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Abstract

Asymptotic entanglement concentration with exponentially decreasing error probability is discussed.
Distillable entanglement is derived as a function of an error exponent. The formula links the upper
bound of distillable entanglement, which is the well-known entropy of entanglement, with the lower bound
attained in deterministic concentration. A strong converse of asymptotic entanglement concentration is
also presented.
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1 Introduction

Quantification of entanglement is the key to un-
derstanding of its full potential as an indispens-
able resource for quantum information processing,
in superdense coding [1], quantum teleportation [2],
quantum cryptography [3], and quantum comput-
ing [4]. The essentials of bipartite pure-state en-
tanglement have already been revealed both in fi-
nite regimes and in the asymptotic limit: the in-
timate connection between the mathematical the-
ory of majorization and entanglement manipulation
[5, 6, 7, 8], and the existence of a unique measure
of entanglement in the asymptotic limit [9, 10].
One way of quantifying entanglement is to esti-

mate the number of Bell pairs,

1√
2
(|00〉+ |11〉), (1)

distilled from a given entangled state by local
operations and classical communication (LOCC).
Though the above quantity of distillable entangle-
ment can be defined for mixed states, we deal with
only pure states here. In order to make use of par-
tially entangled states for quantum teleportation,
we need to convert them into maximally entangled
states by LOCC. The process is called entangle-
ment concentration, whose efficiency in the asymp-
totic limit is the focus of this paper.
The unique measure of bipartite pure-state en-

tanglement gives the limitation on the efficiency of
entanglement concentration. Suppose we share n
identical copies of a partially entangled state

|φ〉 =
d∑

i=1

√
pi|i〉|i〉, (2)

where the Schmidt coefficients squared are ar-
ranged in decreasing order, i.e., p1 ≥ p2 ≥ · · · ≥
pd ≥ 0, and sum to one. Bennett et al. [9] proved
that the maximum number of Bell pairs distilled
per copy from |φ〉⊗n is given by

Eentropy(φ) = −
d∑

i=1

pi log pi, (3)

in the asymptotic limit, n → ∞. (Logarithms are
taken to base two throughout this paper.) They
imposed the condition that the success probability
of entanglement concentration tends to one in the
asymptotic limit, i.e.,

Psuccess = 1− ε, (4)

where
ε→ 0 as n→ ∞. (5)

With this restriction, the maximum attainable en-
tanglement yield is proved to be Eq. (3).
On the other hand, many researches on entan-

glement concentration have been undertaken from
various viewpoints [7, 8, 11, 12, 13, 14]. Among
other things, the bound on entanglement yield in
deterministic concentration [13]

Edet(φ) = − log p1, (6)

gives another quantification of entanglement. The
restriction of deterministic means that the process
succeeds with probability one both in finite regimes
and in the asymptotic limit.
Though the quantities Eentropy and Edet give en-

tanglement yield in the asymptotic limit, where
both processes succeed with probability one, the
two quantities do not coincide. The main purpose
of this paper is to find out the reason for the dis-
crepancy. We will see that it is caused by the differ-
ence of the rate error probabilities decrease when
n tends to infinity in both concentration processes.
Roughly speaking, while we obtain Eentropy when
error probability decreases slowly, we obtain Edet

when it decreases rapidly. We will assume that the
error probability exponentially decreases, and rep-
resent the rate by the exponent of the error proba-
bility. This is a common approach in the informa-
tion sciences, and will allow us to ‘tune’ between
the two extremes just mentioned.
In the derivation of Eentropy, we use the asymp-

totic equipartition property [15]. However, a de-
tailed analysis of the asymptotic behavior requires
more powerful mathematical tools; namely, the
method of types [15, 16], which makes it possible to
calculate the probabilities of rare events and derive
stronger results than when we focus only on typical
sequences.
The argument via the method of types gives en-

tanglement yield as a function of an error expo-
nent and reveals the missing link between Eentropy

and Edet. In addition, we will also see that the
success probability exponentially decreases when
we try to distill more entanglement than Eentropy

(strong converse).

2 Asymptotic entanglement

concentration

This section presents asymptotic entanglement con-
centration with exponentially decreasing failure
probability. Suppose we wish to distill a maxi-
mally entangled state with the greatest possible
Schmidt number Ln from n identical copies of |φ〉,



i.e., |φ〉⊗n =
∑

i

√
pn(i)|i〉|i〉, where pn(i) is the n

-i.i.d extension of pi.
Let PLn be the optimal success probability with

which we distill a maximally entangled state of size
Ln from |ψ〉⊗n. We assume that the failure proba-
bility, 1−PLn decreases exponentially as the num-
ber of the entangled pairs n increases. Then, the
first order coefficient in the exponent of the fail-
ure probability in the asymptotic limit is called an
error exponent, r, which is defined as

r = lim
n→∞− 1

n
log(1− PLn). (7)

Intuitively, this means that the error probability
behaves as 2−nr.
We formulate the maximum number of Bell pairs

distilled per copy in the asymptotic limit

E = lim
n→∞

1
n
logLn, (8)

as a function of the error exponent r by using the
Shannon entropy H(p) and the relative entropy
D(p ‖ q), i.e.,

H(p) = −
d∑

i=1

pi log pi, (9)

and

D(p ‖ q) =
d∑

i=1

pi log
pi

qi
, (10)

where p and q are probability distributions.

Theorem 1 In entanglement concentration of n
identical copies of |φ〉 = ∑d

i=1

√
pi|i〉|i〉, i.e., |φ〉⊗n,

if we assume the failure probability decreases expo-
nentially as the number of copies n increases, then
the number of Bell pairs distilled per copy is given
by

E(r) = min
q:D(q‖p)≤r

{D(q ‖ p) +H(q)} , (11)

where r = limn→∞ − 1
n log(1− PLn) is an error ex-

ponent.

This theorem connects the following two facts on
the distillable entanglement of bipartite pure states
E:

1. If we allow error probability that vanishes in
the asymptotic limit, E cannot exceed H(p)
[9].

2. If we stick to deterministic strategies even in
finite regimes (i.e., no error is allowed), E is
equal to − log p1 [13].

Equation (11) provides the missing link between
them, i.e., Eentropy = H(p) = limr→0E(r) and
Edet = − log p1 = limr→∞E(r).

r
O - log  p1

H(p)

E(r)

- log  p1

Figure 1: Entanglement yield in asymptotic en-
tanglement concentration with an error exponent
r. The horizontal axis represents an error expo-
nent. The vertical axis represents the number of
Bell pairs distilled per copy in the asymptotic limit:
E(r) = minq:D(q‖p)≤r {D(q ‖ p) +H(q)}.

3 Strong converse

In this section, conversely, we discuss asymptotic
entanglement concentration with exponentially de-
creasing success probability, which will finally lead
to the strong converse of asymptotic entanglement
concentration.
Suppose we distill a maximally entangled state of

size L∗
n from |φ〉⊗n. We assume the success proba-

bility PL∗
n
decreases exponentially as the number of

the entangled pairs n increases. Then, the first or-
der coefficient in the exponent of the success prob-
ability in the asymptotic limit is defined as

r = lim
n→∞− 1

n
logPL∗

n
. (12)

We derive the maximum number of Bell pairs
distilled per copy in the asymptotic limit, E∗, as a
function of the exponent r.

Theorem 2 In entanglement concentration of n
identical copies of |φ〉 = ∑d

i=1

√
pi|i〉|i〉, i.e., |φ〉⊗n,

if the success probability decreases exponentially as
the number of copies n increases, then the number
of Bell pairs distilled per copy is given by

E∗(r) = max
q:D(q‖p)≤r

H(q). (13)

where r = limn→∞− 1
n logPL∗

n
.

We conclude from Theorem 2 that if we try to
distill a maximally entangled state of size greater



than H(p), then the success probability exponen-
tially decreases (strong converse). This was ob-
served in Ref. [11], but here we are able to derive
the exact error rate.
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Figure 2: Entanglement yield in entanglement con-
centration whose success probability exponentially
decreases (strong converse). The horizontal axis
represents the exponent of the success probabil-
ity. The vertical axis represents the number of
Bell pairs distilled per copy in the asymptotic limit:
E∗(r) = maxq:D(q‖p)≤r H(q). E∗(r) reaches the
maximum value, log d, at r = c ≡ − log d −
(1/d)

∑
i log pi, which is the relative entropy be-

tween the uniform distribution q = (1/d, · · · , 1/d)
and {pi}.

4 Summary

We have discussed entanglement concentration
with exponentially decreasing error probability in
the asymptotic limit. Entanglement yield E(r) was
derived as a function of an error exponent r. The
result links the well-known upper bound of entan-
glement yield represented by entropy and the lower
bound of deterministic concentration. The explicit
dependence on the exponent of the success proba-
bility was also presented, for the large yield regime,
in the form of a strong converse.
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