Phase Measurements at the Theoretical Limit

Dominic Berry

Institute for Quantum Computing

Brendon Higgins, Howard Wiseman, Steve Bartlett, Morgan Mitchell, Geoff Pryde

Applications of phase measurement

The Heisenberg Uncertainty Principle

position \& momentum

$$
\Delta p \Delta x \geq \frac{\hbar}{2}
$$

The Heisenberg limit vs the standard quantum limit

The Standard Quantum Limit

- If the two uncertainties are equal.
- Uncertainty scaling

$$
\Delta \phi \propto 1 / \sqrt{N}
$$

The Heisenberg Limit

- If one uncertainty is reduced as much as possible.
- Uncertainty scaling
$\Delta \phi \propto 1 / N$

Types of phase measurement

Single-mode phase
input state

Interferometric measurement

atomic	optical input state

input state

Types of phase measurement

Single-mode phase
input state

Single-mode measurements

- Signal is beam is mixed with strong "local oscillator".
- Heterodyne - linear variation of θ.
- Homodyne $-\theta$ close to ϕ.

- Use an estimate of the phase to approximate a homodyne measurement.

Adaptive phase measurement

Task: measure an arbitrary phase

Total phase uncertainty $\Delta \phi$

$$
\begin{aligned}
\Delta \phi^{2}= & (\text { intrinsic uncertainty })^{2} \\
& +(\text { uncertainty due to measurement })^{2}
\end{aligned}
$$

Adaptive phase measurement

Task: measure an arbitrary phase

Total phase uncertainty $\Delta \phi$
$\Delta \phi^{2}=(\text { intrinsic uncertainty })^{2}$
$+\left(\right.$ uncertainty due to measurement) ${ }^{2}$

heterodyne measurements

$$
\propto \frac{1}{\sqrt{N}}
$$

Adaptive phase measurement

Task: measure an arbitrary phase

Total phase uncertainty $\Delta \phi$
$\Delta \phi^{2}=(\text { intrinsic uncertainty })^{2}$

Wiseman Mark I

Task: measure an arbitrary phase
(©) \equiv best phase estimate
: \equiv poor phase estimate
input state

Mark I

feedback phase estimate: $:$:
final phase estimate: $: 8$
\Rightarrow ideal phase measurement for $N=1$
\Rightarrow for $N \gg 1$

$$
\Delta \phi \propto \frac{1}{N^{1 / 4}}
$$

Worse than standard quantum limit!

Wiseman Mark II

Task: measure an arbitrary phase
()ㅇ \equiv best phase estimate
: \equiv poor phase estimate
input state

Mark II

feedback phase estimate: :
final phase estimate: ©
\Rightarrow ideal phase measurement for $N-1$
\Rightarrow for $N \gg 1$

$$
\Delta \phi \propto \frac{1}{N^{3 / 4}}
$$

Beats the standard quantum limit

Optimal adaptive

Task: measure an arbitrary phase
(e) \equiv best phase estimate
(:) \equiv poor phase estimate
© \equiv intermediate
input state

Mark II

feedback phase estimate: ©
final phase estimate: ©
\Rightarrow ideal phase measurement for $N-1$
\Rightarrow for $N \gg 1$

Types of phase measurement

Single-mode phase

input state

Interferometric measurement

Optical interferometry

- Theoretical limit
- Squeezed states ${ }^{1}$
- NOON states ${ }^{2}$
- Theoretical-limit adaptive measurements ${ }^{3}$
- Theoretical-limit nonadaptive measurements ${ }^{4}$
- Hybrid measurements ${ }^{4}$
${ }^{1}$ C. M. Caves, Phys. Rev. D 23, 1693 (1981).
${ }^{2}$ B. C. Sanders, Phys. Rev. A 40, 2417 (1989).
${ }^{3}$ B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Nature 450, 393 (2007).
${ }^{4}$ B. L. Higgins, D. W. Berry, S. D. Bartlett, M. W. Mitchell,
H. M. Wiseman, and G. J. Pryde, e-print: 0809.3308 (2008).

Optical interferometry

- Theoretical limit
- Squeezed states ${ }^{1}$
- NOON states ${ }^{2}$
- Theoretical-limit adaptive measurements ${ }^{3}$
- Theoretical-limit nonadaptive measurements ${ }^{4}$
- Hybrid measurements ${ }^{4}$
${ }^{1}$ C. M. Caves, Phys. Rev. D 23, 1693 (1981).
${ }^{2}$ B. C. Sanders, Phys. Rev. A 40, 2417 (1989).
${ }^{3}$ B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Nature 450, 393 (2007).
${ }^{4}$ B. L. Higgins, D. W. Berry, S. D. Bartlett, M. W. Mitchell, H. M. Wiseman, and G. J. Pryde, e-print: 0809.3308 (2008).

Optimal measurements

optimal two-mode entangled input state ${ }^{1,2}$

optimal two-mode joint measurement ${ }^{3}$

The theoretical limit
${ }^{1}$ A. Luis and J. Peřina, Phys. Rev. A 54, 4564 (1996).
${ }^{2}$ D. W. Berry and H. M. Wiseman, PRL 85, 5098 (2000).
${ }^{3}$ B. C. Sanders and G. J. Milburn, PRL 75, 2944 (1995).

How to perform the measurement?

- $\theta(t)$ is adjusted to minimise the expected variance after the next detection.
- Gives uncertainty $\quad \Delta \phi \sim 1 / N$

How to create the input state?

Two problems:

1. The state needs to be a special coherent superposition of the form

$$
\sum_{n=0}^{N} \psi_{n}|n\rangle|N-n\rangle
$$

There is no known way of producing such a state.
2. The input mode needs to be very long so that $\theta(t)$ can be adjusted between detections.

Optical interferometry

- Theoretical limit
- Squeezed states ${ }^{1}$
- NOON states ${ }^{2}$
- Theoretical-limit adaptive measurements ${ }^{3}$
- Theoretical-limit nonadaptive measurements ${ }^{4}$
- Hybrid measurements ${ }^{4}$
${ }^{1}$ C. M. Caves, Phys. Rev. D 23, 1693 (1981).
${ }^{2}$ B. C. Sanders, Phys. Rev. A 40, 2417 (1989).
${ }^{3}$ B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Nature 450, 393 (2007).
${ }^{4}$ B. L. Higgins, D. W. Berry, S. D. Bartlett, M. W. Mitchell, H. M. Wiseman, and G. J. Pryde, e-print: 0809.3308 (2008).

Mach-Zehnder interferometer with coherent states

without squeezing:

$$
\Delta \phi \approx 1 / \sqrt{N} \Longleftarrow \begin{aligned}
& \text { The standard } \\
& \text { quantum limit }
\end{aligned}
$$

Mach-Zehnder interferometer with squeezed states

without squeezing:

$$
\Delta \phi \approx 1 / \sqrt{N}
$$

with squeezing:
$\Delta \phi \approx e^{-r} / \sqrt{N}$

Mach-Zehnder interferometer with NOON states

input state
$|N, 0\rangle+|0, N\rangle$

$$
\phi
$$

$$
\Delta \phi \approx 1 / N
$$

Optical interferometry

- Theoretical limit
- Squeezed states ${ }^{1}$
- NOON states ${ }^{2}$
- Theoretical-limit adaptive measurements ${ }^{3}$
- Theoretical-limit nonadaptive measurements ${ }^{4}$
- Hybrid measurements ${ }^{4}$
${ }^{1}$ C. M. Caves, Phys. Rev. D 23, 1693 (1981).
${ }^{2}$ B. C. Sanders, Phys. Rev. A 40, 2417 (1989).
${ }^{3}$ B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Nature 450, 393 (2007).
${ }^{4}$ B. L. Higgins, D. W. Berry, S. D. Bartlett, M. W. Mitchell, H. M. Wiseman, and G. J. Pryde, e-print: 0809.3308 (2008).

Eliminating the fringes

$$
\phi
$$

$$
|N, 0\rangle+|0, N\rangle
$$

Equivalence of NOON states and multiple passes

$|N, 0\rangle+|0, N\rangle$

Photons detected at times $t_{1}, t_{2}, \ldots t_{N}$.
\Rightarrow Passed through phase shift at times
$t_{1}-\Delta t, t_{2}-\Delta t, \ldots t_{N}-\Delta t$.

Equivalence of NOON states and multiple passes

$$
|1,0\rangle+|0,1\rangle
$$

Electro-optic switches pass single photon through phase shift at times
$t_{1}-\Delta t, t_{2}-\Delta t, \ldots t_{N}-\Delta t$.

Equivalence of NOON states and multiple passes

Electro-optic switches pass single photon through phase shift at times
$t_{1}-\Delta t, t_{2}-\Delta t, \ldots t_{N}-\Delta t$.

Equivalence of NOON states and

 multiple passes$|1,0\rangle+|0,1\rangle$
ϕ
ϕ
ϕ
ϕ
ϕ
$\phi-D$

Equivalence of NOON states and multiple passes

$|1,0\rangle+|0,1\rangle$

ϕ
Each splitting copies the photon:
$|1,0\rangle+|0,1\rangle \mapsto|1,0\rangle|1,0\rangle+|0,1\rangle|0,1\rangle$

Equivalence of NOON states and multiple passes

$|N, 0\rangle+|0, N\rangle$

Copy the photons at the beginning to get the NOON state.

Eliminating the fringes

B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Nature 450, 393 (2007).

Eliminating the fringes

[^0]
Eliminating the fringes

Eliminating the fringes

Eliminating the fringes

The uncertainty

- The uncertainty is

$$
\Delta \phi \approx \sqrt{2 / N} \quad p(\phi)
$$

- This does not beat the SQL!
- The distribution has fat tails.

Inverse quantum Fourier transform

- The phase shifts are obtained from unitary U satisfying

$$
U|u\rangle=e^{i \phi}|u\rangle
$$

Inverse quantum Fourier transform

- Provided ϕ is of the form $\phi=\pi r / 2^{K}$, the inverse quantum Fourier transform gives the bits of r at the output.

Inverse quantum Fourier transform

1. The qubits are dual-rail single photons.
2. The Hadamard is a beam splitter.
3. The controlled unitaries are the unknown phase in the interferometer.
4. The controlled phase operations are feedback to the phase $\theta(t)$.
5. The operations may be performed in sequence to reuse the same interferometer.

Inverse quantum Fourier transform

1. The qubits are dual-rail single photons.
2. The Hadamard is a beam splitter.
3. The controlled unitaries are the unknown phase in the interferometer.
4. The controlled phase operations are feedback to the phase $\theta(t)$.
5. The operations may be performed in sequence to reuse the same interferometer.

Inverse quantum Fourier transform

$$
\begin{aligned}
& \cdots \quad|0\rangle-H-\theta\left(t_{K-2}\right)-2^{2} \phi-H-=[r]_{2} \\
& |0\rangle-H-\theta\left(t_{K-1}\right), 2^{2^{1} \phi}-H=\square[r]_{1} \\
& |0\rangle-H \theta\left(t_{k}\right), 2^{0} \phi-[r]_{0}
\end{aligned}
$$

1. The qubits are dual-rail single photons.
2. The Hadamard is a beam splitter.
3. The controlled unitaries are the unknown phase in the interferometer.
4. The controlled phase operations are feedback to the phase $\theta(t)$.
5. The operations may be performed in sequence to reuse the same interferometer.

The equivalent state

- The sequence of different numbers of passes is equivalent to a tensor product of NOON states:

$$
\left(\left|2^{K}, 0\right\rangle+\left|0,2^{K}\right\rangle\right) \otimes \ldots \otimes\left(\left|2^{1}, 0\right\rangle+\left|0,2^{1}\right\rangle\right) \otimes(|1,0\rangle+|0,1\rangle)
$$

- This is equivalent to

$$
\sum_{n=0}^{N}|n, N-n\rangle
$$

for $N=2^{K+1}-1$.

How to create the input state?

Two problems:
 effectiverstate of the form

$$
\sum_{n=0}^{N} \psi_{n}|n\rangle|N-n\rangle
$$

Gibeirchionghktheverictwalysteftpioquwstisinglice phoriens.
2.

The input mode doedsntot heede to lbedonig thavtif kain sendjphationisethivotigheondertectituince.

What do we need for theoretical-limit scaling?

- The squared error is approximately (for real ψ_{n})

$$
\Delta \phi^{2} \approx \sum_{n=-1}^{N}\left(\psi_{n}-\psi_{n+1}\right)^{2}
$$

where we add the dummy state coefficients $\psi_{-1}=\psi_{N+1}=0$.

What do we need for theoretical-limit scaling?

- The squared error is approximately (for real ψ_{n})

$$
\Delta \phi^{2} \approx \sum_{n=-1}^{N}\left(\psi_{n}-\psi_{n+1}\right)^{2}
$$

where we add the dummy state coefficients $\psi_{-1}=\psi_{N+1}=0$.

- For scaling at the theoretical limit we need $\psi_{n+1}-\psi_{n} \propto 1 / N^{3 / 2}$.
- The state coefficients just need to increase then decrease in a gradual way.

The equivalent state

What about the feedback?

What about the feedback?

Predicted variances

Experimental results

Optical interferometry

- Theoretical limit
- Squeezed states ${ }^{1}$
- NOON states ${ }^{2}$
- Theoretical-limit adaptive measurements ${ }^{3}$
- Theoretical-limit nonadaptive measurements ${ }^{4}$
- Hybrid measurements ${ }^{4}$
${ }^{1}$ C. M. Caves, Phys. Rev. D 23, 1693 (1981).
${ }^{2}$ B. C. Sanders, Phys. Rev. A 40, 2417 (1989).
${ }^{3}$ B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Nature 450, 393 (2007).
${ }^{4}$ B. L. Higgins, D. W. Berry, S. D. Bartlett, M. W. Mitchell, H. M. Wiseman, and G. J. Pryde, e-print: 0809.3308 (2008).

Nonadaptive measurements

Nonadaptive measurements

0. Perform enough measurements with $2^{0}=1$ pass to ensure that the system phase is in the blue region with high probability.
Size of region

$$
\text { is }<2^{1-0} \pi / 3
$$

Nonadaptive measurements

0. Perform enough measurements with $2^{0}=1$ pass to ensure that the system phase is in the blue region with high probability.
1. Perform enough measurements with $2^{1}=2$ passes to ensure that the system phase is in one of the two purple regions with high probability.

Nonadaptive measurements

0. Perform enough measurements with $2^{0}=1$ pass to ensure that the system phase is in the blue region with high probability.
1. Perform enough measurements with $2^{1}=2$ passes to ensure that the system phase is in one of the two purple regions with high probability.

Size of region
is $<2^{1-1} \pi / 3$

Nonadaptive measurements

0. Perform enough measurements with $2^{0}=1$ pass to ensure that the system phase is in the blue region with high probability.
1. Perform enough measurements with $2^{1}=2$ passes to ensure that the system phase is in one of the two purple regions with high probability.
2. Perform enough measurements with 2^{2} passes to ensure that the system phase is in one of the four green regions with high probability.

Nonadaptive measurements

0. Perform enough measurements with $2^{0}=1$ pass to ensure that the system phase is in the blue region with high probability.
1. Perform enough measurements with $2^{1}=2$ passes to ensure that the system phase is in one of the two purple regions with high probability.
2. Perform enough measurements with 2^{2} passes to ensure that the system phase is in one of the four green regions with high probability.

Nonadaptive measurements

0. Perform enough measurements with $2^{0}=1$ pass to ensure that the system phase is in the blue region with high probability.
1. Perform enough measurements with $2^{1}=2$ passes to ensure that the system phase is in one of the two purple regions with high probability.
2. Perform enough measurements with 2^{2} passes to ensure that the system phase is in one of the four green regions with high probability.

-
-
-

K. Perform enough measurements with 2^{K} passes to ensure that the system phase is in one of 2^{K} regions with high probability.

Size of region
is $<2^{1-K} \pi / 3$

Nonadaptive measurements

0. Perform enough measurements with $2^{0}=1$ pass to ensure that the system phase is in the blue region with high probability.
1. Perform enough measurements with $2^{1}=2$ passes to ensure that the system phase is in one of the two purple regions with high probability.
2. Perform enough measurements with 2^{2} passes to ensure that the system phase is in one of the four green regions with high probability.

-
-
-

K. Perform enough measurements with 2^{K} passes to ensure that the system phase is in one of 2^{K} regions with high probability.

Size of region is $<2^{1-K} \pi / 3$

- At stage k, if the system phase is not in the region, then the maximum error is $\propto 2^{-k}$.
- More measurements are needed for small k to ensure that the contribution to the variance is not large.
- The resource cost of additional measurements is less for small k.
- The best results are obtained if M decreases linearly with k.

Nonadaptive measurements

0. Perform enough measurements with $2^{0}=1$ pass to ensure that the system phase is in the blue region with high probability.
1. Perform enough measurements with $2^{1}=2$ passes to ensure that the system phase is in one of the two purple regions with high probability.
2. Perform enough measurements with 2^{2} passes to ensure that the system phase is in one of the four green regions with high probability.

-
-
-

K. Perform enough measurements with 2^{K} passes to ensure that the system phase is in one of 2^{K} regions with high probability.

Size of region is $<2^{1-K} \pi / 3$

- At stage k, if the system phase is not in $1 / T^{\mathrm{n}}$, then the maximum error is $\Delta \phi \propto 1 / N$
\qquad
small k to ensure that the contribution to the variance is not large.
- The resource cost of additional measurements is less for small k.
- The best results are obtained if M decreases linearly with k.

Optical interferometry

- Theoretical limit
- Squeezed states ${ }^{1}$
- NOON states ${ }^{2}$
- Theoretical-limit adaptive measurements ${ }^{3}$
- Theoretical-limit nonadaptive measurements ${ }^{4}$
- Hybrid measurements ${ }^{4}$
${ }^{1}$ C. M. Caves, Phys. Rev. D 23, 1693 (1981).
${ }^{2}$ B. C. Sanders, Phys. Rev. A 40, 2417 (1989).
${ }^{3}$ B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Nature 450, 393 (2007).
${ }^{4}$ B. L. Higgins, D. W. Berry, S. D. Bartlett, M. W. Mitchell,
H. M. Wiseman, and G. J. Pryde, e-print: 0809.3308 (2008).

Hybrid measurements

- Supplement the $M=1$ measurement with additional measurements with single passes.

Hybrid measurements

- Supplement the $M=1$ measurement with additional measurements with single passes.
- If estimates agree, use the $M=1$ estimate.

Hybrid measurements

- Supplement the $M=1$ measurement with additional measurements with single passes.
- If estimates agree, use the $M=1$ estimate.
- If the estimates differ, use estimate from single photons.
- This yields error

$$
\Delta \phi \propto 1 / N^{3 / 4}
$$

Hybrid measurements

- The equivalent state is the (approximate) Gaussian from single photon measurements convoluted with the flat distribution from the $M=1$ measurement:

- The resulting equivalent state still has a region where the state coefficients rise sharply:

Hybrid measurements

Adapting the number of passes

- As well as adapting a feedback phase, the number of passes can be adapted.

$$
\Delta \phi \sim \frac{\ln N}{N}
$$

Almost the theoretical limit

Summary

Single mode phase

- Feedback is needed to beat the standard quantum limit.
- The best feedback is not the best phase estimate.

Summary

Single mode phase

- Feedback is needed to beat the standard quantum limit.
- The best feedback is not the best phase estimate.

Interferometry

- Special states give improved accuracy, but have problem with ambiguity.
- Using multiple measurements gives true scaling at the theoretical limit.
- This may be achieved even without adaptive measurements!

Further Reading

- Optimal single-mode phase measurements:
D. W. Berry and H. M. Wiseman, Phys. Rev. A 63, 013813 (2001).
- Continuous phase measurements:
D. W. Berry and H. M. Wiseman, Phys. Rev. A 73, 063824 (2006).
- Adaptive interferometric measurements:
D. W. Berry and H. M. Wiseman, Phys. Rev. Lett. 85, 5098 (2000).
- Theoretical-limit interferometry:
B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Nature 450, 393 (2007).
- Nonadaptive theoretical-limit interferometry:
B. L. Higgins, D. W. Berry, S. D. Bartlett, M. W. Mitchell, H. M. Wiseman, and G. J. Pryde, e-print 0809.3308 (2008).

[^0]: B. L. Higgins, D. W. Berry, S. D. Bartlett, H. M. Wiseman, and G. J. Pryde, Nature 450, 393 (2007).

