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Abstract

We report several recent results on analytic properties of multiple zeta-

functions, mainly in several variables, such as the analytic continuation,

the asymptotic behaviour, the location of singularities, and the recursive

structure. Some results presented in this paper have never been published

before.

1 Euler-Zagier sums

Let r be a positive integer. We begin with the discussion on the Euler-Zagier
r-fold sum

ζEZ,r(s1, . . . , sr) =
∑

· · ·
∑

1≤m1<···<mr<∞

m−s1
1 m−s2

2 · · ·m−sr

r

=
∞
∑

m1=1

∞
∑

m2=1

· · ·
∞
∑

mr=1

m−s1
1 (m1 + m2)−s2 · · · (m1 + · · ·+ mr)

−sr , (1.1)

where s1, . . . , sr are complex variables. This multiple series is convergent abso-
lutely in the region

{(s1, . . . , sr) ∈ Cr | <(sr−k+1 + · · ·+ sr) > k (1 ≤ k ≤ r)}.

The case r = 2 of (1.1) was already investigated by L. Euler in the eighteenth
century, and the general r-fold case has recently been studied by Zagier [48] and
others. In particular, their research on special values of ζEZ,r at positive integers
shows the great importance of this function in various fields of mathematics and
mathematical physics.

The meromorphic continuation of (1.1) to Cr has been achieved by various
methods; see Arakawa and Kaneko [5], Zhao [49], Akiyama, Egami and Tanigawa
[1], and the author [25]. It can also be regarded as a special case of Essouabri’s
general result [9]; see Section 3.

1



The method of [1] is based on the Euler-Maclaurin summation formula. Let
n1 be a positive integer, η be a real number, <s > 1, α ≥ 0, Bj(x) the j-
th Bernoulli polynomial, and B̃j(x) = Bj(x − [x]). Akiyama and Ishikawa [2]
proved a modified version of the Euler-Maclaurin formula, including a parameter
η, which implies

∑

n>n1+η

1

(n + α)s
=

J
∑

j=−1

B̃j+1(η)

(j + 1)!

(s)j

(n1 + η + α)s+j

−
(s)J+1

(J + 1)!

∫ ∞

n1+η

B̃J+1(u)

(u + α)s+J+1
du (1.2)

for any positive integer J , where (s)j = Γ(s + j)/Γ(s) (see Lemma 1 of [2]). In
[1], formula (1.2) (with α = η = 0) is applied to the sum with respect to mr

on the second member of (1.1), and an expression of ζEZ,r(s1, . . . , sr) as a sum
involving ζEZ,r−1(s1, . . . , sr−2, sr−1 + sr + j) (−1 ≤ j ≤ J) is obtained. Hence the
analytic continuation can be shown by induction on r, because the integral term
on the right-hand side of (1.2) converges in a larger region of s when J becomes
larger.

On the other hand, the basic tool of the author’s method is the Mellin-Barnes
integral formula

(1 + λ)s =
1

2πi

∫

(c)

Γ(s + z)Γ(−z)

Γ(s)
λzdz, (1.3)

where s, λ ∈ C, <s > 0, | arg λ| < π, λ 6= 0, and c ∈ R, −<s < c < 0. The
path of integration is the vertical line from c − i∞ to c + i∞. The key point is
to apply (1.3) (with λ = mr/(m1 + · · ·+ mr−1)) to the factor

(m1 + · · ·+ mr)
−sr = ((m1 + · · ·+ mr−1)

−sr

(

1 +
mr

m1 + · · ·+ mr−1

)−sr

on the last member of (1.1), and express ζEZ,r(s1, . . . , sr) as an integral whose
integrand includes ζEZ,r−1(s1, . . . , sr−2, sr−1+sr+z) as a factor. Then the analytic
continuation can be shown by shifting the path of integration suitably.

We can also see the location of possible singularities by both of the above
methods. Akiyama, Egami and Tanigawa [1] considered this matter more care-
fully, and proved

Theorem 1 (Akiyama, Egami and Tanigawa [1]) Singularities of ζEZ,r(s1, . . . , sr)
are located only on

sr = 1, sr−1 + sr = 2, 1, 0,−2,−4,−6, ...

and
sr−k+1 + sr−k+2 + · · ·+ sr = k − n (3 ≤ k ≤ r, n ∈ N0),

where N0 denotes the set of non-negative integers. All of the above sets are indeed
singularity sets.
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In the same paper [1], they also studied the values of ζEZ,r(s1, . . . , sr) at non-
positive integers. This direction of research has been continued by Akiyama and
Tanigawa [3], and Kamano [16].

It is an important problem to generalize the analytic theory of Euler-Zagier
sums to more general situation. Akiyama and Ishikawa [2] studied the series

ζEZ,r(s1, . . . , sr; α1, . . . , αr)

=
∑

· · ·
∑

1≤m1<···<mr<∞

(m1 + α1)−s1(m2 + α2)
−s2 · · · (mr + αr)

−sr (1.4)

and

LEZ,r(s1, . . . , sr; χ1, . . . , χr)

=
∑

· · ·
∑

1≤m1<···<mr<∞

χ1(m1)

ms1
1

χ2(m2)

ms2
2

· · ·
χr(mr)

msr

r

, (1.5)

where 0 ≤ αk < 1 (1 ≤ k ≤ r) and χk (1 ≤ k ≤ r) are Dirichlet characters of the
same conductor. It is clear that (1.5) can be expressed as a linear combination
of several series of the form (1.4). Akiyama and Ishikawa [2] applied (1.2) to the
right-hand side of (1.4) to obtain an expression involving

ζEZ,r−1(s1, . . . , sr−2, sr−1 + sr + j; α1, . . . , αr−1) (−1 ≤ j ≤ J).

This expression gives the analytic continuation of (1.4). Akiyama and Ishikawa
also discussed the location of singularities of (1.4) and (1.5). Ishikawa [13] further
studied the location of poles of (1.5) in the special case s1 = · · · = sr = s, and
applied the result to the evaluation of certain multiple character sums (Ishikawa
[14]).

The author [26] [27] considered a further generalization of (1.4), that is the
series

∞
∑

m1=0

· · ·
∞
∑

mr=0

(α1 + m1w1)
−s1(α2 + m1w1 + m2w2)

−s2

× · · · × (αr + m1w1 + · · ·+ mrwr)
−sr , (1.6)

where αk, wk (1 ≤ k ≤ r) are complex parameters. Let −π < θ ≤ π and

H(θ) = {w ∈ C | w 6= 0, θ − π/2 < arg w < θ + π/2}.

If we assume that wk ∈ H(θ) (1 ≤ k ≤ r), then the series (1.6) is convergent
absolutely when <sk (1 ≤ k ≤ r) are sufficiently large. Under the same assump-
tion, the author proved the meromorphic continuation of (1.6) to Cr by using
the Mellin-Barnes formula (1.3), and discussed the asymptotic behaviour with
respect to wr and the order estimate with respect to =sr.
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The aim of introducing the above generalized form (1.6) is to treat the Barnes
multiple zeta-function

ζB,r(s; α; w1, . . . , wr) =
∞
∑

m1=0

· · ·
∞
∑

mr=0

(αr + m1w1 + · · ·+ mrwr)
−s (1.7)

as a special case s1 = · · · = sr−1 = 0 and sr = s. The author first considered the
asymptotic behaviour of ζB,2(s; α; w1, w2) in [22] by a different method (contour
integration), and then by using (1.3) in [25]. These studies have applications to
Hecke’s zeta and L-functions attached to real quadratic fields; see Corrigendum
and addendum of [22], and [23].

Multiple Dirichlet series of the Euler-Zagier type with general coefficients, of
the form

∞
∑

m1=1

· · ·
∞
∑

mr=1

a1(m1)

ms1
1

a2(m2)

(m1 + m2)s2
· · ·

ar(mr)

(m1 + · · ·+ mr)sr

, (1.8)

have been introduced and studied by Matsumoto and Tanigawa [30], under the
assumption that the series

∑∞
m=1 ak(m)m−s (1 ≤ k ≤ r) have nice properties.

The above (1.8) includes the multiple L-series of Arakawa and Kaneko [6]. In
[30], the analytic continuation and a certain order estimate of (1.8) have been
obtained by using the Mellin-Barnes integral (1.3).

It seems that the method of using the Mellin-Barnes integral is suitable to
consider upper bound estimates of multiple zeta-functions. The case of the Euler-
Zagier sum ζEZ,r(s1, . . . , sr) was studied by Ishikawa and Matsumoto [15]; espe-
cially, non-trivial estimates in the cases r = 2 and r = 3 have been obtained.
However it is still not clear how is the real order of magnitude of ζEZ,r(s1, . . . , sr).

Recently, Matsumoto and Tsumura [31] introduced further generalized series

∞
∑

m1=0

· · ·
∞
∑

mr=0

a1(m1) · · ·ar(mr)u
−(m1+···+mr)

(α1 + m1w1)s1 · · · (αr + m1w1 + · · ·+ mrwr)sr

, (1.9)

where u ≥ 1, αk, wk ∈ R, 0 < αk − αk−1 ≤ wk, in connection with a study
of certain generalized multiple polylogarithms. (As for multiple polylogarithms,
see, for example, [7].)

2 Multiple series defined by linear forms

Let ANr = (anj)1≤n≤N,1≤j≤r be an (N, r)-matrix, where anj are non-negative
real numbers. Assume that all rows and all columns of ANr include at least one
non-zero element. Let

ζr(s1, . . . , sN ; ANr) =
∞
∑

m1=1

· · ·
∞
∑

mr=1

(a11m1 + · · ·+ a1rmr)
−s1

× · · · × (aN1m1 + · · ·+ aNrmr)
−sN . (2.1)
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The Euler-Zagier sum (1.1) is a special case of (2.1). Shintani [35], [36] considered
the situation when all anj are positive (with characters and additional constant
terms). Shintani actually treated the case s1 = · · · = sN , but Hida [11] introduced
multi-variable Shintani zeta-functions.

Other typical examples of (2.1) are the Mordell-Tornheim multiple series

ζMT,r(s1, . . . , sr; sr+1) =
∞
∑

m1=1

· · ·
∞
∑

mr=1

m−s1
1 · · ·m−sr

r (m1 + · · ·+ mr)
−sr+1 (2.2)

and the Apostol-Vu multiple series

ζAV,r(s1, . . . , sr; sr+1) =
∑

· · ·
∑

1≤m1<···<mr<∞

m−s1
1 · · ·m−sr

r (m1 + · · ·+ mr)
−sr+1. (2.3)

Both of the above series (2.2) and (2.3) were introduced in the author’s paper [28],
though the history of some special cases goes back to Tornheim [38], Mordell [34],
and Apostol and Vu [4]. The following theorem has been proved by the author
in [24] for the case r = 2, and in [28] for general r.

Theorem 2 The series (2.2) and (2.3) can be continued meromorphically to
Cr+1. The possible singularities of (2.2) are located only on the subset of Cr+1

defined by one of the following equations:

h
∑

a=1

sja
+ sr+1 = h− `

(

1−

[

h

r

])

(1 ≤ h ≤ r, 1 ≤ j1 < · · · < jh ≤ r, ` ∈ N0).

Also, the possible singularities of (2.3) are located only on the subset of Cr+1

defined by one of the following equations:

si + · · ·+ sr+1 = r + 1− i− ` (1 ≤ i ≤ r, ` ∈ N0).

The proof of Theorem 2 in [24] [28] is again based on (1.3). As in the case of
the Euler-Zagier sum, using (1.3) we obtain

ζMT,r(s1, . . . , sr; sr+1) =
1

2πi

∫

(c)

Γ(sr+1 + z)Γ(−z)

Γ(sr+1)

×ζMT,r−1(s1, . . . , sr−1; sr+1 + z)ζ(sr − z)dz, (2.4)

where ζ(·) is the Riemann zeta-function. In the case of the Apostol-Vu series, we
have

ϕj,r(s1, . . . , sj; sj+1, . . . , sr; sr+1)

=
1

2πi

∫

(c)

Γ(sr+1 + z)Γ(−z)

Γ(sr+1)

×ϕj−1,r(s1, . . . , sj−1; sj − z, sj+1, . . . , sr; sr+1 + z)dz, (2.5)
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where

ϕj,r(s1, . . . , , sj; sj+1, . . . , sr; sr+1) =
∑

· · ·
∑

1≤m1<···<mr<∞

m−s1
1 · · ·m−sr

r (m1+· · ·+mj)
−sr+1.

(2.6)
Note that ϕr,r = ζAV,r and

ϕ1,r(s1; s2, . . . , sr; sr+1) = ζEZ,r(s1 + sr+1, s2, . . . , sr).

The relations (2.4) and (2.5) imply the recursive sequences

ζMT,r → ζMT,r−1 → · · · → ζMT,1 = ζ

and
ζAV,r = ϕr,r → ϕr−1,r → · · · → ϕ1,r = ζEZ,r,

along which the proof of Theorem 2 goes inductively. The discussion in Section
1 implies another recursive sequence

ζEZ,r → ζEZ,r−1 → · · · → ζEZ,1 = ζ.

Thus we find a recursive structure in the family of multiple zeta-functions. This
viewpoint is discussed in the last section of [28].

In [47], Maoxiang Wu introduced the χ-analogues of (2.2) and (2.3). Let
χ1, . . . , χr be Dirichlet characters of the same modulus q (≥ 2), and define

LMT,r(s1, . . . , sr; sr+1; χ1, . . . , χr)

=
∞
∑

m1=1

· · ·
∞
∑

mr=1

χ1(m1) · · ·χr(mr)

ms1
1 · · ·m

sr

r (m1 + · · ·+ mr)sr+1
, (2.7)

 LAV,r(s1, . . . , sr; sr+1; χ1, . . . , χr)

=
∑

· · ·
∑

1≤m1<···<mr<∞

χ1(m1) · · ·χr(mr)

ms1
1 · · ·m

sr

r (m1 + · · ·+ mr)sr+1
. (2.8)

These series are convergent absolutely for <sk > 1 (1 ≤ k ≤ r), <sr+1 > 0. Wu
proved the following two theorems.

Theorem 3 (Wu [47]) The series (2.7) can be continued meromorphically to
Cr+1. If none of the characters χ1, . . . , χr are principal, then LMT,r is entire.
If there are k principal characters χj1 , . . . , χjk

among them, then possible singu-
larities are located only on the subsets of Cr+1 defined by one of the following
equations:

h
∑

a=1

sji(a)
+ sr+1 = h− `

(

1−

[

h

r

])

,

where 1 ≤ h ≤ k, 1 ≤ i(1) < · · · < i(h) ≤ k, ` ∈ N0.
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Theorem 4 (Wu [47]) The series (2.8) can be continued meromorphically to
Cr+1, and possible singularities are located only on the subsets of Cr+1 defined by
one of the following equations:

h
∑

a=1

sr−a+1 + sr+1 = h− `,

where 1 ≤ h ≤ r, ` ∈ N0.

Since Wu [47] is unpublished, we briefly outline his proof of these two theorems
here.

The proof of Theorem 3 is just a direct generalization of the argument de-
veloped in [28]. We omit the details, only noting that the basic formula, corre-
sponding to (2.4), is

LMT,r(s1, . . . , sr; sr+1; χ1, . . . , χr) =
1

2πi

∫

(c)

Γ(sr+1 + z)Γ(−z)

Γ(sr+1)

×LMT,r−1(s1, . . . , sr−1; sr+1 + z; χ1, . . . , χr−1)L(sr − z, χr)dz, (2.9)

where L(·, χr) is the Dirichlet L-function attached to χr.
To prove Theorem 4, we define

Φj,r(s1, . . . , sj; sj+1, · · · , sr; sr+1; χ1, . . . , χr)

=
∑

· · ·
∑

1≤m1<···<mr<∞

χ1(m1) · · ·χr(mr)

ms1
1 · · ·m

sr

r (m1 + · · ·+ mj)sr+1
. (2.10)

Then corresponding to (2.5), we have

Φj,r(s1, . . . , sj; sj+1, · · · , sr; sr+1; χ1, . . . , χr) =
1

2πi

∫

(c)

Γ(sr+1 + z)Γ(−z)

Γ(sr+1)

×Φj−1,r(s1, . . . , sj−1; sj − z, sj+1, · · · , sr; sr+1 + z; χ1, . . . , χr)dz. (2.11)

Hence the induction argument goes along the sequence

LAV,r = Φr,r → Φr−1,r → · · · → Φ1,r,

but

Φ1,r(s1; s2, . . . , sr; χ1, . . . , χr) = LEZ,r(s1 + sr+1, s2, . . . , sr; χ1, . . . , χr),

whose basic analytic properties has already been discussed by Akiyama and
Ishikawa [2].

As explained in Section 1, LEZ,r(s1, . . . , sr; χ1, . . . , χr) can be expressed in
terms of ζEZ,r(s1, . . . , sr; α1, . . . , αr), and the latter can be expressed as a sum
involving

ζEZ,r−1(s1, . . . , sr−2, sr−1 + sr + j; α1, . . . , αr−1) (−1 ≤ j ≤ J).
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Using these expressions, Wu [47] proved (by induction) that both of the functions
ζEZ,r(s1, . . . , sr; α1, . . . , αr) and LEZ,r(s1, . . . , sr; χ1, . . . , χr) are of polynomial or-
der with respect to |=s1|, . . . , |=sr|. Hence, using (2.11), we can show that Φj,r

(1 ≤ j ≤ r) is also of polynomial order. Therefore it is possible to shift the path
of integration on the right-hand side of (2.11) freely. The remaining part of the
proof is the same as in [28].

Special values of ζMT,r, ζAV,r and their relatives have been studied by several
mathematicians, including Tornheim, Mordell and Apostol and Vu themselves.
Special values in the domain of absolute convergence have been further studied
by Huard, Williams and Zhang [12], Subbarao and Sitaramachandrarao [37], and
Tsumura’s recent series of papers [39] [40] [41] [42] [43] [44]. In those papers,
various relations among special values at integer arguments have been obtained.
From an analytic point of view, however, it is important to reveal whether those
relations are valid only at integer points, or valid also at other values. Tsumura
[45] [46] discovered that some relations at integer points, proved in his previous
articles [39] [40] [42], are actually valid continuously at other values. These
relations of Tsumura may be regarded as functional relations among multiple
zeta-functions.

Another functional relation has been found by the author [29], which implies,
as a special case, a certain relation between ζEZ,2(s1, s2) and ζEZ,2(1− s2, 1− s1).
More generally, in [29] the author defined the double Hurwitz-Lerch zeta-function

ζ2(s1, s2; α, β, w) =
∞
∑

m=0

(α + m)−s1

∞
∑

n=1

e2πinβ(α + m + nw)−s2,

where 0 < α ≤ 1, 0 ≤ β ≤ 1, w > 0, and proved a certain relation between
ζ2(s1, s2; α, β, w) and ζ2(1− s2, 1− s1; 1− β, 1− α, w). Note that the case w = 1
of this function was already introduced by Katsurada [17] in his study on the
mean square of Lerch zeta-functions. It is also possible to regard Proposition 1
of [29] as a double analogue of the functional equation of Hurwitz-Lerch zeta-
functions.

3 Multiple series defined by polynomials

In [28], it has been shown that any multiple series of the form (2.1) can be
continued meromorphically to the whole space Cn, by the method of Mellin-
Barnes integrals. It is in fact possible to prove a much more general result by the
same method. Let

Pn(X1, . . . , Xr) =
K(n)
∑

k=1

ak(n)X
p1(k,n)
1 · · ·Xpr(k,n)

r (1 ≤ n ≤ N)
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be polynomials, where ak(n) ∈ C, pj(k, n) ∈ N0, and for any fixed j, at least one
of pj(k, n) (1 ≤ n ≤ N , 1 ≤ k ≤ K(n)) is positive. We assume that <ak(n) > 0
for all k and n. Hence

θn = max{| arg ak(n)| ; 1 ≤ k ≤ K(n)}

is smaller than π/2. Define

ζr(s1, . . . , sN ; P1, . . . , PN) =
∞
∑

m1=1

· · ·
∞
∑

mr=1

P1(m)−s1 · · ·PN(m)−sN , (3.1)

where m = (m1, . . . , mr) and sn = σn + itn ∈ C (1 ≤ n ≤ N). It is clear that
there exists a positive constant σa = σa(P1, . . . , PN) such that the series (3.1) is
absolutely convergent when σn > σa for 1 ≤ n ≤ N .

By a multiple strip we mean a set of the form

{(s1, . . . , sN) ∈ CN | σn1 ≤ σn ≤ σn2 (1 ≤ n ≤ N)}, (3.2)

where σn1, σn2 (1 ≤ n ≤ N) are any fixed real numbers with σn1 < σn2. By F(·)
we denote a quantity, not necessarily the same at each occurrence, which is of
polynomial order with respect to the indicated variables.

Theorem 5 The multiple zeta-function (3.1) can be continued meromorphically
to the whole space CN . The possible singularities of it are located only on hyper-
planes of the form

c1s1 + · · ·+ cNsN = u(c1, . . . , cN)− ` (` ∈ N0), (3.3)

where c1, . . . , cN ∈ N0 and u(c1, . . . , cN) is an integer determined by c1, . . . , cN .
Moreover, the estimate

ζr(s1, . . . , sN ; P1, . . . , PN) = O

(

F(t1, . . . , tN)
N
∏

n=1

eθn|tn|

)

(3.4)

holds uniformly in any multiple strip (3.2), except in neighbourhoods of possible
polar sets (3.3).

The case N = 1 of (3.1) was first studied by Mellin [32], [33]. The Mellin-
Barnes integral (1.3) already appeared in those papers. After Mellin, many people
including K. Mahler, P. Cassou-Noguès, and P. Sargos continued his research.
The multi-variable form (3.1) was first discussed by Lichtin [18], [19], [20], [21],
and he proved the continuation of (3.1) when polynomials are hypoelliptic. Then
Essouabri [9], [10] introduced the condition H0S, under which he proved the
continuation. Here we do not give the exact definition of H0S, but it is satisfied
if all coefficients of polynomials have positive real parts. Moreover, though only
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the case N = 1 is discussed in [10], Essouabri mentioned in his thesis [9] that his
result can be generalized to the multi-variable case. See also de Crisenoy [8], in
which a twisted version of (3.1) (for general N) was studied.

Therefore, the meromorphic continuation of (3.1) was included, as a special
case, in Essouabri’s theorem. Nevertheless we give a proof of the above theo-
rem here, because of several reasons. First, our method is quite different from
Essouabri’s and rather simple. Secondly, formula (3.5) below, which is the key
of our proof, implies the recursive structure similar to those discussed in the
preceding section. Thirdly, our method is suitable to obtain various explicit in-
formation, such as location of poles and order estimates, inductively. And finally,
our method can be generalized to the case with general coefficients (similar to
(1.8) and (1.9)).

Remark 1. When we write the (possible) polar sets of ζr in the form (3.3),
we can choose c1, . . . , cN whose common greatest divisor is as small as possible.
We call such tuples (c1, . . . , cN) primitive. Then, in the proof of Theorem 5 it
will be shown that, for any fixed ζr, there are only finitely many primitive tuples
(c1, . . . , cN) such that the (possible) polar sets of ζr are of the form (3.3).

Remark 2. For any fixed c1, . . . , cN , there exists a positive integer v(c1, . . . , cN),
by which the order of the singularity (3.3) is bounded uniformly for any `.

Now we start the proof. We prove Theorem 5 with Remarks 1 and 2 by
induction on

K(P1, . . . , PN) =
N
∏

n=1

K(n).

The argument is a generalization of the proof of Theorem 3 in [28].
First consider the case K(P1, . . . , PN) = 1. Then K(n) = 1 (1 ≤ n ≤ N), so

all the Pn’s are monomials and

ζr(s1, . . . , sN ; P1, . . . , PN) =
∞
∑

m1=1

· · ·
∞
∑

mr=1

N
∏

n=1

(

a1(n)m
p1(1,n)
1 · · ·mpr(1,n)

r

)−sn

= a1(1)−s1 · · ·a1(N)−sN

r
∏

j=1

ζ(pj(1, 1)s1 + · · ·+ pj(1, N)sN).

Hence all the assertions of Theorem 5, Remarks 1 and 2 clearly hold.
Now consider the case K(P1, . . . , PN) ≥ 2. Let σ∗a ≥ σa, and at first assume

that (s1, . . . , sN) is in the region

B∗ = {(s1, . . . , sN) | σn > 2σ∗a(1 ≤ n ≤ N)}.

Since at least one K(n) ≥ 2, changing the parameters if necessary, we may assume
that K(N) ≥ 2. Then

PN(m)−sN =



a1(N)M1(N) +
K(N)
∑

k=2

ak(N)Mk(N)





−sN
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=





K(N)
∑

k=2

ak(N)Mk(N)





−sN (

1 +
a1(N)M1(N)

∑K(N)
k=2 ak(N)Mk(N)

)−sN

,

where Mk(N) = m
p1(k,N)
1 · · ·mpr(k,N)

r . Hence, applying (1.3), we obtain

ζr(s1, . . . , sN ; P1, . . . , PN) =
1

2πi

∫

(γ)

Γ(sN + z)Γ(−z)

Γ(sN)

×
∞
∑

m1=1

· · ·
∞
∑

mr=1

P1(m)−s1 · · ·PN−1(m)−sN−1P ∗
N(m)−sN−zP ∗∗

N (m)zdz, (3.5)

where

P ∗
N(m) =

K(N)
∑

k=2

ak(N)Mk(N), P ∗∗
N (m) = a1(N)M1(N),

and we can choose γ as
−σN + σa < γ < −σa. (3.6)

Then the multiple series on the right-hand side of (3.5) is absolutely convergent
and is the zeta-function

ζr(s1, . . . , sN−1, sN + z,−z; P1, . . . , PN−1, P
∗
N , P ∗∗

N ). (3.7)

Since

K(P1, . . . , PN−1, P
∗
N , P ∗∗

N ) = K(1)× · · · ×K(N − 1)× (K(N)− 1)× 1

<
N
∏

n=1

K(n) = K(P1, . . . , PN),

by the induction assumption we see that (3.7) can be continued meromorphically
to the whole space CN+1, and possible singularities are of the form

c1s1 + · · ·+ cNsN + (cN − cN+1)z = u(c1, . . . , cN+1)− `,

where c1, . . . , cN+1, ` ∈ N0 and u(c1, . . . , cN+1) ∈ Z. If cN = cN+1, then this is

c1s1 + · · ·+ cNsN = u(c1, . . . , cN)− ` (` ∈ N0), (3.8)

which is irrelevant to z. If cN − cN+1 = d0 > 0, then

z = d−1
0 {−c1s1 − · · · − cNsN + u(c1, . . . , cN , d0)} − d−1

0 ` (` ∈ N0), (3.9)

and if cN − cN+1 = −e0 < 0, then

z = e−1
0 {c1s1 + · · ·+ cNsN − u(c1, . . . , cN , e0)}+ e−1

0 ` (` ∈ N0). (3.10)

We write the first term on the right-hand side of (3.9) (resp. (3.10)) as D(s1, . . . , sN ; c)
(resp. E(s1, . . . , sN ; c)) for brevity, where c = (c1, . . . , cN). Denote the set of all
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primitive tuples c = (c1, . . . , cN) appearing in (3.8) (resp. (3.9), (3.10)) by T0

(resp. TD, TE). These sets are finite because of Remark 1. The above (3.9) and
(3.10) can be poles, with respect to z, of the integrand on the right-hand side of
(3.5). The other poles of the integrand are

z = −sN − ` (` ∈ N0) (3.11)

and
z = ` (` ∈ N0). (3.12)

We can assume that σ∗a is so large that all the poles (3.9) and (3.11) are on the
left of the line <z = γ, while all the poles (3.10) and (3.12) are on the right of
<z = γ.

Now, let (s0
1, . . . , s

0
N) be any point in the space CN , and we show that the

right-hand side of (3.5) can be continued meromorphically to (s0
1, . . . , s

0
N).

First, remove the singularities of the form (3.8) from the integrand. These
singularities are cancelled by the factor

(c1s1 + · · ·+ cNsN − u(c1, . . . , cN) + `)v(c1,...,cN )

(by Remark 2 as a part of the induction assumption). Let L be a sufficiently
large positive integer such that, if σn ≥ <s0

n (1 ≤ n ≤ N),

c1s1 + · · ·+ cNsN = u(c1, . . . , cN)− L

does not hold for any c = (c1, . . . , cN) ∈ T0. Define

Φ(s1, . . . , sN) =
∏

c∈T0

L−1
∏

`=0

(c1s1 + · · ·+ cNsN − u(c1, . . . , cN) + `)v(c1,...,cN ),

and rewrite (3.5) as

ζr(s1, . . . , sN ; P1, . . . , PN) = Φ(s1, . . . , sN)−1J(s1, . . . , sN), (3.13)

where

J(s1, . . . , sN) =
1

2πi

∫

(γ)

Γ(sN + z)Γ(−z)

Γ(sN)
Φ(s1, . . . , sN)

×ζr(s1, . . . , sN−1, sN + z,−z; P1, . . . , PN−1, P
∗
N , P ∗∗

N )dz. (3.14)

Then the integrand on the right-hand side of (3.14) does not have singularities
of the form (3.8) in the region σn ≥ <s0

n (1 ≤ n ≤ N).
Since Φ(s1, . . . , sN)−1 is meromorphic in the whole space, in order to complete

the proof of the continuation, our remaining task is to show the continuation of
J(s1, . . . , sN). Let M be a positive integer, and s∗n = s0

n + M (1 ≤ n ≤ N). We
may choose M so large that (s∗1, . . . , s

∗
N) ∈ B∗. Let I1 be the set of all imaginary
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parts of the poles (3.9) and (3.11), and I2 be the set of all imaginary parts of the
poles (3.10) and (3.12), for (s1, . . . , sN) = (s∗1, . . . , s

∗
N).

Case 1. In the case I1 ∩ I2 = ∅, we join D(s∗1, . . . , s
∗
N ; c) and D(s0

1, . . . , s
0
N ; c)

by the segment S(D; c) which is parallel to the real axis. Similarly join E(s∗1, . . . , s
∗
N ; c)

and E(s0
1, . . . , s

0
N ; c) by the segment S(E; c), and join −s∗N and −s0

N by the seg-
ment S(N). Since I1 ∩ I2 = ∅, we can deform the path <z = γ to obtain a new
path C from γ− i∞ to γ + i∞, such that all the segments S(D; c) and S(N) are
on the left of C, while all the segments S(E; c) and the poles (3.12) are on the
right of C (see Fig.1). Then we have

J(s1, . . . , sN) =
1

2πi

∫

C

Γ(sN + z)Γ(−z)

Γ(sN)
Φ(s1, . . . , sN)

×ζr(s1, . . . , sN−1, sN + z,−z; P1, . . . , PN−1, P
∗
N , P ∗∗

N )dz (3.15)

in a sufficiently small neighbourhood of (s∗1, . . . , s
∗
N). Next, on the right-hand side

of (3.15), we move (s1, . . . , sN) from (s∗1, . . . , s
∗
N) to (s0

1, . . . , s
0
N) with keeping the

values of imaginary parts of each sn. Since ζr in the integrand satisfies an estimate
of the form (3.4) by the induction assumption, this procedure is possible; and,
during this procedure, the path C does not cross any poles of the integrand.
Hence the expression (3.15) gives the holomorphic continuation of J(s1, . . . , sN)
to a neighbourhood of (s0

1, . . . , s
0
N).

Case 2. Next consider the case I1 ∩I2 6= ∅. Then the imaginary part of some
member of {D(s∗1, . . . , s

∗
N ; c), −s∗N | c ∈ TD} coincides with the imaginary part

of some member of {E(s∗1, . . . , s
∗
N ; c), 0 | c ∈ TE}. We consider the case

=D(s∗1, . . . , s
∗
N ; c1) = =E(s∗1, . . . , s

∗
N ; c2) (3.16)

for some c1 and c2, because other cases can be treated similarly. The associ-
ated poles are D(s∗1, . . . , s

∗
N ; c1) − d−1

0 `1 and E(s∗1, . . . , s
∗
N ; c1) + e−1

0 `2 (`1, `2 ∈
N0). When (s∗1, . . . , s

∗
N) is moved to (s0

1, . . . , s
0
N), these poles are moved to

D(s0
1, . . . , s

0
N ; c1)− d−1

0 `1 and E(s0
1, . . . , s

0
N ; c1) + e−1

0 `2, respectively. In the case

<D(s0
1, . . . , s

0
N ; c1)− d−1

0 `1 6= <E(s0
1, . . . , s

0
N ; c1) + e−1

0 `2 (3.17)

for any `1 and `2, we modify the argument in Case 1 as follows. Let η be a small
positive number, and consider the oriented polygonal path S ′(D; c1) joining the
points D(s∗1, . . . , s

∗
N ; c1), D(s∗1+iη, . . . , s∗N +iη; c1), D(s0

1+iη, . . . , s0
N +iη; c1), and

then D(s0
1, . . . , s

0
N ; c1) in that order. Similarly define the path S ′(E; c2) which

joins E(s∗1, . . . , s
∗
N ; c2), E(s∗1 + iη, . . . , s∗N + iη; c2), E(s0

1 + iη, . . . , s0
N + iη; c2), and

then E(s0
1, . . . , s

0
n; c2). Then S ′(D; c1) lies on the lower side of the line

L = {z | =z = =D(s∗1, . . . , s
∗
N ; c1) = =E(s∗1, . . . , s

∗
N ; c2)},

while S ′(E; c2) lies on the upper side of L. Because of (3.17), we can define the
path C ′, which is almost the same as C, but near the line L we draw C ′ such that
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it separates

⋃

`1∈N0

(S ′(D; c1)− d−1
0 `1) and

⋃

`2∈N0

(S ′(E; c2) + e−1
0 `2)

(see Fig.2). Then the expression (3.15), with replacing C by C ′, is valid in a
sufficiently small neighbourhood of (s∗1, . . . , s

∗
N). When (s1, . . . , sN) moves along

PSfrag replacements
0 1 2

E(s0
1, . . . , s

0
N) E(s∗1, . . . , s

∗
N)

S(E)

−s∗N −s0
N

S(N)

γ

C
S(D)

D(s∗1, . . . , s
∗
N) D(s0

1, . . . , s
0
N)

Fig.1
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PSfrag replacements

E(s0
1, . . . , s

0
N)

D(s0
1, . . . , s

0
N)

C ′

Fig.2

the polygonal path joining (s∗1, . . . , s
∗
N), (s∗1+iη, . . . , s∗N +iη), (s0

1+iη, . . . , s0
N +iη),

and then (s0
1, . . . , s

0
N) in that order, the path C ′ encounters no pole, hence we

obtain the holomorphic continuation.
Case 3. The remaining case is that

D(s0
1, . . . , s

0
N ; c1)− d−1

0 `1 = E(s0
1, . . . , s

0
N ; c2) + e−1

0 `2 (3.18)

holds for some `1 and `2. Then this might hold for some other pairs of (`1, `2).
In this case we consider the path C ′′ which is almost the same as C, but near
the line L we only require that S(D; c1) is on the left of C ′′, and that the points
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E(s∗1, . . . , s
∗
N ; c2)+e−1

0 `2, E(s0
1, . . . , s

0
N ; c2)+e−1

0 `2 are not on C ′′ for any `2. When
we deform the path <z = γ on the right-hand side of (3.14) to C ′′, we might
encounter several poles of the form (3.10). Then we move (s1, . . . , sN) from
(s∗1, . . . , s

∗
N) to (s0

1, . . . , s
0
N); again the path might encounter several poles of the

same type. Hence, in a sufficiently small neighbourhood U of (s0
1, . . . , s

0
N), the

integral J(s1, . . . , sN) has the expression

−R(s1, . . . , sN) +
1

2πi

∫

C′′

Γ(sN + z)Γ(−z)

Γ(sN)
Φ(s1, . . . , sN)

×ζr(s1, . . . , sN−1, sN + z,−z; P1, . . . , PN−1, P
∗
N , P ∗∗

N )dz, (3.19)

where R(s1, . . . , sN) is the sum of residues of the above poles. Hence R(s1, . . . , sN)
is a (finite) sum of residues of the form Γ(sN)−1Φ(s1, . . . , sN)R(`2), where

R(`2) =
1

(h− 1)!

dh−1

dzh−1

{

(z − z(`2))hΓ(sN + z)Γ(−z)

×ζr(s1, . . . , sN−1, sN + z,−z; P1, . . . , PN−1, P
∗
N , P ∗∗

N )
}∣

∣

∣

∣

z=z(`2)
(3.20)

with z(`2) = E(s1, . . . , sN ; c2) + e−1
0 `2, if the order of the pole is h. This implies

that all possible singularities of R(s1, . . . , sN) are polar sets. Therefore expression
(3.19) gives the meromorphic continuation of J(s1, . . . , sN) to U .

Now we have proved the meromorphic continuation of ζr(s1, . . . , sN ; P1, . . . , PN).
Next we show that all the possible polar sets of ζr(s1, . . . , sN ; P1, . . . , PN) are of
the form (3.3). This is clear for the polar sets of Φ(s1, . . . , sN)−1. The polar sets
of J(s1, . . . , sN) only appear in Case 3. Hence from condition (3.18) we see that
those polar sets are also of the form (3.3). The assertions of Remarks 1 and 2 are
easily verified from the above argument.

Lastly we show the assertion on the order of ζr(s1, . . . , sN ; P1, . . . , PN). Since
(3.7) satisfies an estimate of the form (3.4) by the induction assumption, the
integral on the right-hand side of (3.15) clearly satisfies the same type of estimate
with respect to t1, . . . , tN−1. As for tN , using Stirling’s formula we find that the
integral is

�
∫ ∞

−∞
exp

(

π

2
(|tN | − |tN + y| − |y|) + θN(|tN + y|+ |y|)

)

F(tN , y)dy, (3.21)

which is O(eθN |tN |F(tN)) by Lemma 4 of [26]. Hence we obtain the desired asser-
tion in Case 1, and the treatment of Case 2 is similar.

In Case 3, we have to estimate R(s1, . . . , sN). Since

R(`2) =
1

2πi

∫

K
Γ(sN+z)Γ(−z)ζr(s1, . . . , sN−1, sN+z,−z; P1, . . . , PN−1, P

∗
N , P ∗∗

N )dz,

where K is a small circle round the point z(`2), it is clear that R(s1, . . . , sN)
satisfies an estimate of the form (3.4) with respect to t1, . . . , tN−1. As for tN , the
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relevant exponential factor is the same as the exponential factor in (3.21), hence
we can obtain the desired estimate as above. The proof of Theorem 5 is now
complete.
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