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OUTLINE

e Optimal quantum learning of a unitary transtormation
from finite examples (arXiv:0903.0543v1 )

e Optimal correction of an unknown rotation
(a little variation on the theme of quantum learning)

 Multi-round and adaptive alignment of reference frames
equivalence of backward communication with forward
communication of charge-conjugate particles



http://arxiv.org/abs/0903.0543v1
http://arxiv.org/abs/0903.0543v1

OPTIMAL QUANTUM LEARNING:
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LEARNING AN UNKNOWN FUNCTION

Problem: a black box computes an unknown function y = f(x)
We can evaluate f on a finite set of points £1,..., TN
getting outcomes Y1>---» YN
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In classical computer science, statistical learning provides several
efficient solutions for this problem




CLASSICAL NETWORKS FOR LEARNING

Comparing x with f(x) for N times is not the only possibility:
this just corresponds to the parallel configuration
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CLASSICAL NETWORKS FOR LEARNING

Comparing x with f(x) for N times is not the only possibility:
this just corresponds to the parallel configuration

m
.

To learn better, one could use a sequential network:

where 91:92,:---:9dN are known functions




OPTIMIZATION PROBLEM

Find the optimal strategy to learn an unknown function
This means:

s

e find the bestnetwork — F =gyofo--rogoofogyof
Yo —hE

j?

e find the best input X

e for outcome Y, find the optimal guess
Y - f

e Difference with estimation of the function f

Estimation corresponds to the special case fe b

I

In general, the optimal guess does not have to be in




FROM CLASSICAL TO QUANTUM LEARNING

e Unknown function f E unknown quantum channel <

* Classical network  _y quantum network

e Input X —> quantum state Pin

= Pout
 Output Y quantum state
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GUESSING A CHANNEL FROM A STATE

e Classical guess Quantum “guess”

Y—>f

H A
Dout &

Physical implementation of the quantum guess:

retrieving channel R

It retrieves the unknown transformation from the output state Pout
and performs it on a new state ¥

- a8




GUESSING A CHANNEL FROM A STATE

e Classical guess Quantum “guess”

Y—>f poutﬁg

Physical implementation of the quantum guess:

retrieving channel R

It retrieves the unknown transformation from the output state Pout
and performs it on a new state ¥
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Target: implementing
the unknown channel
with maximum fidelity




OPTIMAL QUANTUM LEARNING

Find the optimal strategy to learn an unknown channel
This means:

gEEQ

Biid the bestnetwork _, A =(Cnofo0---0C0E00 00

e find the best input e e loul = N (Pzn)

e find the optimal retrieving channel

—  &(p) = R(p® pout)
Figure of merit: input-output fidelity

F(E,&) = / do F(E(p),E(9))

]

Fp,0) =Tr [(p%w%)



“MEASURE-AND-PREPARE” SCHEMES

e Particular scheme to retrieve the unknown transformation:
-perform a measurement on the output state,
-for outcome Y perform channel &y

In this case, the retrieving channel is:

A

7Zm,eas (,0 0= pout) s Z TT[PYpout] gY (/0)
Y

e Particular measure-and-prepare scheme:
estimation of the channel £ € E,

(cijE()

In this case, one has

Estimation € {measure-and-prepare schemes}C {retrieving channels}




LEARNING AN UNKNOWN UNITARY

Consider the case where the set of channels Eg
is a group of unitary transformations.

¢i” “ff =

Assuming a uniform prior for the unknown unitaries,
we have the average fidelity

o / AU FU,Cyp)




HOW TO OPTIMIZE A QUANTUM
NETWORK:

QUANTUM COMBS




CHOI-JAMIOLKOWSKI OPERATORS

Convenient representation of linear maps:
Choi-Jamiolkowski-Belavkin-Staszewski operator (CJBS)

C=Cean)(NH) )= )_nin)
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LINK PRODUCT

Convenient representation of composition of linear maps: link product

e .+ By, = Trb[(Fcb Y Ia)(IC & Egg)]

e - L. — By o x B up to permutation of Hilbert spaces
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KNOWN FORMULAS IN TERMS OF LINK PRODUCT

e Tensor product of states:

Pa X Tp = Pg * Op

e Born statistical formula:

Tr[pP] = po * Py

e Transformation of states:

g(ﬂ) e Eout,in * Pin
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e Tensor product of states:
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Ir [IOP ] = Pg ¥ Pg or a transformation?
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QUANTUM COMBS

Quantum comb = sequential networks of quantum operations

The quantum comb is represented by the Choi operator

S(N):CN*---*CQ*Cl




NORMALIZATION OF COMBS

¢ Deterministic comb = network of channels

Recursive normalization of deterministic combs:

Tron_1[SW™)] = Ly_s @ S

Optimize a network = optimize a positive operator under this constraint

GC, G M D’Ariano, and P Perinotti, Phys. Rev. Lett. 101, 060401 (2008)




ROTATION OF COMBS

e Rotation of input/output of a channel = rotation of the Choi operator

| C g =

e Rotation of inputs/outputs of a network = rotation of the comb

" B =, B
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OPTIMIZATION OF LEARNING

i "3 8

Comb of the learning network: L = R x Cpn * -+ x Uy x C * p;p,

1 * 3
Fidelity: F = D dU (U(U ‘®N| L |[U)U >>®N

We can always optimize over covariant combs:

L U V2 0 S




OPTIMALITY OF PARALLEL STRATEGIES
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OPTIMALITY OF PARALLEL STRATEGIES

Any covariant network is equivalent to a
parallel scheme with ancilla!

Learning can be parallelized, in the same way
as estimation (cf previous talk)




OPTIMAL INPUT STATES

Decomposing the unitaries as U o bl @ Us & In,)
J

one can prove that the optimal input states have the form

e

where |[j)) € H?z is a maximally entangled state

- 1)
|¢>—GJ9 a.j i ay > 0

This is the same form of the optimal states for
estimation of the unknown unitary U with N copies

GC, G M D’Ariano, and M F Sacchi, Phys. Rev. A 72, 043448 (2005).




OPTIMAL RETRIEVING CHANNEL

Theorem: for any group of unitaries,
for an input state of the optimal form

|¢>:@Cw@ agl

J dJ

the optimal retrieving channel to extract U from the states

(UEN @ La)ly) = P a

Ur)
. Vd

aJZO

is achieved by a “measure-and-prepare” scheme.
Precisely, it is achieved by estimation of the unknown unitary U:
for outcome U | just perform the unitary U

For the optimal POVM, see
GC, G M D’Ariano, and M F Sacchi, Phys. Rev. A 72, 043448 (2005).
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QUANTUM MEMORY DOES NOT IMPROVE LEARNING

0
X

pout

Optimal retrieving is “measure-and-prepare”:
no need of waiting for the input state

0

We can measure immediately after having applied U,

and store the outcome 7 in a classical memory.

What's more, once we have measured, we can make as many copies as
we want.
On the contrary, a quantum memory would be degraded

every time we access it.



STABILITY AND INSTABILITY OF OUR RESULT
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e learning from N to M copies with global fidelity: target [7OM

(optimality for single-copy fidelity is trivial)
e N non-identical input unitaries and / or non-identical target unitaries
[T

e perform the inverse of U:  target

* any combination of the above things
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un owling variations:

e learning from N to M copies with global fidelity: target [7OM

(optimality for single-copy fidelity is trivial)
e N non-identical input unitaries and / or non-identical target unitaries
[T

e perform the inverse of U:  target

e any combination of the above things
Our result is not stable under the following variations:

e learning general channels

e learning unitaries that do not form a group

e learning with restrictions on the available input states (entanglement)



ERROR CORRECTION WITH CORRELATED NOISE

Consider the following correlated error model:

D (p) Z/Gdg U2 o U3

Possible coding strategy:
euse k particles to detect the unitary error
e use the remaining (N-k) particles to carry the message

Dy (le)(e]™ ® o™ ~P)

Problem: find the best decoding to maximize the fidelity between

R oD n(le)(el® ® p™ M) and oY




OPTIMAL CORRECTION SCHEME

The correction problem is equivalent to learning [JT®(N—k)

from k examples of U .

We know that the optimal scheme is just estimation and preparation
In particular, the optimal states for error correction are the optimal
states for estimation.




OPTIMAL CORRECTION SCHEME

The correction problem is equivalent to learning [JT®(N—k)

from k examples of U .

We know that the optimal scheme is just estimation and preparation
In particular, the optimal states for error correction are the optimal
states for estimation.

The optimality of measure-and-prepare retrieving has been also observed

for k =1, and for a maximum likelihood input state

) o 69 117)) (ay x \/dj in the optimal form)
U

For SU(2) and U(1) the state assumed in arXiv:0812.5040 allows

Y

succzl__
. N




PRO AND CONTRA

The max-likelihood state is not optimal for the fidelity

N
The optimal state is |Y) X Z Sin (%) n)
n—

On the other hand,
the optimal state for fidelity does not allow probabilistically
perfect error correction




OPTIMAL MULTIROUND PROTOCOLS FOR

REFERENCE FRAME ALIGNMENT




QUANTUM GYROSCOPES

1
Spin 5 particle, rotation 9 € SO(3) g = (n,¢)

State change: U, = ™7 = cos(¢/2) + isin(p/2)n - o

encodes a spatial direction: /

B jibits: |A) e H® A =U2"|A)

encode a Cartesian frame:
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ALIGNING AXES WITH QUANTUM GYROSCOPES

Suppose Alice and Bob have different Cartesian frames (different axes):
a state that is |A) for Aliceis U,|A) for Bob.

However, using quantum communication they can try to establish a
shared reference frame:

Alice

Problem: find the optimal quantum state and the optimal estimation
strategy for aligning Cartesian frames
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ULTIMATE PRECISION LIMITS FOR N PARTICLES

e For a quantum gyroscope made of N identical spin 1/2 particles:

2

2 2 ~
& D AGE=3A0 &

=T

GC, D’ Ariano, Perinotti, Sacchi, PRL 93, 180503 (2004)
Bagan, Baig, Mufioz-Tapia, PRA 70, 030301 (2004)

anslu PLA 354, 183 (2006) :
owever, this result 1s provenly the optimal one

only if we assume that Alice sends all particles in a single shot.

In other words, this result is about protocols with a single-round of
forward quantum communication.

What about multi-round protocols?




MULTI-ROUND ALIGNMENT PROTOCOLS

e For a quantum gyroscope made of N identical spin 1/2 particles:

Allow

e unlimited amount of classical communication

e k rounds of quantum communication, in which batches of spin 1/2
particles are sent.

Then find the best way of estimating the mismatch of alignment.



MULTI-ROUND ALIGNMENT PROTOCOLS

e For a quantum gyroscope made of N identical spin 1/2 particles:

Allow

e unlimited amount of classical communication

e k rounds of quantum communication, in which batches of spin 1/2
particles are sent.

Then find the best way of estimating the mismatch of alignment.



QUANTUM COMB FORMULATION

Alice’s moves, , are given by comb S
In Bob’s description:
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Bob’s estimation strategy: tester Tg
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QUANTUM TESTERS

o

Quantum tester = network beginning with a state preparation
and ending with a measurement
= collection of positive operators with suitable
normalization.

e B el ZT’i = deterministic comb

Born rule for quantum networks:  p; = S *T; = Tr[S T, |




BIETIMIALITY OF COVARIANT TESTERS
S + invariant family of quantum combs
ol [ 9< G with uniform prior dg

C(g » g ) left-invariant cost function

c(kg, kg) =c(g,9) VkeG

The optimal tester for

 minimizing the average cost / dg / dg c(g (99)

® minimizing the worst-case cost Cye = mglx / dg c(g,9) p(9]9)

1S covariant g (Wg T, Wg)T
and

GC, G M D’Ariano, and P Perinotti, Phys. Rev. Lett. 101, 180501 (2008)




DECOMPOSITION OF QUANTUM TESTERS

Theorem

Any tester can be split into two parts

* a deterministic supermap transforming
quantum combs into states

I sT7i T8

* an ordinary quantum measurement {P z} on the output states

=0 2 — T(5) P — Tl S




OPTIMALITY PROOF FOR ONE-WAY STRATEGIES

Decomposition of the tester: measurement on the quantum state

S —T: ST T:/dng

where
B W) W, =U2"V-B U S
Since |1, W, =0 Vg € G

the output state is of the form

Dy = (U‘;X)NA—>B R U;®NB—>A ® Ic) po (U;]X)NAHB R U;®NB_>A 2 [C)T

But a state like this can be obtained in a single round!




OPTIMALITY PROOF FOR ONE-WAY STRATEGIES

Theorem:
For any multi-round protocol, there is a protocol with a single round of
forward quantum communication from Alice to Bob, using

e N4_. B particles and

o VB4 charge-conjugate particles

that achieves the same average (or worst case) cost.

G C, G M D’ Ariano, and P Perinotti, Proc. QCMC 2008 (arXiv:0812.3922)

In particular,

e for quantum clocks G =U(1)

e for quantum gyroscopes G = SU (2)

the only thing that matters is the total number of transmitted particles

Ntot i NA—>B e NB—>A



http://arxiv.org/abs/0812.3922
http://arxiv.org/abs/0812.3922

CONCLUSIONS
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e the optimal learning of a group transformation is
“measure-and-prepare”

e the optimal alignment of reference frames can be achieved
with a single round of quantum communication

e the proper way to solve these problem is the formalism of
quantum combs and testers.




