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The Heisenberg Uncertainty PrincipleThe Heisenberg Uncertainty Principle
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The Heisenberg limit The Heisenberg limit vsvs
the standard quantum limitthe standard quantum limit

The Heisenberg LimitThe Heisenberg Limit

�� If one uncertainty is If one uncertainty is 
reduced as much as reduced as much as 
possible.possible.

�� Uncertainty scalingUncertainty scaling

1 NφΔ ∝

The Standard The Standard 
Quantum LimitQuantum Limit

�� If the two uncertainties If the two uncertainties 
are equal.are equal.

�� Uncertainty scalingUncertainty scaling

1 NφΔ ∝
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SingleSingle--mode measurementsmode measurements

�� Signal is beam is mixed with Signal is beam is mixed with 
strong strong ““local oscillatorlocal oscillator””..

�� Heterodyne Heterodyne –– linear variation linear variation 
of of θθ..

�� Homodyne Homodyne –– θθ close to close to φφ..

φinput 
state

φest

local 
oscillator

θ (t)

φ

θ (t) processor

−input 
state

local 
oscillator

�� Use an estimate of the Use an estimate of the 
phase to approximate a phase to approximate a 
homodyne measurement.homodyne measurement.



Adaptive phase measurementAdaptive phase measurement
Task: measure an arbitrary phaseTask: measure an arbitrary phase
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Adaptive phase measurementAdaptive phase measurement
Task: measure an arbitrary phaseTask: measure an arbitrary phase
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Wiseman Mark IWiseman Mark I
Task: measure an arbitrary phaseTask: measure an arbitrary phase

☺☺ ≡≡ best phase estimatebest phase estimate

// ≡≡ poor phase estimatepoor phase estimate
φ

input state

local oscillator

// processor

−

Mark I

feedback phase estimate: /
final phase estimate: /

⇒ ideal phase measurement for N = 1
⇒ for N >> 1

1/ 4

1
N

φΔ ∝
H. M. Wiseman, Phys. Rev. A 56, 944 (1997).
H. M. Wiseman, Phys. Rev. A 57, 2169 (1998).

//
Worse than standard 

quantum limit!



Wiseman Mark IIWiseman Mark II
Task: measure an arbitrary phaseTask: measure an arbitrary phase

☺☺ ≡≡ best phase estimatebest phase estimate

// ≡≡ poor phase estimatepoor phase estimate
φ

input state

local oscillator

// processor

−

Mark II

feedback phase estimate: /
final phase estimate: ☺

⇒ ideal phase measurement for N = 1
⇒ for N >> 1

3/ 4

1
N

φΔ ∝
H. M. Wiseman, Phys. Rev. A 56, 944 (1997).
H. M. Wiseman, Phys. Rev. A 57, 2169 (1998).

☺☺
Beats the standard 

quantum limit



Optimal adaptiveOptimal adaptive
Task: measure an arbitrary phaseTask: measure an arbitrary phase

☺☺ ≡≡ best phase estimatebest phase estimate
// ≡≡ poor phase estimatepoor phase estimate
☯☯ ≡≡ intermediateintermediate

φ
input state

local oscillator

☯☯ processor

−

Mark II

feedback phase estimate: ☯
final phase estimate: ☺

⇒ ideal phase measurement for N = 1
⇒ for N >> 1

ln N
N

φΔ ∝
D. W. Berry and H. M. Wiseman, 
Phys. Rev. A 63, 013813 (2001).

☺☺
Almost the 

Heisenberg limit
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Optimal measurementsOptimal measurements

optimal two-mode 
joint measurement3

N photons

optimal two-mode 
entangled input state1,2

Nφ πΔ ≈
The theoretical limit

φ

1 A. Luis and J. Peřina, Phys. Rev. A 54, 4564 (1996).
2 D. W. Berry and H. M. Wiseman, PRL 85, 5098 (2000).

3 B. C. Sanders and G. J. Milburn, PRL 75, 2944 (1995).

φest



�� θθ ((tt )) is adjusted to minimise the expected variance after is adjusted to minimise the expected variance after 
the next detection.the next detection.

�� Gives uncertaintyGives uncertainty

processor
N photons

How to perform the measurement?How to perform the measurement?

θ(t)

φ

D. W. Berry and Wiseman, PRL 85, 5098 (2000).

1 NφΔ ∼



How to create the input state?How to create the input state?

Two problems:Two problems:
1.1. The state needs to be a special coherent superposition The state needs to be a special coherent superposition 

of the formof the form

There is no known way of producing such a state.There is no known way of producing such a state.
2.2. The input mode needs to be very long so that The input mode needs to be very long so that θθ  ((tt )) can can 

be adjusted between detections.be adjusted between detections.
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n N nψ
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MachMach--ZehnderZehnder interferometerinterferometer
with coherent stateswith coherent states
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without squeezing:

1/ NφΔ ≈ The standard 
quantum limit



MachMach--ZehnderZehnder interferometerinterferometer
with squeezed stateswith squeezed states

φ

coherent 
state α

squeezed 
vacuum φest

without squeezing:

1/ NφΔ ≈
with squeezing:

/re Nφ −Δ ≈

C. M. Caves, Phys. Rev. D 23, 1693 (1981).

Beats the standard 
quantum limit



1/ NφΔ ≈

MachMach--ZehnderZehnder interferometerinterferometer
with NOON stateswith NOON states

input state
φ

,0 0,N N+
,0 0,iNe N Nφ +

φ /π

p(φ )

B. C. Sanders, Phys. Rev. A 40, 2417 (1989).

φest
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Eliminating the fringesEliminating the fringes
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Equivalence of NOON states and Equivalence of NOON states and 
multiple passesmultiple passes

φ

φest

,0 0,N N+

Photons detected at times t1, t2, … tN.

⇒ Passed through phase shift at times 
t1−Δt, t2 −Δt, … tN −Δt.



Equivalence of NOON states and Equivalence of NOON states and 
multiple passesmultiple passes
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Equivalence of NOON states and Equivalence of NOON states and 
multiple passesmultiple passes

1,0 0,1+

Each splitting copies the photon:
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Equivalence of NOON states and Equivalence of NOON states and 
multiple passesmultiple passes
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φ

,0 0,N N+

Copy the photons at the beginning to get the NOON state.
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φ /π
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φ

( )p φ

The uncertaintyThe uncertainty

�� The uncertainty isThe uncertainty is

�� This does not beat This does not beat 
the SQL!the SQL!

�� The distribution has The distribution has 
fat tails.fat tails.

2 / NφΔ ≈



Inverse quantum Fourier transformInverse quantum Fourier transform
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Inverse quantum Fourier transformInverse quantum Fourier transform

�� Provided Provided φφ is of the form is of the form φφ ==ππ rr/2/2KK, the inverse , the inverse 
quantum Fourier transform gives the bits of quantum Fourier transform gives the bits of rr at at 
the output.the output.
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1.1. The qubits are dualThe qubits are dual--rail single photons.rail single photons.
2.2. The The HadamardHadamard is a beam splitter.is a beam splitter.
3.3. The controlled unitaries are the unknown phase in the The controlled unitaries are the unknown phase in the 

interferometer.interferometer.
4.4. The controlled phase operations are feedback to the phase The controlled phase operations are feedback to the phase θθ ((tt ).).
5.5. The operations may be performed in sequence to reuse the The operations may be performed in sequence to reuse the 

same interferometer.same interferometer.
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The equivalent stateThe equivalent state

�� The sequence of different numbers of passes is equivalent to a The sequence of different numbers of passes is equivalent to a 
tensor product of NOON states:tensor product of NOON states:

�� This is equivalent toThis is equivalent to

forfor NN = 2= 2KK+1+1−−1.1.

( ) ( ) ( )1 12 ,0 0, 2 2 ,0 0,2 1,0 0,1K K+ ⊗ ⊗ + ⊗ +…

0
,

N

n
n N n

=

−∑



Two problems:Two problems:
1.1. The state needs to be a special coherent superposition The state needs to be a special coherent superposition 

of the formof the form

There is no known way of producing such a state.There is no known way of producing such a state.
2.2. The input mode needs to be very long so that The input mode needs to be very long so that θθ  ((tt ))

can be adjusted between detections.can be adjusted between detections.

1.1. Using multiple passes of single photons we obtain an Using multiple passes of single photons we obtain an 
effective state of the formeffective state of the form

even though the actual state is just single photons.even though the actual state is just single photons.
2.2. The input mode does not need to be long The input mode does not need to be long –– we can we can 

send photons through one at a time.send photons through one at a time.

How to create the input state?How to create the input state?

0

N

n
n

n N nψ
=
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What do we need for theoreticalWhat do we need for theoretical--limit limit 
scaling?scaling?

�� The squared error is approximately (for real The squared error is approximately (for real ψψnn))

where we add the dummy state coefficients where we add the dummy state coefficients ψψ−−1 1 = = ψψNN+1 +1 = 0.= 0.

( )22
1

1

N

n n
n

φ ψ ψ +
=−

Δ ≈ −∑
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Hybrid measurementsHybrid measurements

�� If estimates agree, use If estimates agree, use 
the the MM = 1 estimate.= 1 estimate.

�� If the estimates differ, If the estimates differ, 
use estimate from use estimate from 
single photons.single photons.

�� This yields errorThis yields error

p(φ )

φ

3/ 41/ NφΔ ∝

�� Supplement the Supplement the MM = 1 measurement with additional measurements with = 1 measurement with additional measurements with 
single passes.single passes.

Estimate from 
single passes 

Estimate 
from M = 1



Hybrid measurementsHybrid measurements
�� The equivalent state is the (approximate) Gaussian from single pThe equivalent state is the (approximate) Gaussian from single photon measurements convoluted hoton measurements convoluted 

with the flat distribution from the with the flat distribution from the MM = 1 measurement:= 1 measurement:

�� The resulting equivalent state still has a region where the statThe resulting equivalent state still has a region where the state coefficients rise sharply:e coefficients rise sharply:

*

=
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Adapting the number of passesAdapting the number of passes

�� As well as adapting a As well as adapting a 
feedback phase, the feedback phase, the 
number of passes can be number of passes can be 
adapted.adapted.

N

V×N2
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ln N
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φΔ ∼
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SummarySummary

Single mode phase
�� Feedback is needed to beat the Feedback is needed to beat the 

standard quantum limit.standard quantum limit.

�� The best feedback is not the The best feedback is not the 
best phase estimate.best phase estimate.

Interferometry
�� Special states give improved accuracy, Special states give improved accuracy, 

but have problem with ambiguity.but have problem with ambiguity.

�� Using multiple measurements gives true Using multiple measurements gives true 
scaling at the theoretical limit.scaling at the theoretical limit.

�� This may be achieved even without This may be achieved even without 
adaptive measurements!adaptive measurements!
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