OPTIMAL QUANTUM LEARNING AND MULTIROUND REFERENCE FRAME ALIGNMEAT

Giulio Chiribella

Joint works with G M D'Ariano, P Perinotti, A Bisio, and S Facchini
Quantum Information Theory Group
Pavia University
work supported by the EC project CORNER
DEX-SMI Workshop on Quantum Statistical Inference, National Institute for Informatics, Tokyo, 2-4 March 2009

OUTLINE

- Optimal quantum learning of a unitary transformation from finite examples (arXiv:0903.0543v1)
- Optimal correction of an unknown rotation
(a little variation on the theme of quantum learning)
- Multi-round and adaptive alignment of reference frames equivalence of backward communication with forward communication of charge-conjugate particles

OPTIMAL QUANTUM LEARNING:

WHAT IS IT ABOUT

LEARNING AN UNKNOWN FUNCTION

Problem: a black box computes an unknown function $y=f(x)$ We can evaluate f on a finite set of points x_{1}, \ldots, x_{N} getting outcomes y_{1}, \ldots, y_{N}

LEARNING AN UNKNOWN FUNCTION

Problem: a black box computes an unknown function $y=f(x)$ We can evaluate f on a finite set of points x_{1}, \ldots, x_{N} getting outcomes y_{1}, \ldots, y_{N}

$$
f=-y_{1} \quad y_{2} \ldots y_{N}
$$

LEARNING AN UNKNOWN FUNCTION

Problem: a black box computes an unknown function $y=f(x)$ We can evaluate f on a finite set of points x_{1}, \ldots, x_{N} getting outcomes y_{1}, \ldots, y_{N}

$$
f-y_{1} \quad y_{2} \ldots y_{N}
$$

Subsequently, we are asked to compute f on a new point x, without using the black box

LEARNING AN UNKNOWN FUNCTION

Problem: a black box computes an unknown function $y=f(x)$ We can evaluate f on a finite set of points x_{1}, \ldots, x_{N} getting outcomes y_{1}, \ldots, y_{N}

$$
f-y_{1} \quad y_{2} \ldots y_{N}
$$

Subsequently, we are asked to compute f on a new point x, without using the black box

x

LEARNING AN UNKNOWN FUNCTION

Problem: a black box computes an unknown function $y=f(x)$ We can evaluate f on a finite set of points x_{1}, \ldots, x_{N} getting outcomes y_{1}, \ldots, y_{N}

$$
f-y_{1} y_{2} \ldots y_{N}
$$

Subsequently, we are asked to compute f on a new point x, without using the black box

$$
f(x)=?
$$

LEARNING AN UNKNOWN FUNCTION

Problem: a black box computes an unknown function $y=f(x)$ We can evaluate f on a finite set of points x_{1}, \ldots, x_{N} getting outcomes y_{1}, \ldots, y_{N}

$$
f-y_{1} \quad y_{2} \ldots y_{N}
$$

Subsequently, we are asked to compute f on a new point x, without using the black box

In classical computer science, statistical learning provides several efficient solutions for this problem

CLASSICAL NETWORKS FOR LEARNING

Comparing x with $\mathrm{f}(\mathrm{x})$ for N times is not the only possibility: this just corresponds to the parallel configuration

$$
\begin{gathered}
f \\
\vdots \\
f
\end{gathered}
$$

CLASSICAL NETWORKS FOR LEARNING

Comparing x with $\mathrm{f}(\mathrm{x})$ for N times is not the only possibility: this just corresponds to the parallel configuration

$$
\begin{array}{cc}
f & y_{1} \\
\vdots & \vdots \\
f & - \\
y_{N}
\end{array}
$$

CLASSICAL NETWORKS FOR LEARNING

Comparing x with $\mathrm{f}(\mathrm{x})$ for N times is not the only possibility: this just corresponds to the parallel configuration

To learn better, one could use a sequential network:

where $g_{1}, g_{2}, \ldots, g_{N}$ are known functions

OPTIMIZATION PROBLEM

Find the optimal strategy to learn an unknown function This means:

- find the best network $\quad \rightarrow \quad F=g_{N} \circ f \circ \cdots \circ g_{2} \circ f \circ g_{1} \circ f$
- find the best input X

$$
\rightarrow \quad Y=F(X)
$$

- for outcome Y, find the optimal guess

$$
Y \rightarrow \hat{f}
$$

-Difference with estimation of the function f
Estimation corresponds to the special case $\hat{f} \in \mathcal{F}_{0}$
In general, the optimal guess does not have to be in \mathcal{F}_{0}.

FROM CLASSICAL TO QUANTUM LEARNING

- Unknown function $\mathrm{f} \longrightarrow$ unknown quantum channel \mathcal{E}
- Classical network \longrightarrow quantum network
- Input X
\longrightarrow quantum state $\rho_{\text {in }}$
- Output Y
\longrightarrow quantum state $\rho_{\text {out }}$

GUESSING A CHANNEL FROM A STATE

- Classical guess

$$
Y \rightarrow \hat{f}
$$

$$
\rho_{\text {out }} \rightarrow \hat{\mathcal{E}}
$$

Physical implementation of the quantum guess: retrieving channel \mathcal{R}
It retrieves the unknown transformation from the output state $\rho_{\text {out }}$ and performs it on a new state ρ

GUESSING A CHANNEL FROM A STATE

- Classical guess

$$
Y \rightarrow \hat{f}
$$

Quantum "guess"

$\longrightarrow \quad \rho_{\text {out }} \longrightarrow \hat{\mathcal{E}}$

Physical implementation of the quantum guess: retrieving channel \mathcal{R} It retrieves the unknown transformation from the output state $\rho_{\text {out }}$ and performs it on a new state ρ

OPTIMAL QUANTUM LEARNING

Find the optimal strategy to learn an unknown channel This means:

- find the best network $\rightarrow \mathcal{N}=\mathcal{C}_{N} \circ \mathcal{E} \circ \cdots \circ \mathcal{C}_{2} \circ \mathcal{E} \circ \mathcal{C}_{1} \circ \mathcal{E}$
- find the best input $\rho_{\text {in }} \rightarrow \rho_{\text {out }}=\mathcal{N}\left(\rho_{\text {in }}\right)$
- find the optimal retrieving channel

$$
\mathcal{R}
$$

$$
\rightarrow \quad \hat{\mathcal{E}}(\rho)=\mathcal{R}\left(\rho \otimes \rho_{\text {out }}\right)
$$

Figure of merit: input-output fidelity

$$
\begin{aligned}
& F(\mathcal{E}, \hat{\mathcal{E}})=\int \mathrm{d} \varphi F(\mathcal{E}(\varphi), \hat{\mathcal{E}}(\varphi)) \\
& F(\rho, \sigma)=\operatorname{Tr}\left[\left(\rho^{\frac{1}{2}} \sigma \rho^{\frac{1}{2}}\right)^{\frac{1}{2}}\right]
\end{aligned}
$$

"MEASURE-AND-PREPARE" SCHEMES

- Particular scheme to retrieve the unknown transformation: -perform a measurement on the output state, -for outcome Y perform channel $\hat{\mathcal{E}}_{Y}$

In this case, the retrieving channel is:

$$
\mathcal{R}_{\text {meas }}\left(\rho \otimes \rho_{\text {out }}\right)=\sum_{Y} \operatorname{Tr}\left[P_{Y} \rho_{\text {out }}\right] \hat{\mathcal{E}}_{Y}(\rho)
$$

- Particular measure-and-prepare scheme: estimation of the channel $\mathcal{E} \in \mathrm{E}_{0}$

In this case, one has $\hat{\mathcal{E}}_{Y} \in \mathrm{E}_{0}$
Estimation $\in\{$ measure-and-prepare schemes $\} \subset\{$ retrieving channels $\}$

LEARNING AN UNKNOWN UNITARY

Consider the case where the set of channels E_{0} is a group of unitary transformations.

Assuming a uniform prior for the unknown unitaries, we have the average fidelity

$$
F=\int \mathrm{d} U \quad F\left(\mathcal{U}, \mathcal{C}_{U}\right)
$$

HOW TO OPTIMIZE A QUANTUM NETWORK:

QUANTUM COMBS

CHOI-JAMIOLKOWSKI OPERATORS

Convenient representation of linear maps: Choi-Jamiolkowski-Belavkin-Staszewski operator (CJBS)

$$
C=(\mathcal{C} \otimes \mathcal{I})(|I\rangle\rangle\langle\langle I|) \quad|I\rangle\rangle=\sum_{n}|n\rangle|n\rangle
$$

For a unitary channel:

$$
(\mathcal{U} \otimes \mathcal{I})(|I\rangle\rangle\langle\langle I|)=|U\rangle\rangle\langle\langle U| \quad \mid U\rangle\rangle=(U \otimes I)|I\rangle\rangle
$$

CHOI-JAMIOLKOWSKI OPERATORS

Convenient representation of linear maps: Choi-Jamiolkowski-Belavkin-Staszewski operator (CJBS)

$$
C=(\mathcal{C} \otimes \mathcal{I})(|I\rangle\rangle\langle\langle I|) \quad|I\rangle\rangle=\sum_{n}|n\rangle|n\rangle
$$

For a unitary channel:

$$
(\mathcal{U} \otimes \mathcal{I})(|I\rangle\rangle\langle\langle I|)=|U\rangle\rangle\langle\langle U| \quad \mid U\rangle\rangle=(U \otimes I)|I\rangle\rangle
$$

CHOI-JAMIOLKOWSKI OPERATORS

Convenient representation of linear maps: Choi-Jamiolkowski-Belavkin-Staszewski operator (CJBS)

$$
C=(\mathcal{C} \otimes \mathcal{I})(|I\rangle\rangle\langle\langle I|) \quad|I\rangle\rangle=\sum_{n}|n\rangle|n\rangle
$$

For a unitary channel:

$$
(\mathcal{U} \otimes \mathcal{I})(|I\rangle\rangle\langle\langle I|)=|U\rangle\rangle\langle\langle U| \quad \mid U\rangle\rangle=(U \otimes I)|I\rangle\rangle
$$

CHOI-JAMIOLKOWSKI OPERATORS

Convenient representation of linear maps: Choi-Jamiolkowski-Belavkin-Staszewski operator (CJBS)

$$
C=(\mathcal{C} \otimes \mathcal{I})(|I\rangle\rangle\langle\langle I|) \quad|I\rangle\rangle=\sum_{n}|n\rangle|n\rangle
$$

For a unitary channel:

$$
(\mathcal{U} \otimes \mathcal{I})(|I\rangle\rangle\langle\langle I|)=|U\rangle\rangle\langle\langle U| \quad \mid U\rangle\rangle=(U \otimes I)|I\rangle\rangle
$$

LINK PRODUCT

Convenient representation of composition of linear maps: link product

$$
\mathcal{F} \circ \mathcal{E} \Longleftrightarrow F_{c b} * E_{b a}:=\operatorname{Tr}_{b}\left[\left(F_{c b} \otimes I_{a}\right)\left(I_{c} \otimes E_{b a}^{\tau_{b}}\right)\right]
$$

$$
F_{c b} * E_{b a}=E_{b a} * F_{c b} \quad \text { up to permutation of Hilbert spaces }
$$

GC, G M D'Ariano, and P Perinotti, Phys. Rev. Lett. 101, 060401 (2008)

LINK PRODUCT

Convenient representation of composition of linear maps: link product

$$
\mathcal{F} \circ \mathcal{E} \Longleftrightarrow F_{c b} * E_{b a}:=\operatorname{Tr}_{b}\left[\left(F_{c b} \otimes I_{a}\right)\left(I_{c} \otimes E_{b a}^{\tau_{b}}\right)\right]
$$

a $\mathcal{E} \quad \mathrm{b} \quad \mathcal{F}$

$F_{c b} * E_{b a}=E_{b a} * F_{c b} \quad$ up to permutation of Hilbert spaces

GC, G M D'Ariano, and P Perinotti, Phys. Rev. Lett. 101, 060401 (2008)

LINK PRODUCT

Convenient representation of composition of linear maps: link product

$$
\mathcal{F} \circ \mathcal{E} \Longleftrightarrow F_{c b} * E_{b a}:=\operatorname{Tr}_{b}\left[\left(F_{c b} \otimes I_{a}\right)\left(I_{c} \otimes E_{b a}^{\tau_{b}}\right)\right]
$$

a $\mathcal{E} \quad \mathrm{b} \quad \mathcal{F}$

$F_{c b} * E_{b a}=E_{b a} * F_{c b} \quad$ up to permutation of Hilbert spaces

GC, G M D'Ariano, and P Perinotti, Phys. Rev. Lett. 101, 060401 (2008)

LINK PRODUCT

Convenient representation of composition of linear maps: link product

$$
\mathcal{F} \circ \mathcal{E} \Longleftrightarrow F_{c b} * E_{b a}:=\operatorname{Tr}_{b}\left[\left(F_{c b} \otimes I_{a}\right)\left(I_{c} \otimes E_{b a}^{\tau_{b}}\right)\right]
$$

$a \mathcal{E} \quad b \quad \mathcal{F}^{\mathrm{c}}=$

$F_{c b} * E_{b a}=E_{b a} * F_{c b} \quad$ up to permutation of Hilbert spaces

GC, G M D'Ariano, and P Perinotti, Phys. Rev. Lett. 101, 060401 (2008)

LINK PRODUCT

Convenient representation of composition of linear maps: link product

$$
\mathcal{F} \circ \mathcal{E} \Longleftrightarrow F_{c b} * E_{b a}:=\operatorname{Tr}_{b}\left[\left(F_{c b} \otimes I_{a}\right)\left(I_{c} \otimes E_{b a}^{\tau_{b}}\right)\right]
$$

$F_{c b} * E_{b a}=E_{b a} * F_{c b} \quad$ up to permutation of Hilbert spaces

GC, G M D'Ariano, and P Perinotti, Phys. Rev. Lett. 101, 060401 (2008)

LINK PRODUCT

Convenient representation of composition of linear maps: link product

$$
\mathcal{F} \circ \mathcal{E} \Longleftrightarrow F_{c b} * E_{b a}:=\operatorname{Tr}_{b}\left[\left(F_{c b} \otimes I_{a}\right)\left(I_{c} \otimes E_{b a}^{\tau_{b}}\right)\right]
$$

$F_{c b} * E_{b a}=E_{b a} * F_{c b} \quad$ up to permutation of Hilbert spaces

GC, G M D'Ariano, and P Perinotti, Phys. Rev. Lett. 101, 060401 (2008)

KNOWN FORMULAS IN TERMS OF LINK PRODUCT

- Tensor product of states:

$$
\rho_{a} \otimes \sigma_{b}=\rho_{a} * \sigma_{b}
$$

- Born statistical formula:

$$
\operatorname{Tr}[\rho P]=\rho_{a} * P_{a}^{\tau}
$$

- Transformation of states:

$$
\mathcal{E}(\rho)=E_{\text {out }, \text { in }} * \rho_{\text {in }}
$$

KNOWN FORMULAS IN TERMS OF LINK PRODUCT

- Tensor product of states:

$$
\rho_{a} \otimes \sigma_{b}=\rho_{a} * \sigma_{b}
$$

- Born statistical formula:

$$
\operatorname{Tr}[\rho P]=\rho_{a} * P_{a}^{\tau}
$$

- Transformation of states:

$$
\mathcal{E}(\rho)=E_{\text {out }, \text { in }} * \rho_{\text {in }}
$$

States and transformations are treated on an equal footing.

KNOWN FORMULAS IN TERMS OF LINK PRODUCT

- Tensor product of states:

$$
\rho_{a} \otimes \sigma_{b}=\rho_{a} * \sigma_{b}
$$

- Born statistical formula:

$$
\operatorname{Tr}[\rho P]=\rho_{a} * P_{a}^{\tau}
$$

- Transformation of states:

$$
\mathcal{E}(\rho)=E_{\text {out }, \text { in }} * \rho_{\text {in }}
$$

States and transformations are treated on an equal footing.

QUANTUM COMBS

Quantum comb $=$ sequential networks of quantum operations

The quantum comb is represented by the Choi operator

$$
S^{(N)}=C_{N} * \cdots * C_{2} * C_{1}
$$

NORMALIZATION OF COMBS

- Deterministic comb = network of channels

Recursive normalization of deterministic combs:

$$
\operatorname{Tr}_{2 N-1}\left[S^{(N)}\right]=I_{2 N-2} \otimes S^{(N-1)}
$$

Optimize a network = optimize a positive operator under this constraint

GC, G M D'Ariano, and P Perinotti, Phys. Rev. Lett. 101, 060401 (2008)

ROTATION OF COMBS

- Rotation of input/ output of a channel = rotation of the Choi operator

- Rotation of inputs / outputs of a network = rotation of the comb

$S^{(N)} \longmapsto\left(V \otimes U^{*}\right)^{\otimes N} S^{(N)}\left(V^{\dagger} \otimes U^{\tau}\right)^{\otimes N}$

OPTIMIZATION OF LEARNING

OPTIMIZATION OF LEARNING

$$
-\mathcal{U}-\quad \mathcal{U}-\cdots \mathcal{U}
$$

OPTIMIZATION OF LEARNING

OPTIMIZATION OF LEARNING

Comb of the learning network: $L=R * C_{N} * \cdots * C_{2} * C_{1} * \rho_{\text {in }}$
Fidelity: $\left.\quad F=\frac{1}{d^{2}} \int \mathrm{~d} U\left\langle\langle U|\left\langle\left\langle\left. U^{*}\right|^{\otimes N}\right| L \mid U\right\rangle\right\rangle\left|U^{*}\right\rangle\right\rangle^{\otimes N}$

We can always optimize over covariant combs:

$$
\left[L, U \otimes V^{*} \otimes U^{* \otimes N} \otimes V^{\otimes N}\right]=0 \quad \forall U, V
$$

OPTIMALITY OF PARALLEL STRATEGIES
$\rho_{\rho_{\text {in }}}-\mathcal{U}-\mathcal{C}_{1}-\mathcal{U}-\cdots-\mathcal{U}-\mathcal{C}_{N}-$

OPTIMALITY OF PARALLEL STRATEGIES
$\rho_{\rho_{\text {in }}}-\mathcal{U}-\mathcal{C}_{1}-\mathcal{U}-\cdots-\mathcal{U}-\mathcal{C}_{N}-$
$=\rho_{\text {in }}-\mathcal{I}-\mathcal{C}_{1}-\mathcal{I}-\cdots \mathcal{I}-\mathcal{C}_{N}-\mathcal{I}_{A}=$

OPTIMALITY OF PARALLEL STRATEGIES

\square
$=\rho_{\text {in }}-\mathcal{I}-\mathcal{C}_{1}+\mathcal{I}-\cdots \mathcal{I}-\mathcal{C}_{N}-\mathcal{I}_{A}=$

Any covariant network is equivalent to a parallel scheme with ancilla!

Learning can be parallelized, in the same way as estimation (cf previous talk)

OPTIMAL INPUT STATES

Decomposing the unitaries as

$$
U^{\otimes N} \otimes I_{A}=\bigoplus_{J}\left(U_{J} \otimes I_{m_{J}}\right)
$$

one can prove that the optimal input states have the form

$$
|\psi\rangle=\bigoplus_{J} a_{J} \frac{\left.\left|I_{J}\right\rangle\right\rangle}{\sqrt{d_{J}}} \quad a_{J} \geq 0
$$

where $\left.\left|I_{J}\right\rangle\right\rangle \in \mathcal{H}_{J}^{\otimes 2}$ is a maximally entangled state

This is the same form of the optimal states for estimation of the unknown unitary U with N copies

GC, G M D'Ariano, and M F Sacchi, Phys. Rev. A 72, 043448 (2005).

OPTIMAL RETRIEVING CHANNEL

Theorem: for any group of unitaries, for an input state of the optimal form

$$
|\psi\rangle=\bigoplus_{J} a_{J} \frac{\left.\left|I_{J}\right\rangle\right\rangle}{\sqrt{d_{J}}} \quad a_{J} \geq 0
$$

the optimal retrieving channel to extract U from the states

$$
\left(U^{\otimes N} \otimes I_{A}\right)|\psi\rangle=\bigoplus_{J} a_{J} \frac{\left.\left|U_{J}\right\rangle\right\rangle}{\sqrt{d_{J}}} \quad a_{J} \geq 0
$$

is achieved by a "measure-and-prepare" scheme.
Precisely, it is achieved by estimation of the unknown unitary U : for outcome U, just perform the unitary U

For the optimal POVM, see
GC, G M D'Ariano, and M F Sacchi, Phys. Rev. A 72, 043448 (2005).

QUANTUM MEMORY DOES NOT IMPROVE LEARNING

QUANTUM MEMORY DOES NOT IMPROVE LEARNING

${ }^{0}-R_{R}$

QUANTUM MEMORY DOES NOT IMPROVE LEARNING

QUANTUM MEMORY DOES NOT IMPROVE LEARNING

$\rho-\mathcal{R}_{\text {out }}=\rho_{\text {out }}-P_{\hat{U}} \quad \rho-\hat{U}-$

QUANTUM MEMORY DOES NOT IMPROVE LEARNING

Optimal retrieving is "measure-and-prepare":
no need of waiting for the input state
ρ
We can measure immediately after having applied U, and store the outcome \hat{U} in a classical memory.

What's more, once we have measured, we can make as many copies as we want.
On the contrary, a quantum memory would be degraded every time we access it.

STABILITY AND INSTABILITY OF OUR RESULT

STABILITY AND INSTABILITY OF QUR RESULT Our result is stable under the following variations:

- learning from N to M copies with global fidelity: target $U^{\otimes M}$ (optimality for single-copy fidelity is trivial)
- N non-identical input unitaries and / or non-identical target unitaries
- perform the inverse of U : target
perform the inverse of U: target
- any combination of the above things

STABILITY AND INSTABILITY OF QUR RESULT
 Our result is stable under the following variations:

- learning from N to M copies with global fidelity: target $U^{\otimes M}$ (optimality for single-copy fidelity is trivial)
- N non-identical input unitaries and / or non-identical target unitaries
- perform the inverse of U : target

```None
```

- any combination of the above things

Our result is not stable under the following variations:

- learning general channels
- learning unitaries that do not form a group
- learning with restrictions on the available input states (entanglement)

ERROR CORRECTION WITH CORRELATED NOISE

Consider the following correlated error model:

$$
\mathcal{D}_{N}(\rho)=\int_{G} \mathrm{~d} g U_{g}^{\otimes N} \rho U_{g}^{\dagger \otimes N}
$$

Possible coding strategy:

- use k particles to detect the unitary error
- use the remaining ($\mathrm{N}-\mathrm{k}$) particles to carry the message

$$
\mathcal{D}_{N}\left(|e\rangle\left\langle\left. e\right|^{(k)} \otimes \rho^{(N-k)}\right)\right.
$$

Problem: find the best decoding to maximize the fidelity between

$$
\mathcal{R} \circ \mathcal{D}_{N}\left(|e\rangle\left\langle\left. e\right|^{(k)} \otimes \rho^{(N-k)}\right) \quad \text { and } \quad \rho^{(N-k)}\right.
$$

OPTIMAL CORRECTION SCHEME

The correction problem is equivalent to learning $U^{\dagger \otimes(N-k)}$ from k examples of U.

We know that the optimal scheme is just estimation and preparation In particular, the optimal states for error correction are the optimal states for estimation.

OPTIMAL CORRECTION SCHEME

The correction problem is equivalent to learning $U^{\dagger} \otimes(N-k)$ from k examples of U.

We know that the optimal scheme is just estimation and preparation In particular, the optimal states for error correction are the optimal states for estimation.

The optimality of measure-and-prepare retrieving has been also observed for $\mathrm{k}=1$, and for a maximum likelihood input state

$$
\left.|\psi\rangle \propto \bigoplus_{J}\left|I_{J}\right\rangle\right\rangle \quad\left(a_{J} \propto \sqrt{d_{J}} \text { in the optimal form }\right)
$$

For $\mathrm{SU}(2)$ and $\mathrm{U}(1)$ the state assumed in arXiv:0812.5040 allows

$$
p_{\text {succ }}=1-\frac{\alpha}{N}
$$

PRO AND CONTRA

The max-likelihood state is not optimal for the fidelity
The optimal state is $|\psi\rangle \propto \sum_{n=0}^{N} \sin \left(\frac{n \pi}{N}\right)|n\rangle \quad$ for $U(1)$

$$
|\psi\rangle \propto \bigoplus_{j=0}^{N / 2} \sin \left(\frac{2 j \pi}{N}\right) \frac{\left.\left|I_{J}\right\rangle\right\rangle}{\sqrt{2 j+1}} \quad \text { for } S U(2)
$$

and gives fidelity

$$
F_{o p t}=1-\frac{\beta}{N^{2}}
$$

The max-likelihood state gives

$$
F=1-\frac{\gamma}{N}
$$

On the other hand, the optimal state for fidelity does not allow probabilistically perfect error correction

OPTIMAL MULTIROUND PROTOCOLS FOR REFERENCE FRAME ALIGNMENT

QUANTUM GYROSCOPES

Spin $\frac{1}{2}$ particle, rotation $g \in \mathbb{S O}(3) \quad g=(\mathbf{n}, \varphi)$
State change: $\quad U_{g}=e^{i \varphi \mathbf{n} \cdot \sigma}=\cos (\varphi / 2)+i \sin (\varphi / 2) \mathbf{n} \cdot \sigma$
encodes a spatial direction:

N qubits: $\quad|A\rangle \in \mathcal{H}^{\otimes N} \quad\left|A_{g}\right\rangle=U_{g}^{\otimes N}|A\rangle$
encode a Cartesian frame:

QUANTUM GYROSCOPES

Spin $\frac{1}{2}$ particle, rotation $g \in \mathbb{S O}(3) \quad g=(\mathbf{n}, \varphi)$
State change: $\quad U_{g}=e^{i \varphi \mathbf{n} \cdot \sigma}=\cos (\varphi / 2)+i \sin (\varphi / 2) \mathbf{n} \cdot \sigma$
encodes a spatial direction:

N qubits: $\quad|A\rangle \in \mathcal{H}^{\otimes N} \quad\left|A_{g}\right\rangle=U_{g}^{\otimes N}|A\rangle$
encode a Cartesian frame:

QUANTUM GYROSCOPES

Spin $\frac{1}{2}$ particle, rotation $g \in \mathbb{S O}(3) \quad g=(\mathbf{n}, \varphi)$
State change: $\quad U_{g}=e^{i \varphi \mathbf{n} \cdot \sigma}=\cos (\varphi / 2)+i \sin (\varphi / 2) \mathbf{n} \cdot \sigma$
encodes a spatial direction:

N qubits: $\quad|A\rangle \in \mathcal{H}^{\otimes N} \quad\left|A_{g}\right\rangle=U_{g}^{\otimes N}|A\rangle$
encode a Cartesian frame:

ALIGNING AXES WITH QUANTUM GYROSCOPES

Suppose Alice and Bob have different Cartesian frames (different axes): a state that is $|A\rangle$ for Alice is $U_{g}|A\rangle$ for Bob. However, using quantum communication they can try to establish a shared reference frame:

Bob

Problem: find the optimal quantum state and the optimal estimation strategy for aligning Cartesian frames

ALIGNING AXES WITH QUANTUM GYROSCOPES

Suppose Alice and Bob have different Cartesian frames (different axes): a state that is $|A\rangle$ for Alice is $U_{g}|A\rangle$ for Bob. However, using quantum communication they can try to establish a shared reference frame:

Bob

Problem: find the optimal quantum state and the optimal estimation strategy for aligning Cartesian frames

ALIGNING AXES WITH QUANTUM GYROSCOPES

Suppose Alice and Bob have different Cartesian frames (different axes): a state that is $|A\rangle$ for Alice is $U_{g}|A\rangle$ for Bob. However, using quantum communication they can try to establish a shared reference frame:

Bob

Problem: find the optimal quantum state and the optimal estimation strategy for aligning Cartesian frames

ALIGNING AXES WITH QUANTUM GYROSCOPES

Suppose Alice and Bob have different Cartesian frames (different axes): a state that is $|A\rangle$ for Alice is $U_{g}|A\rangle$ for Bob. However, using quantum communication they can try to establish a shared reference frame:

Bob

Problem: find the optimal quantum state and the optimal estimation strategy for aligning Cartesian frames

ULTIMATE PRECISION LIMITS FOR N PARTICLES

- For a quantum gyroscope made of N identical spin 1 / 2 particles:

$$
\langle c\rangle \approx \sum_{i=x, y, z} \Delta \theta_{i}^{2}=3 \Delta \theta_{x}^{2} \approx \frac{2 \pi^{2}}{N^{2}}
$$

GC, D'Ariano, Perinotti, Sacchi, PRL 93, 180503 (2004)
Bagan, Baig, Muñoz-Tapia, PRA 70, 030301 (2004)
Hayashi, PLA 354, 183 (2006)
However, this result is provenly the optimal one only if we assume that Alice sends all particles in a single shot.

In other words, this result is about protocols with a single-round of forward quantum communication.

What about multi-round protocols?

MULTI-ROUND ALIGNMENT PROTOCOLS

- For a quantum gyroscope made of N identical spin 1 / 2 particles:

Alice

Allow

- unlimited amount of classical communication
- k rounds of quantum communication, in which batches of spin $1 / 2$ particles are sent.
Then find the best way of estimating the mismatch of alignment.

MULTI-ROUND ALIGNMENT PROTOCOLS

- For a quantum gyroscope made of N identical spin 1 / 2 particles:

Allow

- unlimited amount of classical communication
- k rounds of quantum communication, in which batches of spin $1 / 2$ particles are sent.
Then find the best way of estimating the mismatch of alignment.

QUANTUM COMB FORMULATION

Alice's moves, in her description, are given by comb S In Bob's description:

$$
S_{g}=\left(U_{g}^{\otimes N_{A \rightarrow B}} \otimes U_{g}^{* \otimes N_{B \rightarrow A}} \otimes I_{C}\right) S\left(U_{g}^{\dagger \otimes N_{A \rightarrow B}} \otimes U_{g}^{\tau * \otimes N_{B \rightarrow A}} \otimes I_{C}\right)
$$

Bob's estimation strategy: tester $T_{\hat{g}}$

QUANTUM COMB FORMULATION

Alice's moves, in her description, are given by comb S In Bob's description:

$$
S_{g}=\left(U_{g}^{\otimes N_{A \rightarrow B}} \otimes U_{g}^{* \otimes N_{B \rightarrow A}} \otimes I_{C}\right) S\left(U_{g}^{\dagger \otimes N_{A \rightarrow B}} \otimes U_{g}^{\tau * \otimes N_{B \rightarrow A}} \otimes I_{C}\right)
$$

Bob's estimation strategy: tester $T_{\hat{g}}$

QUANTUM TESTERS

Quantum tester $=$ network beginning with a state preparation and ending with a measurement
= collection of positive operators with suitable normalization.

$$
\left\{T_{i}\right\} \quad T_{i} \geq 0 \quad \sum_{i} T_{i}=\text { deterministic comb }
$$

Born rule for quantum networks: $\quad p_{i}=S * T_{i}=\operatorname{Tr}\left[S T_{i}^{\tau}\right]$

OPTIMALITY OF COVARIANT TESTERS

$\left\{S_{g}=W_{g} S_{0} W_{g}^{\dagger} \mid g \in G\right\} \begin{aligned} & \text { invariant family of quantum combs }\end{aligned}$ with uniform prior dg
$c(\hat{g}, g)$
left-invariant cost function

$$
c(k \hat{g}, k g)=c(\hat{g}, g) \quad \forall k \in G
$$

The optimal tester for

- minimizing the average cost $\langle c\rangle=\int \mathrm{d} g \int \mathrm{~d} \hat{g} c(\hat{g}, g) p(\hat{g} \mid g)$
- minimizing the worst-case cost $c_{w c}=\max _{g} \int \mathrm{~d} \hat{g} c(\hat{g}, g) p(\hat{g} \mid g)$
is covariant
and

$$
\begin{aligned}
& T_{\hat{g}}=\left(W_{\hat{g}} T_{0} W_{\hat{g}}^{\dagger}\right)^{\tau} \\
& \langle c\rangle^{o p t}=c_{w c}^{o p t}
\end{aligned}
$$

GC, G M D'Ariano, and P Perinotti, Phys. Rev. Lett. 101, 180501 (2008)

DECOMPOSITION OF QUANTUM TESTERS

Theorem

Any tester can be split into two parts

- a deterministic supermap transforming quantum combs into states

$$
\mathcal{T}(S)=T^{\frac{1}{2}} S T^{\frac{1}{2}} \quad T=\sum_{i} T_{i}^{\tau}
$$

- an ordinary quantum measurement $\left\{P_{i}\right\}$ on the output states

$$
p_{i}=S * T_{i}=\mathcal{T}(S) * P_{i}=\operatorname{Tr}\left[\mathcal{T}(S) P_{i}^{\tau}\right]
$$

OPTIMALITY PROOF FOR ONE-WAY STRATEGIES

Decomposition of the tester: measurement on the quantum state

$$
\mathcal{T}(S)=T^{\frac{1}{2}} S T^{\frac{1}{2}} \quad T=\int \mathrm{d} \hat{g} T_{\hat{g}}^{\tau}
$$

where

$$
T_{\hat{g}}=\left(W_{g} T_{0} W_{g}^{\dagger}\right)^{\tau} \quad W_{g}=U_{g}^{\otimes N_{A \rightarrow B}} \otimes U_{g}^{* \otimes N_{B \rightarrow A}} \otimes I_{C}
$$

Since $\quad\left[T, W_{g}\right]=0 \quad \forall g \in G$
the output state is of the form

$$
\rho_{g}=\left(U_{g}^{\otimes N_{A \rightarrow B}} \otimes U_{g}^{* \otimes N_{B \rightarrow A}} \otimes I_{C}\right) \rho_{0}\left(U_{g}^{\otimes N_{A \rightarrow B}} \otimes U_{g}^{* \otimes N_{B \rightarrow A}} \otimes I_{C}\right)^{\dagger}
$$

But a state like this can be obtained in a single round!

OPTIMALITY PROOF FOR ONE-WAY STRATEGIES

Theorem:

For any multi-round protocol, there is a protocol with a single round of forward quantum communication from Alice to Bob, using

- $N_{A \rightarrow B}$ particles and
- $N_{B \rightarrow A}$ charge-conjugate particles
that achieves the same average (or worst case) cost.

G C, G M D'Ariano, and P Perinotti, Proc. QCMC 2008 (arXiv:0812.3922)
In particular,

- for quantum clocks $G=\mathrm{U}(1)$
- for quantum gyroscopes $\mathrm{G}=\mathrm{SU}(2)$
the only thing that matters is the total number of transmitted particles

$$
N_{t o t}=N_{A \rightarrow B}+N_{B \rightarrow A}
$$

CONCLUSIONS

- the optimal learning of a group transformation is "measure-and-prepare"
- the optimal learning of a group transformation is "measure-and-prepare"
- the optimal alignment of reference frames can be achieved with a single round of quantum communication
- the optimal learning of a group transformation is "measure-and-prepare"
- the optimal alignment of reference frames can be achieved with a single round of quantum communication
- the proper way to solve these problem is the formalism of quantum combs and testers.

