states. However, for the same
mixed state there are generally infinitely many convex decompositions into pure states.
Now, from the definition it immediately follows that a maximally chaotic state must be
full-rank. . . .

4. Transformations and conditioned states

Rule 3 (Transformations make a semi-group). The composition A ◦B of two transfor-
mations A and B is itself a transformation. There exists the identical transformation I
which leaves the physical system invariant, and which for every transformation A satisfies
the composition rule

(7) I ◦A = A ◦I = A .

Consistency of compostion of transformations requires associativity, namely

(8) C ◦ (B ◦A ) = (C ◦B) ◦A .

Definition 9 (Independent systems and local experiments). We say that two physical
systems are independent if on each system it is possible to perform local experiments that
don’t affect the other system for any joint state of the two systems. This can be expressed
synthetically with the commutativity of transformations of the local experiments, namely

(9) A (1) ◦B(2) = B(2) ◦A (1),

where the label n = 1, 2 of the transformations denotes the system undergoing the trans-
formation. [(A ,B,C , . . .)]eff ≡ (A ,B,C , . . .)

INDEPENDENT SYSTEMS

=

B

AA

B

1



COMPOSTING SYSTEMS
We compost the two systems     and      into the 
bipartite system               by embedding the 
local tests                into the bipartite system
               as                                   and closing 
w.r.t. coarse graining, convex combination and 
cascading.

S1 S2

S1 ! S2

S1 × S2

S1 ! S2 \ S1 × S2

S1 ! S2

S1 ! S2 ⊇ S1 × S2

Nonlocal tests:



For a multipartite system we define the marginal state           of  the n-th 
system the state that gives the probability of  any local transformation      
on the n-th system with all other systems untouched, namely  
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Theorem 7. One has

(44) d(ω, ζ) =
1

supθ∈S min{s(ω, θ), s(ζ, θ)} − 1,

or also

(45)
1

d(ω, ζ) + 1
= sup{α ∈ [0, 1] : αω + (1− α)ω′ = αζ + (1− α)ζ′, ω′, ζ′ ∈ S}.

[CONTINUE] Equivalently s(ω, θ) + s(ζ, θ) ≤ 1 for all θ ∈ S, namely every mixture
θ contains ω and ζ in complementary proportions (i. e. sum of the proportions is not
greater than unit)

11. Local state

Definition 32 (Local state). In the presence of many independent systems in a joint state
Ω, we define the local state ω(n) of the n-th system the state that gives the probability for
any local transformation A on the n-th system, with all other systems untouched, namely

(46) ω(n)(A )
.
= Ω(I , . . . , I , A|{z}

nth

, I , . . .).

For example, for two systems only, (which is equivalent to consider n − 1 systems
as a single one), we will write simply ω(1)(A ) = Ω(A , I ). Notice that generally the
commutativity Rule 9 doesn’t imply that the occurrence of a transformation B on system
2 doesn’t change the probability of occurrence of any other transformation A on system
1, namely, generally

(47) A1 ◦B2 = B2 ◦A1 %=⇒ Ω(·, I ) =
Ω(·, B)

Ω(I , B)
.

In other words, the occurrence of the transformation B on system 2 generally affects the
conditioned local state on system 1, namely one has

(48) ΩB2(·, I )
.
=

Ω(·, B)
Ω(I , B)

%= Ω(·, I ) ≡ ω(1)

Therefore, in order not to violate the relativity principle, for independent systems (e. g.
space-like separated) we need to require explicitly the a-causality principle:

Rule 16 (A-causality of local transformations). Any local action on a system is equivalent
to the identity transformation when viewed from an independent system, namely, in terms
of states one has

(49) ∀A
X

Aj∈A
Ω(·, Aj) = Ω(·, I ) ≡ ω(1)

The a-causality of local transformations Rule 16 along with the existence of inequivalent
actions imply the existence of indistinguishable incompatible mixtures.

Corollary 4 (Existence of equivalent incompatible mixtures). For any two incompatible
actions A = {Aj} and B = {Bi}, the following mixtures are the same state

(50)
X

j

pjωj =
X

i

p′iω
′
i ≡ ω,

where

ωj =
ω(·, Aj)

ω(I , Aj)
, pj = ω(I , Aj),

ω′
i =

ω(·, Bi)
ω(I , Bi)

, p′i = ω(I , Bi),

ω
.
= ω(·, I ).

(51)

Ω|n(A ) := Ω(I , . . . ,I , A
︸︷︷︸

n−th

,I , . . .)

Ω|n

MARGINAL STATE

NS: (no-signaling) any local test on a system is equivalent to no-test on an 
another independent system.

Ω|n(a)
.
= Ω(e, . . . , e, a

︸︷︷︸

nth

, e, . . .)



Probabilistic theory?

 Matrix algebra of  
transformations over effects!

Independent 
systems =      

no-signaling



Review of notation

cones:

Weights make the convex coneW which is generated by the convex set of states S.

Definition 6 (Linear real space of generalized weights) We extend the notion of

weight to that of negative weight, by taking differences. Such generalized weights span

the affine linear space WR of the convex cone W of weights.

Remark 2 The transformations A act as linear transformations over the space of

weights as follows

A !̃ = !̃(B ◦A ). (15)

We are now in position to introduce the concept of operation.

Definition 7 (Operation) To each transformation A we can associate a linear map

OpA : S−→W, which sends a state ! into the unnormalized state !̃A
.=OpA ! ∈W,

defined by the relation

OpA !
.= !̃A , !̃A (B) = !(B ◦A ). (16)

Similarly to a state, the linear form !̃A ∈W for fixed A maps from the set of transfor-

mations to the interval [0,1]. It is not strictly a state only due to lack of normalization,
since 0 < !̃A (I ) ! 1. The operation Op gives the conditioned state through the state-

reduction rule

!A =
!̃A

!(A )
≡ OpA !

OpA !(I )
. (17)

In the following we will adopt for the operation the more intuitive notation in Eq. (15),

namely we will write

A ! := !(·◦A )≡ OpA ! (18)

At first sight it is not obvious that the commutativity of local transformations in

Definition 3 implies that a transformation on system 2 does not affect the conditioned

local state on system 1. However, this is actually the case, as it is proved in the following

theorem.

Theorem 1 (No signaling, i. e. acausality of local transformations) Any local action

on a system does not affect another independent system. More precisely, any local

action on a system is equivalent to the identity transformation when viewed from an

independent system, namely, in terms of states one has

∀A !
A j∈A

"(A j, ·) ="(I , ·)≡"|2. (19)

Proof. The no-signaling condition is a direct consequence of the definition of indepen-

dent systems. Indeed, for any experiment A = {Ai} one has the normalization condition
(2) for all states of the system, in particular for all locally conditioned joint states

!
i

"I ,B(Ai) = 1, ∀" ∈S×2, ∀B ∈ T, (20)
T+

states

S+

S
E

E+

effects

transformations

Convex sets: S = {A, B, C, . . .}

System tests

A ∈ a

transformation

effectA ω = ω(· ◦ A )

variable

E(S1 ! S2)
E!2 := E(S!2)
Bipartite:

a, b ∈ E
ω, σ ∈ S

U12, (A ,I ) ∈ T!2

deterministic effecte

E ∈ E!2
Ω,Φ ∈ S!2



Review of notation

ω(a) ≡ a(ω)

Φ(a, ·) = ωa ∈ S+

=

Φ

a

ωa

1

=σ

U
e

ω A

ω

1

U12(σ,ω)(e, ·) = A ω

E23(Φ,ω) = σ ∈ S

=

ω

σ

Φ

E

1



A state      of  a bipartite system is dynamically faithful when the output 
state                    from a local transformation      on one system is in 
1-to-1 correspondence with the transformation
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Consider now a couple of independent physical systems, and to distinguish the second
system from the object system, let’s call the second one reference system. As we have
seen in Eq. (48), a probabilistic transformation A that occurred on the reference system
generally affects the local state of the object, which then depends on A as follows

(52) ΩA2(·, I )
.
=

Ω(·, A )
Ω(I , A )

= ω(1)
A2

.

We can then define a maximally entangled state for a two-partite system as follows

Definition 33 (Maximally entangled state). A maximally entangled state for a two-partite
system is a pure state Ω for which the local state on each system is maximally chaotic,
namely

(53) Ω(·, I ) = Ω(I , ·) = χ(S).

12. Faithful state

Definition 34 (Dynamically faithful state). We say that a state Φ of a composite system
is dynamically faithful for the nth component system when acting on it with a transfor-
mation A the resulting (unnormalized) conditional state is in one-to-one correspondence
with the dynamical equivalence class [A ] of A , namely the following map is 1-to-1.

(54) Φ̃I ,...,I ,A ,I ,... ↔ [A ]dyn,

where in the above equation the transformation A acts locally only on the nth component
system. !

"
#
$ !

!
Φ

A

ΦA ,I

Definition 35 (Informationally faithful state). We say that a state Φ of a composite
system is informationally faithful for the nth component system when acting on it with
a transformation A the resulting (unnormalized) conditional local state on the remaining
systems is in one-to-one correspondence with the informational equivalence class A of A
(i. e. its propensity), namely the following map is 1-to-1

(55) Φ(· · · , A , · · · )↔ A ,

where in the above equation the transformation A acts locally only on the nth component
system.

!

!
"

#
$A

Φ

Φ(A , ·)

In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
transformations, namely when

(57) ∀A , Φ(B1, A ) = Φ(B2, A ) ⇐⇒ B1 ∈ B2.
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Clearly, using an informationally complete observable one can reconstruct any state ! from just the probabilities li(!),
since one has

!(A ) =!
i

ci(lA )li(!). (46)

Definition 15 (Predictability and resolution) We will call a transformation A—and likewise its effect—predictable

if there exists a state for which A occurs with certainty and some other state for which it never occurs. The

transformation (effect) will be also called resolved if the state for which it occurs with certainty is unique—whence

pure. An action will be called predictable when it is made only of predictable transformations, and resolved when all

transformations are resolved.

The present notion of predictability for effect corresponds to that of "decision effects" of Ludwig [4]. For a predictable

transformation A one has ||A || = 1. Notice that a predictable transformation is not deterministic, and it can generally

occur with nonunit probability on some state ! . Predictable effects A correspond to affine functions fA on the state

space S with 0! fA ! 1 achieving both bounds. Their set will be denoted by Pp.

Definition 16 (Perfectly discriminable set of states) We call a set of states {!n}n=1,N perfectly discriminable if there
exists an action A = {A j} j=1,N with transformations A j ∈ l j corresponding to a set of predictable effects {ln}n=1,N
satisfying the relation

ln(!m) = "nm. (47)

Definition 17 (Informational dimensionality) We call informational dimension of the convex set of states S, de-
noted by idim(S), the maximal cardinality of perfectly discriminable set of states in S.

Definition 18 (Discriminating observable) An observable L = {l j} is discriminating for S when it discriminates a

set of states with cardinality equal to the informational dimension idim(S) of S.

7. FAITHFUL STATE

Definition 19 (Dynamically faithful state) We say that a state " of a composite system is dynamically faithful for

the nth component system when for every transformation A the following map is one-to-one

OpI ,...,I ,A ,I ,..." ↔ A , (48)

where in the above equation the transformation A acts locally only on the nth component system.

Notice that by linearity the correspondence is still one-to-one when extended to generalized transformations. Physi-

cally, the definition corresponds to say that the output conditioned state (multiplied by the probability of occurrence)

is in one-to-one correspondence with the transformation.!
"

#
$ !

!
"

A

(A ,I )" !
"

#
$ !

!

"

A
(I ,A )"

FIGURE 1. Illustration of the notion of dynamically faithful state for a bipartite system (see Definition 19). Physically, the state
" is faithful when the output conditioned state (multiplied by the probability of occurrence) is in one-to-one correspondence with
the transformation.

In the following we restrict attention to bipartite systems. Using Definition 7 of operation and Definition 4 of

conditional state, we can say that the bipartite state " is dynamically faithful for system 1 when for every couple of

transformationsB,C "(B ◦A ,C ) is an invertible function of A . In equations

∀B,C ∈ T, "(B ◦A ,C ) ⇐⇒ A ∈ T. (49)

(A , I )Φ

A
Φ

FAITHFUL STATES

A state       of  a bipartite system is 
preparationally faithful if  every joint 
state      can be achieved by a suitable 
local transformation         on one system 
occurring with nonzero probability
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In the following, unless specified, for simplicity we restrict attention to two component
systems, and take the first one for the nth. Using the definition 10 of conditional state,
we see that the state Φ is dynamically faithful when the Φ(· ◦ [A ]dyn, I ) is an invertible
function over the set of dynamical equivalence classes of transformations, namely when

(56) ∀A , Φ(B1 ◦A , I ) = Φ(B2 ◦A , I ) ⇐⇒ B1 ∈ [B2]dyn.

On the other hand, one can see that the state Φ is informationally faithful when the
Φ(A , ·) is an invertible function over the set of informationally equivalence classes of
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Postulate PFAITH

PFAITH: For any couple of  identical systems, there exist a 
symmetric* state      that is preparationally faithful. 

(*) under permutation of  the two systems

Φ

Theorem:      is also dynamically faithful.Φ



Consequences of PFAITH

Impossibility of  secure bit commitment

Calibrability & Preparability

Local observability: There exist global info-complete observables made 
of  local info-complete

ReductionismHolism

Nonlocal experiment Local 
experiment

Local 
experiment

Local 
experiment

Marginal state                        internal and invariant under a 
transposed channel 

               χ = Φ(e, ·)



Consequences of PFAITH

Tensor product representation:

SF(S!2) = SF(S)⊗2EF(S!2) = EF(S)⊗2

F = R, C

Space of  transformations is complete: TF = Lin(EF)

SF(S!2) ! TF(S)

 There exist states that are purifiable (e.g.         , with      atomic)        A χ A

E+

S+
State and effect cones are isomorphic:

E+ ! a "→ ωa = Φ(a, ·) ∈ S+

Weak self-duality:

=

Φ

a

ωa

1



Consequences of PFAITH

∀a, b ∈ ER, Φ(b|a)Φ := |Φ|(b, a) = Φ(ς(b), a)

ς
The faithful state       provides a non-degenerate scalar product
over effects via its Jordan form (    Jordan involution):

Φ

(T , I )Φ(T , I )Φ

T

ΦΦ

T ′

1

It allows to introduce an operational notion of  transposition for 
transformations:

=

(T ,I )Φ = (I ,T ′)Φ
1. (A + B)′ = A

′ + B
′

2. (A ′)′ = A ,

3. (A ◦ B)′ = B
′
◦ A

′



PFAITH

!

Properties of  

marginal state

calibrability

& preparability

local 

observability

weak 

self-duality

transposition

scalar product

purifiable 

states

Impossibility of  

bit commitment



INTERLUDE

Exploring Postulates:
FAITHE and PURIFY



FAITHE: There exist a bipartite effect      achieving the inverse of  the 
isomorphism                                  namely:a !→ ωa = Φ(a, ·)

F

F23(ωa)2 = F23Φ12(a, ·) = αa3, 0 < α ! 1

Faithful effect

E+ ! a "→ ωa = Φ(a, ·) ∈ S+

Remind the cone-isomorphism from the 
faithful state Φ

=

Φ

a

ωa

1

=

Φ

a

ωa

1

=

ωa

F
a

1



Consequences of FAITHE
Teleportation:

S+(S!2) ! E+(S!2)realizes the cone-isomorphism:

E+(S!2) ! A "→ ΩA := A23(Φ,Φ) ∈ S(S!2)

= α×
F

Φ

1

is completely faithful, i.e.

realizes the cone-isomorphism: E+(S!2) ! T+(S)
F FA := F ◦ (I ,A )⇐⇒ A



Consequences of FAITHE
Teleportation:

= α×
F

Φ

1

α(S) = max
E∈E(S!2)

{(Φ,Φ)(e,E, e)}

is a property of  the system and depends on the particular 
probabilistic theory

In Quantum Mechanics: α = dim(H)−2

ωa =
√

ας(a)

(·, F )(Φ, ·) =
√

α|Φ|



Exploring PURIFY
PURIFY: Every state has a purification on two identical systems.

Each effect contains an atomic transformation.

Each state can be obtained by applying an atomic transformation to 
the marginal state χ = Φ(e, ·)

     is pure.Φ
     is atomic.I



What is the 
something more?

PFAITH
+FAITHE
+PURIFY?

Maybe...



What is the 
something more?

It must give that:
effects make a C*-algebra



Reconstructing QM 
from probabilities

The axiomatic short-circuit of CJ+AE
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Quantum Tomography for Measuring Experimentally the Matrix Elements
of an Arbitrary Quantum Operation
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Quantum operations describe any state change allowed in quantum mechanics, including the evolution
of an open system or the state change due to a measurement. We present a general method based
on quantum tomography for measuring experimentally the matrix elements of an arbitrary quantum
operation. As input the method needs only a single entangled state. The feasibility of the technique
for the electromagnetic field is shown, and the experimental setup is illustrated based on homodyne
tomography of a twin beam.

DOI: 10.1103/PhysRevLett.86.4195 PACS numbers: 03.65.Wj

The typical state change in quantum mechanics is the
unitary evolution, where the final state is related to the ini-
tial one via the transformation r ! E !r" # UrUy, with
U unitary operator on the Hilbert space H of the sys-
tem. Unitary transformations describe only the evolutions
of closed systems, and nonunitary transformations occur
when the quantum system is coupled to an environment or
when a measurement is performed on the system. What
is the most general possible state change in quantum me-
chanics? The answer is provided by the formalism of
“quantum operations” by Kraus [1]. Here input and output
states are connected via the map

r ! E !r"
Tr$E !r"%

. (1)

The quantum operation E is a linear, trace-decreasing map
that preserves positivity [more precisely the map must be
completely positive [2] ]. The trace in the denominator is
included in order to preserve the normalization Tr!r" ! 1.
The most general form for E can be shown to be [1]

E !r" !
X

n
KnrKy

n , (2)

where the operators Kn satisfy the bound
X

n
Ky

n Kn # I . (3)

The transformation (2) occurs with generally nonunit
probability Tr$E !r"% # 1, and the probability is unit only
when E is trace preserving, i.e., when the bound (3)
is achieved with the equal sign. The particular case of
unitary transformations corresponds to having only one
term K1 ! U in the sum (2), with U unitary. However,
one can consider also nonunitary operations with only
one term, i.e.,

E !r" ! ArAy, (4)

with A a contraction, i.e., kAk # 1: We call these last
operations pure, since they leave pure states r as pure.
Indeed, for r ! jw& 'wj we can rewrite Eq. (1) in the form

jw& ! Ajw&
kAjw&k . (5)

Such an operation could, for example, describe the state
reduction from a measurement apparatus for a given fixed
outcome, which occurs with probability Tr!rAyA" # 1.

Suppose now that we have a quantum machine that per-
forms an unknown quantum operation E , and we want
to determine E experimentally. This problem has been
posed in several papers, with solutions given in some spe-
cial cases [3–5].

How can we do this? This would be the case, for
example, if we want to determine the unitary transfor-
mation U performed by a quantum device, or the state
reduction achieved by a measuring apparatus that performs
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an indirect measurement on the system. In Refs. [6,7] as a
method it was suggested to carry on a tomographic recon-
struction at the machine output for a varying input state.
However, the availability of all possible input states is a
practically unsolvable problem. For example, the method
of Ref. [7] in the optical domain works only for phase-
insensitive devices, since for phase-sensitive ones one
would need input superpositions of two photon-number
states, superpositions which are currently not feasible. As
we show in this Letter, we can exploit the quantum paral-
lelism of entanglement [8] to run all possible input states
in parallel using only a single entangled state as the input
in the tomographic reconstruction. In this way we have
at our disposal a general method for experimentally deter-
mining the quantum operation matrix, using any available
quantum-tomographic scheme for the system in consid-
eration, and a single fixed state at the input, which is
an entangled (not even maximally) state. In the optical
domain we show that one can achieve the tomographic
reconstruction of the operation using exactly the same ap-
paratus of the recently performed experiment of Ref. [9].

Let us consider for simplicity a “pure” quantum opera-
tion in the form (5). Given an orthonormal basis !j j"#
corresponding to some physical observable, how can
we determine the matrix Aij ! $ijAj j" experimentally?
Instead of acting with the contraction A on an “isolated”
system, we perform the map on a system which is en-
tangled in the state jc"" [ H ≠ H with an identical
system; i.e.,

jc"" ! jf"" !
A ≠ Ijc""
kAckHS

. (6)

With the double ket we denote bipartite vectors jc"" [
H ≠ H , which, keeping the basis !j j"# as fixed, are in
one-to-one correspondence with matrices as follows:

jc"" !
X

ij
cijji" ≠ j j" . (7)

In the following we also use the simple notation of using
the same symbol A for both the matrix A ! !Aij# and
the corresponding operator A !

P

ij Aijji" $ jj for fixed
basis !j j"#. With this notation the norm kAkHS in Eq. (6)
denotes the Hilbert-Schmidt norm kAkHS ! %Tr&AyA'(

1
2 .

We also denote by A! the operator corresponding to the
complex conjugated matrix of A (with respect to the same
fixed basis !j j"#), and analogously AT denotes the
transposed-matrix operator. With consistent notation we
write A ! !Aij# ) %A& j'( to denote the column vectors
A& j' of the matrix A and use jA& j'" ! Aj j" )

P

i Aijji"
for the corresponding vectors in H . Using this simple
formalism, the quantum operation matrix A in terms of
the input and output state matrices is written as follows:

A ! fc21
q

pA&c' , (8)

where pA&c' ! kAck2
HS denotes the occurrence probabil-

ity of the quantum operation, and the entangled state is

assumed to have invertible matrix c (which is always the
case in practice). In our matrix formalism the matrix f
corresponding to the output state can be written in terms
of measurable ensemble averages as follows:

fij ) $$i, j jf"" ! eiu $ji0, j0"" $$i, jj"
p

$ji0, j0"" $$i0, j0j"
, (9)

where $· · ·" ) $$fj · · · jf"" denotes the ensemble at the
output, ji, j"" ) ji" ≠ j j", i0, j0 are suitable fixed integers,
and eiu is an irrelevant (unmeasurable) overall phase factor
corresponding to u ! arg&$$i0, j0 jf""'. Using Eq. (8) we
can write the matrix Aij in terms of only output ensemble
averages as follows:

Aij ! k$Eij&c'" , (10)

where the operator Eij&c' is given by

Eij&c' ! ji0" $ij ≠ j j0" $c21!& j'j , (11)

and the proportionality constant is given by

k ! eiu

s

pA&c'
$ji0, j0"" $$i0, j0j"

. (12)

Since Aij is written only in terms of output ensemble av-
erages, it can be estimated through quantum tomography.
Quantum tomography [10,11] is a method to estimate
the ensemble average $H" of any arbitrary operator
H on H by using only measurement outcomes of a
quorum of observables !O&l'#. A quorum is just a set of
operators !O&l'# which are observable (i.e., have orthonor-
mal resolution) and span the linear space of operators on
H . This means that any operator H can be expanded
as H !

P

l Tr%Qy&l'H(O&l', where !Q&l'# and !O&l'#
form a biorthogonal set such that Tr%Qy&i'O& j'( ! dij.
Hence, the tomographic estimation of the ensemble
average $H" is obtained as the double average—over
both the ensemble and the quorum—of the unbiased
estimator Tr%Qy&l'H(O&l' with random l. The most
popular example of quantum tomography is homodyne
tomography [12–14], where the quorum (self-dual) is
given by the operators exp&ikXf' for varying k and f, Xf

denoting a quadrature of one mode of radiation. Notice
that for estimating the density matrix also the maximum-
likelihood strategy can be used instead of averaging
[15,16]. Moreover, there is a general method [16] for
deconvolving instrumental noise when measuring the
quorum, which resorts to finding the biorthogonal basis
for the noisy quorum. This is the case, for example, of
deconvolution of noise from nonunit quantum efficiency
in homodyne tomography [13]. Finally, for multipartite
quantum systems, one can simply use as a quorum the
tensor product of single-system quorums [16]: this means
that, in our case, we just need to make two local quorum
measurements jointly on the two systems and analyze
data with the tensor-product estimators. For example, the
estimation of Aij in Eq. (10) resorts to the calculation of
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jc"" ! jf"" !
A ≠ Ijc""
kAckHS

. (6)
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jc"" !
X

ij
cijji" ≠ j j" . (7)
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P

ij Aijji" $ jj for fixed
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1
2 .

We also denote by A! the operator corresponding to the
complex conjugated matrix of A (with respect to the same
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P

i Aijji"
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A ! fc21
q

pA&c' , (8)
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ity of the quantum operation, and the entangled state is
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fij ) $$i, j jf"" ! eiu $ji0, j0"" $$i, jj"
p

$ji0, j0"" $$i0, j0j"
, (9)
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Eij&c' ! ji0" $ij ≠ j j0" $c21!& j'j , (11)

and the proportionality constant is given by

k ! eiu

s

pA&c'
$ji0, j0"" $$i0, j0j"

. (12)
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operators !O&l'# which are observable (i.e., have orthonor-
mal resolution) and span the linear space of operators on
H . This means that any operator H can be expanded
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l Tr%Qy&l'H(O&l', where !Q&l'# and !O&l'#
form a biorthogonal set such that Tr%Qy&i'O& j'( ! dij.
Hence, the tomographic estimation of the ensemble
average $H" is obtained as the double average—over
both the ensemble and the quorum—of the unbiased
estimator Tr%Qy&l'H(O&l' with random l. The most
popular example of quantum tomography is homodyne
tomography [12–14], where the quorum (self-dual) is
given by the operators exp&ikXf' for varying k and f, Xf

denoting a quadrature of one mode of radiation. Notice
that for estimating the density matrix also the maximum-
likelihood strategy can be used instead of averaging
[15,16]. Moreover, there is a general method [16] for
deconvolving instrumental noise when measuring the
quorum, which resorts to finding the biorthogonal basis
for the noisy quorum. This is the case, for example, of
deconvolution of noise from nonunit quantum efficiency
in homodyne tomography [13]. Finally, for multipartite
quantum systems, one can simply use as a quorum the
tensor product of single-system quorums [16]: this means
that, in our case, we just need to make two local quorum
measurements jointly on the two systems and analyze
data with the tensor-product estimators. For example, the
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