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Applications of phase measurement

Distance measurement Frequency and time
measurement

Communication




The Heisenberg Uncertainty Principle
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The Heisenberg limit vs
the standard quantum limit

/ The Standard

Quantum Limit

If the two uncertainties
are equal.

m Uncertainty scaling
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Types of phase measurement
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Single-mode measurements

Signal is beam 1s mixed with
strong “local oscillator™. input / )

. © e state
Heterodyne — linear variation

of 6.

Homodyne — @ close to ¢.

local
oscillator

m  Use an estimate of the
phase to approximate a
o) orocessor homodyne measurement.

local
oscillator /




Adaptive phase measurement

Task: measure an arbitrary phase

input state

Total phase uncertainty A@

A 4

processor

A@? = (intrinsic uncertainty)?

+ (uncertainty due to measurement)? ﬁ

local oscillator [f

Inal phase
estimate

H. M. Wiseman, Phys. Rev. A 56, 944 (1997).
H. M. Wiseman, Phys. Rev. A 57, 2169 (1998).
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input state >

Total phase uncertainty A@
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Adaptive phase measurement

Task: measure an arbitrary phase

input state

Total phase uncertainty A@

A 4

processor

A@? = (intrinsic uncertainty)?

+ (uncertainty due to measurement)? ﬁ

The standard
quantum limit

estimate

local oscillator [f

inalphase}

heterodyne measurements

H. M. Wiseman, Phys. Rev. A 56, 944 (1997).
H. M. Wiseman, Phys. Rev. A 57, 2169 (1998).




Wiseman Mark I

Task: measure an arbitrary phase

© = best phase estimate

® = poor phase estimate

input state

/ Mark I

feedback phase estimate: &
final phase estimate: &

— for N >>1

—> ideal phase measurement for N = 1

~3

A 4

processor

local oscillator

1

AP o —

Worse than standard
quantum limit!

\ N1/4

/

H. M. Wiseman, Phys. Rev. A 56, 944 (1997).
H. M. Wiseman, Phys. Rev. A 57, 2169 (1998).




© =

Q)

= poor phase estimate

Wiseman Mark 11

Task: measure an arbitrary phase

best phase estimate

input state

i

—
—

Mark I1

feedback phase estimate: &
final phase estimate: ©
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for N >> 1

N4
LJL

A |

processor

=1

local oscillator

Beats the standard
quantum limit

H. M. Wiseman, Phys. Rev. A 56, 944 (1997).
H. M. Wiseman, Phys. Rev. A 57, 2169 (1998).




Optimal adaptive

Task: measure an arbitrary phase

© = best phase estimate
@ = poor phase estimate

Q@ = intermediate input state

/ Mark II \ |

feedback phase estimate: @ processor

final phase estimate: ©

1 /=Va) b Y laNoV-SR o aV-YaNeh hE V-V a'aVWValal fn I\I _— 1 .
:> Ld\/u,l t/hu,o\./ J.L.I.\./LL\_)\/LL\./LJ..I.\./LLt 1IJUL 1 v T |Oca| OSC”Iator
= for N >>1 @)

|n N Almost the
A¢ oC <« | Heisenberg limit

N D. W. Berry and H. M. Wiseman,
Phys. Rev. A 63, 013813 (2001).




Types of phase measurement
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Optical interferometry

Theotretical limit

Squeezed states!

NOON states?

Theoretical-limit adaptive measurements?
Theoretical-limit nonadaptive measurements®
Hybtid measurements®
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H. M. Wiseman, and G. J. Pryde, e-print: 0809.3308 (2008).
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Optimal measurements

/ N\

M S

N photons ¢est

optimal two-mode optimal two-mode
entangled input state!- joint measurement’

\MWT/N /

The theoretical limit

TA. Luis and J. Pefina, Phys. Rev. A 54, 4564 (1996).

3 :
2D. W. Berry and H. M. Wiseman, PRL 85, 5098 (2000). B. C. Sanders and G. J. Milburn, PRL 75, 2944 (1995).




How to perform the measurement?

m (1) is adjusted to minimise the expected variance after
the next detection.

m Gives uncertainty Ag¢ ~1/N

/

N
e N
ot v

processor <

D. W. Berry and Wiseman, PRL 85, 5098 (2000).




How to create the input state?

Two problems:

1. The state needs to be a special coherent superposition
of the form

WALILED

There is no known way of producing such a state.

The input mode needs to be very long so that @(t) can
be adjusted between detections.




Optical interferometry

B Theoretical limit

® Squeezed states!
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Mach-Zehnder interferometer
with coherent states

/

coherent

state ‘ a> /

vacuum

without squeezing:

A¢z1/\/ﬁ >

The standard
quantum limit

N
=5 l\
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Mach-Zehnder interferometer
with squeezed states

/ N\

coherent

el o .\

squeezed X
vacuum
¢est

without squeezing: with squeezing:

Ag = 1/+/N Ap~e NI Beats the standard

quantum limit

C. M. Caves, Phys. Rev. D 23, 1693 (1981).




B. C. Sanders, Phys. Rev. A 40, 2417 (1989).
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Equivalence of NOON states and
multiple passes

AN

N
v | 4

Photons detected at times t,, t,, ... ty.

= Passed through phase shift at times
t,—At, t,—At, ...t —At.




Equivalence of NOON states and
multiple passes
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Electro-optic switches pass single
photon through phase shift at times
t—AtL, t, —At, ... t,—At.
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Electro-optic switches pass single
photon through phase shift at times
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Equivalence of NOON states and
multiple passes




Equivalence of NOON states and
multiple passes

Each splitting copies the photon:
1,0)+]0,1) > [1,0)|1,0)+|0,2)|0,1)




Equivalence of NOON states and
multiple passes

Copy the photons at the beginning to get the NOON state.
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Eliminating the fringes

/

/

B. L. Higgins, D. W. Berry, S. D. Bartlett,
H. M. Wiseman, and G. J. Pryde, Nature
450, 393 (2007).




Eliminating the fringes
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B. L. Higgins, D. W. Berry, S. D. Bartlett,
> H. M. Wiseman, and G. J. Pryde, Nature
- 450, 393 (2007).
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B This does not beat
the SQL!

B [he distribution has

fat tails.




Inverse quantum Foutier transform

0 +e‘2K¢\1>
0 +e‘2H¢|1>

|0)+e27 1)
|O>+e‘21¢|l>
)

|0)+e2|1)

U2K UZK_l U22 U21 U20

m The phase shifts are obtained from unitary U
satistying

U|u)=e"|u)




Inverse quantum Foutier transform

inverse
QFT

UZK UZK_l U22 U21 U20

m Provided ¢ is of the form ¢ =7r/2X, the inverse
quantum Fourler transform gives the bits of 7 at
the output.




Inverse quantum Foutier transform
HI-p




Inverse quantum Foutier transform
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Inverse quantum Foutier transform

{2 gl H

_2K—1¢_

_'

The qubits are dual-rail single photons.
The Hadamard 1s a beam splitter.

The controlled unitaries are the unknown phase in the
interferometer.

The controlled phase operations are feedback to the phase (7).

The operations may be performed in sequence to reuse the
same interferometer.
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The Hadamard 1s a beam splitter.

The controlled unitaries are the unknown phase in the
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The controlled phase operations are feedback to the phase (7).

The operations may be performed in sequence to reuse the
same interferometer.




Inverse quantum Foutier transform
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The qubits are dual-rail single photons.
The Hadamard 1s a beam splitter.

The controlled unitaries are the unknown phase in the
interferometer.

The controlled phase operations are feedback to the phase (7).

The operations may be performed in sequence to reuse the
same interferometer.




The equivalent state

®m The sequence of different numbers of passes 1s equivalent to a
tensor product of NOON states:

(|2¢.0)+|0,2%))®...®(|2",0)+|0,2"}|®(|1,0)+|0,1))

m This 1s equivalent to

>[n,N-n)
n=0

for N = 2K+11,




How to create the input state?

Two problems:
Wsingtatultipplespasses o pavgle phvtens seoltasitan
eftdativentate of the form

WADILED

dymnrdhonghkthemctwalysedtp e Justismebebhctichs.
The input mede deedsiot headitn Ibadomgthavd/tan
sendoplaciosisdhivetigheonteit arimme.




What do we need for theoretical-limit
scaling?

m  The squared error 1s approximately (for real )

[\
A¢2 = Z (Wn _l)”nJrl)2
n=-1

where we add the dummy state coefficients ¥, = y4, = 0.




What do we need for theoretical-limit
scaling?
The squared error is approximately (for real )

[\
A¢2 = Z (Wn _l)”nJrl)2

n=—1
where we add the dummy state coefficients ¥, = y4, = 0.

For scaling at the theoretical limit we need w, ,—w,oc 1/N%/2,

The state coetficients just need to increase then decrease in a gradual way.

WALILED




The equivalent state

equivalent state
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The equivalent state

/N

equivalent state
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The equivalent state

/equivalent state for M = 2
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The equivalent state

equivalent state for M = 3
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The equivalent state

equivalent statefor M = 4
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sharpness after next detection

set theta to maximise

N
LY
@
S
L
go)
U
r_nlp.
U
=
I
i)
=
-
e
9!
i)
9!
>




e T A

o s
S T

N
LY
@
S
L
go)
U
3
U
=
I
i)
=
-
o)
9!
i)
9!
%




Predicted variances

=

M =1
SQL for single passes
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Experimental results
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Nonadaptive measurements




Nonadaptive measurements

Perform enough measurements

with 20 = 1 pass to ensure that
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region with high probability.

Size of region
is < 21-07/3
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Perform enough measurements
with 20 = 1 pass to ensure that

the system phase 1s in the blue

region with high probability.
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the system phase 1s in one of the ¢

two purple regions with high
probability. At stage K, if the system phase is not in

the region, then the maximum error is
Perform enough measurements o 2K

with 22 passes to ensure that the

. More measurements are needed for
system phase 1s in one of the four ay

. . . small K to ensure that the contribution
green regions with high

probability.

to the variance is not large.

The resource cost of additional

measurements is less for small K.

The best results are obtained if M

Perform enough measurements decreases linearly with k.

with 2K passes to ensure that the
system phase is in one of 2K

regions with high probability.




Nonadaptive measurements

Perform enough measurements
with 20 = 1 pass to ensure that

the system phase 1s in the blue

region with high probability.

Perform enough measurements Size of region
with 2! = 2 passes to ensure that is < 21Kn/3
the system phase 1s in one of the ¢
two purple regions with high
probability.

Perform enough measurements A ¢ oC 1 / N

with 22 passes to ensure that the

m At stage K, if the system phase is not in
bn, then the maximum error is

=—rorcrmreasurements are needed for

system phase is in one of the four a5
Y P . . . small K to ensure that the contribution
green regions with high

probability.

to the variance is not large.

The resource cost of additional

measurements is less for small K.

The best results are obtained if M

Perform enough measurements decreases linearly with k.

with 2K passes to ensure that the

system phase is in one of 2K
regions with high probability.
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Hybrid measurements

m  Supplement the M = 1 measurement with additional measurements with
single passes.

0.15 ' N | |

Estimate from Estimate
single passes — from M = 1




Hybrid measurements

Supplement the M = 1 measurement with additional measurements with

single passes.

0.15 ' N | '

If estimates agree, use [Estimate from Eetimate
. . single passes I -
the M = 1 estimate. from M = 1




Hybrid measurements

Supplement the M = 1 measurement with additional measurements with

single passes.

T T T T T T
| 0.15 /\
If estimates agree, use [Estimate from Eetimate
. . single passes -
the M = 1 estimate. from M = 1

If the estimates differ,
use estimate from
single photons.

This yields error

Agocl/ N¥*




Hybrid measurements

m  The equivalent state is the (approximate) Gaussian from single photon measurements convoluted
with the flat distribution from the M = 1 measurement:

i

x

JA

m  The resulting equivalent state still has a region where the state coefficients rise sharply:

f \




Hybrid measurements
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B. L. Higgins, D. W. Berry, S. D. Bartlett,
M. W. Mitchell, H. M. Wiseman, and
G. J. Pryde, e-print: 0809.3308 (2008).
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Adapting the number of passes

Vx N2

100
m As well as adapting a 90!

feedback phase, the 80!
number of passes can be  70;
adapted. 607
501

40|

Ag ~ InTN 30|

201
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Almost the 5 G
theoretical limit

scheme 1
scheme 2

scheme 3




Single mode phase

m [Feedback is needed to beat the
standard quantum: limit,

m The best feedback is not the
best phase estimate.




Single mode phase

m [Feedback is needed to beat the
standard quantum: limit,

m The best feedback is not the
best phase estimate.

Interferometry

m Special states give improved accutacy,
but have problem: with ambiguity.

m Using multiple measurements gives true
scaling at the theoretical limit.

m This may be achieved even without
adaptive measurements!
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