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Gaussian States

• A family of continuos variable quantum 
states defined by a Gaussian 
characteristic function.

• Canonical form:

• Very good description of states of light produced in labs (laser 
produces coherent state + passive/active optical operations)

ρ = D(α)S(r,φ)ρβS(r,φ)†D(α)†

D(α) = eαa†−α∗a S(r,φ) = exp
[
r/2(a2e−i2φ − a†2ei2φ)

]
ρβ =

e−βn̂

tr (e−βn̂)
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Quantum Benchmarks

Chapter 3

Phase Estimation

Phase estimation is a fundamental problem with a variety of immediate applications in metrology.
Optical implementations of quantum metrology are within reach of current technology. Our aim is to
optimally estimate the phase encoded in a Gaussian state by performing the most general measurement
(POVM).

Our setting is a system evolving under a unitary transformation, where the initial state is a
Gaussian state and the unitary is the phase operator. Then the output state is given by the map

E(ρ) = ρ(φ) = Û(φ)ρÛ †(φ) (3.1)

where ρ is a general Gaussian state, U(φ) is the unitary operator that shifts the state and has the
form U(φ) = eiφa†a. In general the output quantum state has the form

ρ(φ) =
∑

ρkk′eiφ(k−k′)|k〉〈k′| (3.2)

Estimation is inherently not perfect, therefore we need a figure of merit in order to quantify how close
is our guess φχ to the real value of φ. We will take the usual function

fα(φ,φχ) = cos α(φ− φχ) (3.3)

where α = 1 for displaced states and α = 2 for squeezed states. The factor of 2 in the second case
takes into account the π symmetry due to the double photon structure of the squeezed states. The
average fidelity then reads

Fα =
∑

χ

∫ 2π

0

dφ

2π
fα(φ,φχ) tr(ρOχ) (3.4)

Next I demonstrate that the optimal fidelity in average can be achieved by a covariant POVM and
it reads

Fα =
∞∑

n=0

|ρn,n+α| (3.5)

Let us first derive the POVM that yields the optimal average fidelity for a rather general family
of functions for the fidelity f(φ,φχ) =

∑
j fj(φ,φχ) =

∑
j aj cos j(φ − φχ) with aj ≥ 0. The fidelity

of displaced and squeezed states just corresponds to the first and second term of this expansion. The
average fidelity is

F =
∑

χ

∫
dφ

2π
f(φ,φχ)tr(ρOχ) (3.6)
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2.1 States, Measurements and Operations 5

repeatedly the same von Neumann measurement one obtains with certainty the same outcome. In
this case one says that the measurement is repeatable. Normally in a generalized measurement this
no longer holds since the outcomes may not be orthogonal.

Generalized measurements can be viewed as von Neumann ones in a larger space. In particular,
we can consider the tensor product of the system and an ancilla, Hφ ⊗ Hanc, and a von Neumann
measurement in the total Hilbert space. The reduced projectors (Anc〈Ψ|Pa|Ψ〉Anc) are generally not
orthogonal and yield a POVM.

2.1.3 Operations

A quantum operation is a general action that transforms a state into another state

ρo = E(ρ) (2.9)

The quantum operation formalism provides a general tool for describing the evolution of the system
without explicit reference to the passage of time in a wide variety of circumstances and gives the
dynamic change of the state as a result of some physical process.We can think of a quantum operation
as a box in which an input state enters and output exits (as it is shown in figure 2.1). In this formalism
we are not interested in the physical implementation of the box –it could be a quantum circuit, or
some Hamiltonian system, or anything else–, we are only interested in the initial and final states (see
[?] for more details).

The dynamics of a closed quantum system is described by an unitary operator ρo = ÛρÛ † with
UU † = U †U = I.

Figure 2.1: General operation on quantum system.

The dynamics of an open quantum system can be regarded as arising from the interaction between
the system and the environment. Jointly they form a closed quantum system with an unitary evolution.
The output system is obtained by tracing out the environment after the evolution, Û . This type of
evolution is irreversible and is described by a completely positive map

E(ρ) = trenv

(
Û(ρ ⊗ ρenv)Û †

)
(2.10)

In this case the final state E(ρ) is generally not related to the initial state ρ by an unitary operation.
The very same formalism is applicable to systems where one has only access to parts of the system or
one wants to ignore them.

Let us now present the operations that will be used throughout this work. Let us begin by the
unitary phase operator in an harmonic oscillator. It is described by

Û(φ) = eiφâ†â = eiφn̂ (2.11)

where â and â† are the annihilation and creation operators respectively, and n̂ is the number operator.
When Û(φ) acts over a state, ρ it will be seen to perform a rotation in the phase space and obviously
to keep the vacuum or any number state unchanged.

e.g. quantum teleportation 
or quantum memories

 identity channel
IDEAL

Are quantum resources necessary to emulate the channel?
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30 Benchmarks

Figure 4.1: Scheme for quantum teleportation of an unknown input state proposed by S. L. Braunstein and H. J.
Kimble.

are directly related to the homodyne photo-currents (ixa , ipb) respectively (in figure 4.1 Da and Db

symbolize two homodyne detectors, one measuring in the X quadrature and the other in P ). This step
corresponds to the Bell measurement in the qubit teleportation protocol. This classical information
is send to the Bob station. Bob reconstructs the teleported state by displacing an amount β the
component 2 of the EPR state. When the shared two mode squeezing state has an infinite squeezing
parameter the teleported state at the Bob station reproduces the original unknown state exactly.

The first experimental implementation of this scheme was done in 1998 by A. Furusawa et al. [?].
Since that moment most attention was focused on teleporting states of finite-dimensional systems.
However, it was known that teleportation could be realized also with systems of CV, such as optical
fields or the motion of massive-particles ([?], [?]). In this work Furusawa et al. demonstrated exper-
imentally quantum teleportation of optical coherent states using squeezed-state entanglement. They
found that a coherent state was teleported with a fidelity of Fexp = 0.58±0.02. In order to assess that
they had used quantum resources they proposed the following classical threshold: the threshold was
the fidelity of the protocol when the EPR beams a were replaced by uncorrelated vacuum inputs (this
situation is nothing more than the limit r = 0), thus eliminating the shared entanglement between
Alice and Bob. Notice that when they substitute the shared entangled state for the vacuum, Alice’s
Bell measurement actually corresponds to a heterodyne measurement on the input state with POVM
elements Eβ = 1

π |β〉〈β|. After receiving the measurement result Bob displaces his vacuum state by β,
so he obtains the coherent state |β〉. With this output state the fidelity reads

Ftel = 〈α|ρout|α〉 = 〈α|
(∫

1
π

tr (Eβ|α〉〈α|) |β〉〈β|
)
|α〉 = (4.1)

=
1
π

∫
d2β|〈α|β〉|4 =

1
π

∫
d2βe2|α−β|2 =

1
2

(4.2)

First threshold for quantum teleportation of coherent states:
 

 Fidelity of output state when no quantum correlations are used.
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So they obtain for a coherent state a classical threshold of Ftel = 1/2.
F = 〈α|ρout|α〉 > 1/2.
Due the large interest in demonstrating quantum protocols, such as teleportation, S. L. Braunstein

et al. [?] proposed a more rigorous and also experimentally testable criterion for the teleportation of
quantum states of continuous variables. They chose the Fidelity to compare the Alice, |ψin〉, state and
the state reconstructed by Bob, ρ̂out, i.e. F (|ψin〉, ρ̂out) = 〈ψin|ρ̂out|ψin〉, but then averaged it over a
set of input states.

F =
∫
〈ψin|ρ̂out|ψin〉P (|ψin〉)d|ψin〉 (4.3)

where P (|ψin〉) is the probability of sending a given member of the family, and ρ̂out is the output state
obtained from a measure and prepare strategy, i.e. after measuring with POVM {Oχ} and making
the corresponding guess ρχ: ρout =

∑
χ p(χ|ψin)ρχ (notice that the output implicitly depends on the

input state). Notice that it is crucial to test the channel over a set of different input states. Otherwise.
if only a single known state is sent, there is a trivial classical strategy to achieve the same goal as the
teleportation protocol: Alice calls Bob and tells him to prepare the state in question. Instead, if for
instance the set of input states is composed by two equiprobable non-orthogonal states, |ψ0〉 and |ψ1〉,
with an overlap 〈ψ0|ψ1〉 = x,they find that the optimal classical strategy achieves a fidelity

F =
1
2

(
1 +

√
1− x2 + x4

)
(4.4)

In the worst situation, when x = 1/
√

2, the fidelity is very high, F = 0.933. So, choosing only an
input set of states with only two vectors is a very weak test.

On the other hand, when the set of input states consists on every normalized vector in a Hilbert
state of dimension d with the same probability, the maximum value of the average fidelity is known
to be

F =
2

d + 1
(4.5)

So, the bigger the set of input states is the lower is the fidelity. In the case of CV systems (d →∞))
F = 0 and hence any non-zero fidelity would proof that quantum resources are being used. However it
is utterly unrealistic to assume that one can test the channel with such a wide family of input states.
In real experiments one has always limitations of the source that produce the input states. In order
to have realistic and practical thresholds Braunstein et al. [?] studied the case where the input states
are coherent states with an amplitude that is normally distributed around zero and a given width:
p(β) = λ

πe−λ|β|2 . They gave possible classical strategy that achieved a fidelity of

Fcoh =
1 + λ

2 + λ
(4.6)

which converges to F → 1/2 when there’s no limitation on the amplitude or energy of the set of input
states (λ → 0). Finally, very recently a rigorous proof was given by Hammerer et al. in [?], where the
show that this fidelity of any classical strategy is upper-bounded by (4.6).

Quantum resources 
are being used.

A. Furusawa et. al. Science 1998 

Are quantum resources necessary to emulate the channel?

Ftel = 〈α| ρout |α〉 =

= 〈α|
(∫

dβ2tr(Eβ |α〉〈α|) |β〉〈β|
)

|α〉 =

=
1
π

∫
d2β|〈α|β〉|4 =

1
π

∫
d2βe−2|α−β|2 =

1
2

where Eβ =
1
π

|β〉〈β|
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20 Phase Estimation

We have to to optimize (3.6), i.e. choose the POVM, {Oχ}, that maximizes (3.6). In general the
codification of a state can be written as ρ = U(φ)ρGSU †(φ) =

∑
k,k′ ρk,k′eiφ(k−k′)|k〉〈k′|. Introducing

it into (3.6) one gets

F =
∑

χ,k,k′

∫
dφ

2π
f(φ, φχ)eiφ(k−k′)ρk,k′〈k′|Oχ|k〉 =

=
∑

χ,k,k′

∫
dφ

2π

∑

j

aj cos j(φ− φχ)eiφ(k−k′)ρk,k′〈k′|Oχ|k〉 =

= $
∑

χ,k,k′,j

aj

∫
dφeiφ(k−k′+j)e−iφχjρk,k′〈k′|Oχ|k〉 (3.7)

Let us define the POVM matrix elements [Oχ]m,n = 〈m|Oχ|n〉 and its phases such that

[Oχ]m,n =
∣∣∣[Oχ]m,n

∣∣∣ eiψχ,m,n (3.8)

then the fidelity becomes

F = $
∑

χ,k,k′,j

ajδk+j,k′e−iφχjρk,k′

∣∣∣[Oχ]k,k′

∣∣∣ eiψχ,k,k′ (3.9)

and we can write the inequality

F ≤
∑

k,j

aj

∣∣∣∣∣
∑

χ

ρk,k+je
i(ψχ,k,k+j−φχj)

∣∣∣[Oχ]k,k+j

∣∣∣

∣∣∣∣∣ (3.10)

where the equality holds when

&

∣∣∣∣∣
∑

χ

ρk,k+je
i(ψχ,k,k+j−φχj)

∣∣∣[Oχ]k,k+j

∣∣∣

∣∣∣∣∣ = 0 (3.11)

We also have that
∣∣∣∣∣
∑

χ

ρk,k+je
i(ψχ,k,k+j−φχj)

∣∣∣[Oχ]k,k+j

∣∣∣

∣∣∣∣∣ ≤
∑

χ

∣∣∣[Oχ]k,k+j

∣∣∣ |ρk,k+j | (3.12)

Tanking in account that ρk,k+j = |ρk,k+j |eiφk,k+j the above conditions (3.11) and (3.12) can be fulfilled
if ψχ,k,k+j = jφχ + φk,k+j . Moreover,

∣∣∣[Oχ]m,n

∣∣∣ ≤
√

[Oχ]m,m

√
[Oχ]n,n (3.13)

∑

χ

√
[Oχ]m,m

√
[Oχ]n,n ≤

√∑

χ

[Oχ]m,m

∑

χ

[Oχ]n,n = 1 (3.14)

Putting both together one gets the condition
∑

χ

∣∣∣[Oχ]m,n

∣∣∣ ≤ 1. Equation (3.13) is satisfied if
[Oχ]m,m = km,n [Oχ]n,n for ∀m, n. Then, summing over χ one has km,n = 1, hence [Oχ]m,m =

Measure + Prepare

More rigorous quantum benchmark (Braunstein, Fuchs & Kimble JMO 2000): 

Different choices of input-state families:

• Isotropic distribution (all pure states with equal probability):
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Due the large interest in demonstrating quantum protocols, such as teleportation, S. L. Braunstein

et al. [?] proposed a more rigorous and also experimentally testable criterion for the teleportation of
quantum states of continuous variables. They chose the Fidelity to compare the Alice, |ψin〉, state and
the state reconstructed by Bob, ρ̂out, i.e. F (|ψin〉, ρ̂out) = 〈ψin|ρ̂out|ψin〉, but then averaged it over a
set of input states.

F =
∫
〈ψin|ρ̂out|ψin〉P (|ψin〉)d|ψin〉 (4.3)

where P (|ψin〉) is the probability of sending a given member of the family, and ρ̂out is the output state
obtained from a measure and prepare strategy, i.e. after measuring with POVM {Oχ} and making
the corresponding guess ρχ: ρout =

∑
χ p(χ|ψin)ρχ (notice that the output implicitly depends on the

input state). Notice that it is crucial to test the channel over a set of different input states. Otherwise.
if only a single known state is sent, there is a trivial classical strategy to achieve the same goal as the
teleportation protocol: Alice calls Bob and tells him to prepare the state in question. Instead, if for
instance the set of input states is composed by two equiprobable non-orthogonal states, |ψ0〉 and |ψ1〉,
with an overlap x = 〈ψ0|ψ1〉,they find that the optimal classical strategy achieves a fidelity

F =
1
2

(
1 +

√
1− x2 + x4

)
≥ 0.933 (4.4)

In the worst situation, when x = 1/
√

2, the fidelity is very high, F = 0.933. So, choosing only an
input set of states with only two vectors is a very weak test.

On the other hand, when the set of input states consists on every normalized vector in a Hilbert
state of dimension d with the same probability, the maximum value of the average fidelity is known
to be

F =
2

d + 1
d→∞−→ 0 (4.5)

So, the bigger the set of input states is the lower is the fidelity. In the case of CV systems (d →∞))
F = 0 and hence any non-zero fidelity would proof that quantum resources are being used. However it
is utterly unrealistic to assume that one can test the channel with such a wide family of input states.
In real experiments one has always limitations of the source that produce the input states. In order
to have realistic and practical thresholds Braunstein et al. [?] studied the case where the input states
are coherent states with an amplitude that is normally distributed around zero and a given width:
p(β) = λ

πe−λ|β|2 . They gave possible classical strategy that achieved a fidelity of

Fcoh =
1 + λ

2 + λ
(4.6)

which converges to F → 1/2 when there’s no limitation on the amplitude or energy of the set of input
states (λ → 0). Finally, very recently a rigorous proof was given by Hammerer et al. in [?], where the
show that this fidelity of any classical strategy is upper-bounded by (4.6).

• Coherent states with Gaussian distribution of amplitudes: (Braunstein, et al.)
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show that this fidelity of any classical strategy is upper-bounded by (4.6).

Hammerer et. al. PRL 2005 

• Micro-canonical ensemble of pure Gaussian states (Serafini et al  PRL 2007)

F =
∫

〈ψin| ρout |ψin〉P (|ψin〉)d |ψin〉

ρout =
∑

χ

tr(ρinOχ)ρχρin ∈ Ω

• 2 non-orthogonal states:        ,
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So they obtain for a coherent state a classical threshold of Ftel = 1/2.
F = 〈α|ρout|α〉 > 1/2.
Due the large interest in demonstrating quantum protocols, such as teleportation, S. L. Braunstein

et al. [?] proposed a more rigorous and also experimentally testable criterion for the teleportation of
quantum states of continuous variables. They chose the Fidelity to compare the Alice, |ψin〉, state and
the state reconstructed by Bob, ρ̂out, i.e. F (|ψin〉, ρ̂out) = 〈ψin|ρ̂out|ψin〉, but then averaged it over a
set of input states.

F =
∫
〈ψin|ρ̂out|ψin〉P (|ψin〉)d|ψin〉 (4.3)

where P (|ψin〉) is the probability of sending a given member of the family, and ρ̂out is the output state
obtained from a measure and prepare strategy, i.e. after measuring with POVM {Oχ} and making
the corresponding guess ρχ: ρout =

∑
χ p(χ|ψin)ρχ (notice that the output implicitly depends on the

input state). Notice that it is crucial to test the channel over a set of different input states. Otherwise.
if only a single known state is sent, there is a trivial classical strategy to achieve the same goal as the
teleportation protocol: Alice calls Bob and tells him to prepare the state in question. Instead, if for
instance the set of input states is composed by two equiprobable non-orthogonal states, |ψ0〉 and |ψ1〉,
with an overlap 〈ψ0|ψ1〉 = x,they find that the optimal classical strategy achieves a fidelity

F =
1
2

(
1 +

√
1− x2 + x4

)
(4.4)

In the worst situation, when x = 1/
√

2, the fidelity is very high, F = 0.933. So, choosing only an
input set of states with only two vectors is a very weak test.

On the other hand, when the set of input states consists on every normalized vector in a Hilbert
state of dimension d with the same probability, the maximum value of the average fidelity is known
to be

F =
2

d + 1
(4.5)

So, the bigger the set of input states is the lower is the fidelity. In the case of CV systems (d →∞))
F = 0 and hence any non-zero fidelity would proof that quantum resources are being used. However it
is utterly unrealistic to assume that one can test the channel with such a wide family of input states.
In real experiments one has always limitations of the source that produce the input states. In order
to have realistic and practical thresholds Braunstein et al. [?] studied the case where the input states
are coherent states with an amplitude that is normally distributed around zero and a given width:
p(β) = λ

πe−λ|β|2 . They gave possible classical strategy that achieved a fidelity of

Fcoh =
1 + λ

2 + λ
(4.6)

which converges to F → 1/2 when there’s no limitation on the amplitude or energy of the set of input
states (λ → 0). Finally, very recently a rigorous proof was given by Hammerer et al. in [?], where the
show that this fidelity of any classical strategy is upper-bounded by (4.6).
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x = 〈ψ0|ψ1〉

|ψ0〉

χ
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We consider Gaussian phase-covariant family of input states:

where        is a Gaussian state (pure or mixed)

• Benchmark






F (ρ1, ρ2) = (tr|√ρ1
√

ρ2|)2

ρφ
av =

∑
χ p(χ|ρφ

in)ρχ

U(φ) = eiφa†aand

ρφ
in = U(φ)ρ0U(φ)† φ ∈ [0, 2π)

ρ0

Fcl =
∫

dφ

2π
F (ρφ

in, ρφ
av)

6



- Optimal Guess typically does not belong to family of input 
states.

- Difficult to change squeezing parameter experimentally.

• Phase-covariant family is large enough to give reasonable 
benchmarks, and is easy to produce experimentally.

✴ Recently: phase covariant and displaced squeezed states (Owari et al.)

ρ(r) = Ŝ(r)ρβŜ(r)†
• Adesso & Chiribella [PRL 2008] have also studied benchmarks with 

mixed states taking as input family: 

FAC =
∑

χ

∫
drP (r)p(χ|r)F [ρ(r), ρ(rχ)] ≤

≤
∫

drP (r)F [ρ(r),
∑

χ

p(χ|r)ρ(rχ)] = Fcl

fidelity is concave
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• Covariant strategies

{Oχ = |ξχ〉〈ξχ| , ρχ}Given a strategy                              one can define a phase-shifted strategy by

     with at least the same fidelity:

where we have used the notation

tr|UBV | = tr|B|

Oχ,θ = UθOχU†
θ , ρχ,θ = UθρχU†

θ

Fθ =
1
2π

∫
dφF (ρφ, ρφ,θ

av ) =

=
∫

dφ



tr

∣∣∣∣∣∣
Uφ
√

ρ0U
†
φUθ

√∑

χ

tr(Uθ[ξχ]U†
θ Uφρ0U

†
φ)ρχU†

θ

∣∣∣∣∣∣




2

=

=
∫

dϕF (ρϕ, ρϕ
av) = F (θ=0)

[ψ] = |ψ〉〈ψ|

ϕ = φ− θ
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• Covariant strategies

{Oχ = |ξχ〉〈ξχ| , ρχ}Given set                                   one can define a covariant strategy by

     with at least the same fidelity:Oχ,θ = 1/(2π)UθOχU†
θ , ρχ,θ = UθρχU†

θ

Fcl = Fθ = 1/2π

∫
dθFθ ≤

∫
dφF

(
ρφ, 1/2π

∫
dθρφ,θ

av

)
≡ Fcov

where ρφ,θ
av =

∑

χ

p(χθ|ρφ)ρχ,θ

Fcov =
∫

dφ

(
tr

∣∣∣∣∣Uφ
√

ρ0U
†
φ

√∫
dθ

2π

∑

χ

tr(Uθ[ξχ]U†
θ Uφρ0U

†
φ)UθρχU†

θ

∣∣∣∣∣

)2

=

=

(
tr

∣∣∣∣∣
√

ρ0

√∫
dϕ

2π

∑

χ

tr(Uϕ[ξχ]U†
ϕρ0)UϕρχU†

ϕ

∣∣∣∣∣

)2

=
(
tr

∣∣∣
√

ρ0
√

ρav

∣∣∣
)2

fidelity is concave

where ρav =
∫

dθ
∑

χ

p(χθ|ρ0)ρχ,θ
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withF =(tr|√ρ0
√

ρav|)2 ρav =
∫

dθ
∑

χ

p(χ, θ|ρ0)ρχ,θ

The optimal classical fidelity (or quantum benchmark) can be conveniently written as,

Note that for a single seed, the completeness relation fixes the POVM:

Oθ =
1
2π

Uθ[ξ]U†
θ with |ξ〉 =

∑

n

|n〉 (up to some arbitrary phases)

34 Benchmarks

We can further develop this expression

F = (tr |√ρin
√

ρAv|)2 = max
K

(
trB

√
trA

√
ρin ⊗

√
ρinK

√
ρin ⊗

√
ρin

)2

,

Uθ⊗Uθ trB K = IA (K =
∫

dθ
∑

χ[χθ]⊗ρχ,θ, ) Thus finding the optimal strategy reduces to performing a
maximization over the set of positive operators overH⊗H that are separable, invariant under bilateral
transformations Uθ⊗Uθ, and that fulfill the following condition over one of its reductions: trB K = IA.

In the case of pure states (4.13) can be further simplified to give

FCl = 〈ψo|〈ψo|K|ψo〉|ψo〉 (4.13)

where K is defined in (??). If the optimal POVM is given we can rewrite this as,

FCl = sup
∑

χ

〈ψχ|Aχ|ψχ〉 =
∑

χ

‖Aχ‖∞ (4.14)

with
Aχ =

∫
dφ

2π
|〈ψi|χ〉|2 |ψi〉〈ψi| (4.15)

The problem to choose the guess given (optimal) POVM has been reduced to find the eigenvector with
maximum eigenvalue of Aχ.

In full generality the optimization in (4.13) is very hard to solve. In the following sections we will
give some particular or partial results concerning CV systems. Before that let us present the case of
qubits that we can solve with full generality.

Qubit states

As we will see the general optimal benchmark is hard to obtain in the case of mixed states. An
exception is the case of qubits that we discuss in this section and that to my knowledge has not been
treated before other than in the pure-state case. The input state family is given by states on the
equatorial plane in the Bloch sphere ρφ = Uφρ0U †

φ with

ρ0 =
1 + r

2
|+〉〈+|+ 1− r

2
|−〉〈−| and Uφ = |0〉〈0|+ eiφ|1〉〈1|,

where |±〉 = 1/
√

2(|0〉±| 1〉).
Now we make use of (4.13) to calculate the classical benchmark for qubits. Since ρ0 is given in the

diagonal basis it is straightforward to compute
√

ρ0 ⊗
√

ρ0. The most general positive semi-definite
operator invariant under bilateral phase operations is

K =





a 0 0 0
0 B11 B12 0
0 B21 B22 0
0 0 0 c



 (4.16)

with a, c ≥ 0 and B ≥ 0. In 2 × 2 system the partial transposition criteria provides a necessary and
sufficient criteria for separability: K is separable ⇐⇒ KTA ≥ 0 ⇐⇒ ac − |B12|2 ≥ 0. Finally the
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with                              K =
∫

dθ
∑

χ

Oχ,θ ⊗ ρχ,θ

F = max
K

(
trB

√
trA
√

ρ0 ⊗
√

ρ0K
√

ρ0 ⊗
√

ρ0

)2

The fidelity  can be conveniently written as,

i.e.,               ,                       ,                 invariant & separable.

ρav = trA(ρ0 ⊗ 11 K)
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Ω• If one restricts the guess-states to be in the input ensemble     , things also 
simplify considerably.

e.g. in the pure state case, the optimal POVM is known to be the single-seed 
POVM or canonical phase-measurement                      . |ξ〉 =

∑
n |n〉

A. S. Holevo, Probab. & Stat. Aspects of Q. T., (1982)

• In general, no assumptions about the POVM nor the guess can be 
made, and we have to resort on numerical methods.

Navascues PRL 2008 F = 〈ψ0|〈ψ0|K |ψ0〉|ψ0〉• For pure states: ρ0 = |ψ0〉〈ψ0|

Also, for fixed POVM with seeds                 the optimal fidelity can be written as,

F =
∑

χ

sup
ψχ

〈ψχ|Aχ |ψχ〉 =
∑

χ

‖Aχ‖∞ Aχ =
∫

dφ/(2π)|〈ξχ|ψφ〉|2|ψφ〉〈ψφ|with

Optimal fidelity given by largest eigenvalue, and optimal guess given by corresponding eigenvector.

Aχ = 〈ξχ|Λ |ξχ〉 with Λ =
∫ dφ

2π |ψφ〉|ψφ〉〈ψφ|〈ψφ|

{|ξχ〉〈ξχ|}

Hammerer PRL 2005 
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Qubits Can be solved with full generality.

Input

F = max
K

(
trB

√
trA
√

ρ0 ⊗
√

ρ0K
√

ρ0 ⊗
√

ρ0

)2

ρ0 = Uy,θ

(
1+r
2 0
0 1−r

2

)
U†

y,θ

K =





a 0 0 0
0 1− a b 0
0 b 1− c 0
0 0 0 c





θ






K ≥ 0 ⇔ (1− a)(1− c) ≥ |b|2, 0 ≤ a ≤ 1, 0 ≤ c ≤ 1

KΓ ≥ 0 ⇔ ac− |b|2 ≥ 0

Change inequalities to equalities at the expense of additional variables, 

(1− a)(1− c)− |b|2 = w2, ac− |b|2 = u2

Using Lagrange multipliers and after some algebraic manipulations we arrive to:

ζ = arctan
r2 sin2 θ +

√
(1− r2)(4− r2 sin2 θ)

2r cos θ






a = cos2 ζ
c = sin2 ζ
b =

√
ac = 1/2 sin 2ζ

12



• Single-seed POVM (canonical phase-measurement) is optimal (*!)

Guess

POVM

Input

ζ = arctan
r2 sin2 θ +

√
(1− r2)(4− r2 sin2 θ)

2r cos θ
F =

1
2

(
1 + r

cos θ

cos ζ

)

• Optimal strategy given by single-seed covariant POVM
POVM-element

︷ ︸︸ ︷
2 |+〉〈+|⊗

︷ ︸︸ ︷
Uy,ζ |0〉〈0| U†

y,ζ =





cos2 ζ
2

1
2 sin ζ cos2 ζ

2
1
2 sin ζ

1
2 sin ζ sin2 ζ

2
1
2 sin ζ sin2 ζ

2

cos2 ζ
2

1
2 sin ζ cos2 ζ

2
1
2 sin ζ

1
2 sin ζ sin2 ζ

2
1
2 sin ζ sin2 ζ

2





guessed-state

K =





cos2 ζ
2 0 0 0

0 sin2 ζ
2

1
2 sin ζ 0

0 1
2 sin ζ cos2 ζ

2 0
0 0 0 sin2 ζ

2





ζ

(*)

 Numerical results indicate that single-seed 

covariant POVM is not optimal for d≥3, even for 

pure state (difference in 3rd digit).

No known bounds on the minimal number of 

POVM elements  (or seeds)

ζ ≤ θ

• Guess does not belong to input family: 
 - Guess is always pure. 
 - Guess points in a different direction than input state.
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Qubits

• Continuos POVM overcomes 
2-outcome S-G measurement.

• Mixedness improves classical Fidelity

Guess

POVM

Input

F =
1
4

(
2 + r2 +

√
4− 5r2 + r4

)
• Equatorial plane

ζ = arctan
r2 sin2 θ +

√
(1− r2)(4− r2 sin2 θ)

2r cos θ

F =
1
2

(
1 + r

cos θ

cos ζ

)

• Pure states F =
1
8

[7 + cos(2θ)]

0.2 0.4 0.6 0.8 1.0
r

0.80

0.85

0.90

0.95

1.00

F
Cl
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We can further develop this expression

F = (tr |√ρin
√

ρAv|)2 = max
K

(
trB

√
trA

√
ρin ⊗

√
ρinK

√
ρin ⊗

√
ρin

)2

,

Uθ⊗Uθ trB K = IA (K =
∫

dθ
∑

χ[χθ]⊗ρχ,θ, ) Thus finding the optimal strategy reduces to performing a
maximization over the set of positive operators overH⊗H that are separable, invariant under bilateral
transformations Uθ⊗Uθ, and that fulfill the following condition over one of its reductions: trB K = IA.

In the case of pure states (4.13) can be further simplified to give

FCl = 〈ψo|〈ψo|K|ψo〉|ψo〉 (4.13)

where K is defined in (??). If the optimal POVM is given we can rewrite this as,

FCl = sup
∑

χ

〈ψχ|Aχ|ψχ〉 =
∑

χ

‖Aχ‖∞ (4.14)

with
Aχ =

∫
dφ

2π
|〈ψi|χ〉|2 |ψi〉〈ψi| (4.15)

The problem to choose the guess given (optimal) POVM has been reduced to find the eigenvector with
maximum eigenvalue of Aχ.

In full generality the optimization in (4.13) is very hard to solve. In the following sections we will
give some particular or partial results concerning CV systems. Before that let us present the case of
qubits that we can solve with full generality.

Qubit states

As we will see the general optimal benchmark is hard to obtain in the case of mixed states. An
exception is the case of qubits that we discuss in this section and that to my knowledge has not been
treated before other than in the pure-state case. The input state family is given by states on the
equatorial plane in the Bloch sphere ρφ = Uφρ0U †

φ with

ρ0 =
1 + r

2
|+〉〈+|+ 1− r

2
|−〉〈−| and Uφ = |0〉〈0|+ eiφ|1〉〈1|,

where |±〉 = 1/
√

2(|0〉±| 1〉).
Now we make use of (4.13) to calculate the classical benchmark for qubits. Since ρ0 is given in the

diagonal basis it is straightforward to compute
√

ρ0 ⊗
√

ρ0. The most general positive semi-definite
operator invariant under bilateral phase operations is

K =





a 0 0 0
0 B11 B12 0
0 B21 B22 0
0 0 0 c



 (4.16)

with a, c ≥ 0 and B ≥ 0. In 2 × 2 system the partial transposition criteria provides a necessary and
sufficient criteria for separability: K is separable ⇐⇒ KTA ≥ 0 ⇐⇒ ac − |B12|2 ≥ 0. Finally the

35

condition trB K = I implies a+B11 = c+B22 = 1. It is a simple exercise to check that for all values of
r the optimal K satisfying this conditions is given for a = c = B12 = B11 = B22 = 1/2. These values
can be associated to the covariant strategy defined by the POVM {1/π|θ〉〈θ|} and the corresponding
guess {|θ〉 = 1/

√
2π(|0〉+ eiθ|1〉}. The resulting classical benchmark for qubits is then,

FCl =
1
4

(
2 + r2 +

√
4− 5r2 + r4

)
. (4.17)

In figure 4.2 we show the classical benchmark (i.e. average fidelity between input and output state
after optimal measure and prepare strategy) together with the fidelity obtained after performing a
Stern-Gerlach measurement along the x-axis (i.e. the projective measurement {|±〉〈±|}) and taking
the output of the measurement as a guess. We notice that both strategies render the same fidelities in
the extreme cases (that is strictly pure or completely mixed states), but that for r < 1 the covariant
strategy outperforms the Stern-gerlach one.

Figure 4.2: Plot of the covariant strategy (solid blue-line) versus the Stern-Gerlach one (dashed maroon-line)

4.0.1 Coherent States

First of all we will analyze the case where the input state is a pure coherent state. In this case (4.15)
has the form

Aχ = 〈χ|
(∫

dφ

2π
|α〉|α〉〈α|〈α|

)
|χ〉 = 〈χ|Λ|χ〉 (4.18)

Were for simplicity we have defined

Λ =
∫

dφ

2π
|α〉|α〉〈α|〈α| (4.19)

The average fidelity reads
FCl =

∑

χ

〈ψχ|(〈χ|Λ|χ〉)|ψχ〉. (4.20)

To compute Λ we change the mode description |α〉|α〉 → |
√

2α〉|0〉, with a± = a1±a2√
2

. With this
change we can evaluate the integral in (4.19)

Λ =
∫

dφ

2π
|
√

2e−iφα〉〈
√

2eiφα|⊗| 0〉〈0| = e−2|α|2
∑

n

(√
2α

)2n

n!
[n]⊗ [0] (4.21)

F
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Semidefinite programming (SDP)

Minimize a linear objective function subject to semidefiniteness constraints 
involving symmetric matrices that are affine in the variables.

Primal problem:

p∗ = minx cT x subject to F (x) = F0 +
∑

i xiFi ≥ 0

Dual problem:

•                (equality if feasible point exist such that                ).d∗ ≤ p∗ F (!x) > 0

d∗ = maxZ −tr(ZF0) subject to Z ≥ 0 and ci = tr(ZFi)

15



• Pure states: F = maxK tr(Kρ0 ⊗ ρ0) ρ0 = |ψ0〉〈ψ0|

(Doherty et al.  PRA 2004)
* Hierarchy of constrains based on PPT symmetric extensions.

   Here we stay at first level of hierarchy, i.e., PPT              . Hence, KΓ ≥ 0 FΓ ≥ F

*






K ≥ 0

trBK = 11A

K invariant under bilateral U ⊗ U

K separable

16



• Mixed states: 

withF =(tr|√ρ0
√

ρav|)2 ρav =
∫

dθ
∑

χ

p(χ, θ|ρ0)ρχ,θ

ρA = trB |Ψ〉AB〈Ψ|*

where        and          are purifications* of      and      respectively.  |Ψ0〉 |Ψav〉 ρavρ0

(purity condition                    can be lifted)σ2
av = σav






(i) trBσav = ρav = trA(ρ0 ⊗ 11 K)

(ii) σav ≥ 0 and trσav = 1

(iii) the same conditions on K as above : K ≥ 0, K separable, trBK = 11A.

F = max
Ψav

|〈Ψ0|Ψav〉|2 = − min
σav,K

(−〈Ψ0|σav |Ψ0〉)

The objective function becomes non-linear, but we can linearize it by making 
use of Uhlmann’s Theorem: 

17



Results for pure CV gaussian states
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•   SDP results (PPT constrain) and truncation:

    Phase-measurement+optimal guess (max. eigenvalue of      )

    Guess from input ensemble.  

F F

F =
∫

dφ

2π
|〈ξ|αeiφ〉|2|〈α|αeiφ〉|2.

|α〉 ≈ e−α2/2
∑N

n=0 αn/
√

n! |n〉

A

18



Analytic results for asymptotic limits

•  Restricted guess: F =
∫

dφ

2π
|〈ξ|αeiφ〉|2|〈α′|αeiφ〉|2






|α′〉 : coherent state

|ξ〉 =
∑

n |n〉

|〈ξ|αeiφ〉|2 = |e−α2/2
∑

n

einφ αn

√
n!

|2 $
√

2α2/πe−2α2φ2

e−α2/2 αn

√
n!

=
√

Ppoiss(n) "
√

1
2πα2

e−
(α2−n)2

2α2

α! 1

|〈α|α′〉|2 = e−|α−α′|2 where |α − α′|2 = α2[(η − 1)2 + 4η sin2(φ/2)] with η = α′/α

α→∞−→
√

2
3

F =
∫

dφ

2π
|〈ξ|α〉|2 |〈α|α′〉|2 =

√
2α2

π
e−α2(η−1)2

∫
dφ e−4ηα2 sin2 φ/2 e−α2φ2

=

#
√

2α2

π
e−α2(η−1)2

∫
dφ e−2ηα2φ2

e−α2φ2
= e−α2(η−1)2

√
2

2 + η

Optimal Guess: ηopt
α→∞−→ 1⇒ α′ = α
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• Optimal guess for phase-measurement: F = ||A||∞ = lim
p→∞

(trAp)1/p

trAp !
(

2α2

π

)p/2∫
dpφ e−

α2
2 φt·Cp·φ =

2p

√
det Cp

,

αp+1 ≡ α1(||A||p)p = trAp =
∫ p∏

j=1

dφj p(χ|φj)〈αj |αj+1〉,

〈αi|αj〉 ≈ exp{−α2[i(φi − φj) + 1/2(φi − φj)2]}

A =
∫

dφ

2π
p(χ|φ)

∣∣αeiφ〉〈αeiφ
∣∣ =

∫
dφ

2π
|〈ξ|αeiφ〉|2

∣∣αeiφ〉〈αeiφ
∣∣

Cp =





6 −1 −1
−1 6 −1

. . . . . . . . .
−1 6 −1

−1 −1 6





Analytic results for asymptotic limits
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Expanding in minors along the first row:

Bp =





6 −1 0
−1 6 −1

. . . . . . . . .
−1 6 −1

0 −1 6




det Cp = 6det Bp−1 − 2 detBp−2 − 2

det Bp = 6det Bp−1 − det Bp−2

The following recursive relation holds:
Chebyshev polynomials:

Tn+1(x) = 2xTn(x)− Tn−1(x)

with To(x) = 1, T1(x) = x

Un+1(x) = 2xUn(x)− Un−1(x)

with Uo(x) = 1, U1(x) = 2x

1rst kind

2nd kind

B0 = 1, B1 = 6with

det Cp = detBp − det Bp−2 − 2 =
= Up(6/2)− Up−2(6/2)− 2 = 2[Tp(6/2)− 1]

Tn(x) =
1
2
[Un(x)− Un−2(x)]

Bp = Up(6/2)

Tn(x) =
1
2
[(x +

√
x2 − 1)n + (x−

√
x2 − 1)n]

F = ||A||∞ = lim
p→∞

2(detCp)
1
2p = 2 lim

p→∞
[(3 +

√
32 − 1)p + (3−

√
32 − 1)p]−

1
2p

= 2(3 +
√

8)−1/2 = 2(
√

2− 1) ≈ 0.8284 >
√

2/3 ≈ 0.816

Difference between restricted/unrestricted guess persist in assymptotic regime!
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• Mixed gaussian states

0.0 0.2 0.4 0.6 0.8 1.0 1.2
0.7

0.8

0.9

1.0

0 1 2 3 4

0.8

0.9

1.0

F F

r|α|2

µ = 1
µ = 1

µ = .95

µ = .8

µ = .7

µ = .7

• Benchmark becomes higher with mixedness 
    (for same displacement and squeezing parameters)

• For phase-measurement & guess in    , the effect is the opposite 
       (     decreases with     ).F

Ω
µ
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Conclusions

• Benchmarks for CV quantum storage & 
teleportation experiments 
– Phase covariant family of test states. Easy 

to implement.
– Valid for mixed test states.
– quantum state estimation revised.

Thank you for your attention
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