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Introduction

Let P(x),Q(x) be two non-zero polynomials with complex coefficients. Define the associated Dirichlet
series ((s; P, Q) by

((s; P,Q) : ZQ (1)

Clearly, ((s; P, Q) is well-defined when Res is sufficiently large, provided that Q(n) # 0 for alln = 1,2,3, .. .,
which in this paper we always assume.

It is the principal motivation of the present paper to study the analytic properties and the special values
of {(s; P,Q). However, we actually introduce the multi-variable series

(815 -y 8r); (Qny ey Z nt+a1) tn4+a) 2 (n4 )0, (2)
n=1

where s1,...,s, are complex variables and «a1,...,a, € C\{—1,-2,...}, and study its analytic behavior.
Note that (n+a;) ™% = exp(—s; log(n+a;)), where the branch of logarithm is fixed as —7 < arg(n+a;) < 7.
The properties of (1) can be easily deduced from those of (2), as we shall explain later.

Our interests in ((s; P,Q) date back to the beginning of 90’s. In order to evaluate precisely Ray-
Singer analytic torsions for certain special symmetric spaces, during that time, the second author introduced
¢(s; P,Q) and calculated the special values (0; P, Q) and ¢'(0; P,Q). However, the series (1) is indeed a
classical object: Various properties of the more general Dirichlet series

> 3 G ®

ni=1 ni=1 T

where P(z1,...,2k),Q(x1,...,zk) are two polynomials of &k indeterminants with complex coefficients, have
been studied by many mathematicians. Under certain assumptions on the properties of P and @, Mellin
[Mel,2] and Mahler [Mah] established the meromorphic continuation of (3) to the whole complex plane C,
and studied the location of poles. This direction of research was revived in 80’s. Many new results were
obtained by, for instance, Cassou-Nogues [CN1,2,3], Sargos [S1,2], Lichtin [L1,2,3], Eie [E1,2] and Peter[P].
These authors were mainly concerned with the single variable series (3), though the included polynomials
are of several indeterminants. However, Lichtin [L2] proposed the problem of investigating the multi-variable
series

Z Z P(nlv'-'vnk) (4)
= = 1Q1 (N1, ymp)® o Qr(n,y ..oy ng)sr
where P,Q1,...,Q, are polynomials of k£ indeterminants with complex coefficients. Lichtin indeed carried

out such studies in his papers [L4,...,7] when Q1,...,Q, are hypoelliptic. Under the assumption of the
hypoellipticity, he proved in [L4] the meromorphic continuation of (4) to the whole C”. This result especially
implies the meromorphic continuation of (2) and hence of (1). But Lichtin’s method, based on the theory
of D-modules, is rather sophisticated and it is not clear how to deduce further explicit information from
Lichtin’s results.

In the first section of the present paper we prove the meromorphic continuation of (2) by a quite
different method (Theorem A(i)(ii)), which obviously implies the meromorphic continuation of (1) (Theorem
B). Moreover we prove that (1) is holomorphic at any non-positive integers (Theorem C). The starting
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point of our method is the Mellin-Barnes integral formula ((4) in Section 1). The prototype of the method
can already be found in Mellin [M1] (see also Cassou-Nogues [C1,2]). Katsurada [K1,2] discovered that the
Mellin-Barnes formula is useful to study the analytic behavior of double zeta sums. The first author [Mat1,2]
generalized Katsurada’s idea to obtain a proof of meromorphic continuation of Euler-Zagier multiple zeta
sums. The method in this paper is a modification of the argument developed in [Mat1,2].

An advantage of our method is that it gives explicit information of the behavior of the multiple zeta
functions ¢.((s1,...,8:); (a1,...,a,)). For instance, we will prove certain convergent infinite series expan-
sions (Theorem A(nl) and Remark 2). These results show an interesting new feature of our present situation,
because in [Mat1,2] we have obtained similar asymptotic expansions for multiple zeta sums but they are not
convergent (Remark 3).

In the second section, we evaluate the special values of our zeta functions and the associated derivatives
at s = 0 in terms of the special values of Hurwitz zeta functions (Theorems D,E) after establishing a certain
combinatorial identity. We here only give the formulas for ¢(0; P,@) and ¢’(0; P,Q), but by extending
our method, it is possible to show similar formulas for the values at s = 0 of higher derivatives, and also
corresponding formulas at any negative integers.

The evaluation of ¢’(0; P,Q) for some special cases has been studied extensively in connection with
the regularized determinant of the Laplacian [V], [WY], [QC], [Ku]. The regularized determinant of the
Laplacian on the (C*°-functions over) g-dimensional sphere is given by exp(—Z,(0)), where

B ()7 s

Hence the evaluation of the regularized determinant in this case is reduced to that for H; ,;(0), where

e )

Based on [V], an explicit formula for H, ,(0) may be given. See e.g., [Ku]. In the last part of the present
paper we show that our Theorem E 1ncludes such a result as a special case.
The authors express their gratitude to Professor Yoshio Tanigawa and the referee for useful comments.

1. Analytic Properties

1.1. Meromorphic Extension

Let P(z), Q(x) be two non-zero polynomials with complex coefficients. Define the associated Dirichlet
series ((s; P, Q) by

)s

Clearly, ((s; P, Q) is well-defined for Re(s) sufficiently large, provided that Q(n) # 0 for all n = 1,2,3,...
which in this paper we always assume.

In this section, we prove ((s; P, @) admits the analytic continuation to the whole complex plane. For
this, we study the following more general multiple variable zeta functions.

Let aq,...,a, € C\{—1,-2,...}. Define

((s;P,Q) : i () (1)

Cr (815 -y 8r); (aa,y .. Z n+a1) tn4 o) (n4 )70 (2)

This series is well-defined and is clearly convergent absolutely if Re(s; + s2 + ...+ s,) > 1. For our later
convenience, we further assume that Res; > 1,7 =1,...,7. (So Re(s1 + ...+ s,) > 7 indeed.)



Now to write {(s; P, @) in terms of (., first factor Q(z) as Q(x) =b H;nzl(x + 3;), then expand P(z) in
terms of z + 1 to get P(z) =: Y., ai(z + B1)" where a,, # 0. Clearly

s P.Q) =67 (s — 15, ): (Br. Bor . ) 3)

=0

Hence our problem is reduced to the analytic continuation of (.
If r = 1, nothing should be added here. So we may assume that r > 2. The key is the following classical
Mellin-Barnes integral formula

L) (14+N)7° = QLTF’L o (s + 2)['(—2)\*dz, (4)

where I'(s) denotes the standard gamma function, s, A € C, Res > 0, A # 0, Jarg\| < m, —Res < C < 0,
and the path is the vertical line Rez = C.
Indeed, if o, € R<g, from (4) with s = s, and A = «,./n, we get

1 T'(s, I'(— X )
(7’L + al)—s1 . (n + aT)—sr — % (C) %(n + 041)_51 . (7’L+ aT_l)_ST—l . n_éT_zOéidZ, (5)

where —Res, < C < 0. Note that
Re(s1+...+s—1+8+2)>(r—1)+Re(sp) +C>r—1>1.

Hence

(81, -y8r); (01, . yay)) = 2%” /(C) % “Cr((81y ey 8pm1y8r + 2); (1, - ooy 1, 0))a2dz.
(6)

Similarly, from (4) (this time with s = s,_1 and A = a,_1/n assuming a,_1 ¢ R<g), we obtain the
following relation

(815 -y 8r—1,87); (1, .. ar—1,0))

7&/ F(Srfl +ZT71)F(7ZT71)
2mi (Cr_1) F(ST_l)

grfl((Slv ey Sr—2,8r—1 + Sr + erl); (ala ey Op_2, 0))04::711 dzrfla

(7)
where —Res,—1 < Cp—1 —1 < C,_1 <0 and Res; > 1,5 =1,...,r. This (7) is our basis of the induction
procedure.

Remark 1. If a; € R<o\{—1,—2,...}, there exists a positive integer ng¢ such that ng + a;; > 0. Hence (2)
becomes

no o0
dlnta) ™ nta) T+ Y (nta) T (o),
n=1 n=no+1
and the holomorphy of the first sum with respect to si,...,s, is obvious. Therefore we can reduce the

problem to the case o; € R<o.

Proposition 1. For anyr > 1,
(i) The r-ple zeta function (. defined by (2) with . = 0 can be continued meromorphically with respect to
81,...,5. to the whole C"-space, and is holomorphic in a,...,cr—1 if a;j € C\Rg(_1), (1 <j<r—1);
(i) The possible singularities of ¢, are only located on s1+ s2+ ...+ s, =1—k, (k€ Ng:=Z>g);
(iii) The order estimate

CT < ]:(tla . 7t7‘) . epl\t1|+pz\t2\+-~+pr71\tT71|

holds, wheret; = Ims; and p; = |arga;|. Here, and in what follows, F(...) denotes a quantity, not necessarily
the same at each occurrence, which is of polynomial order in the indicated variables.
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Proof. If r =1, (,- is simply the Riemann zeta function. So we are done.

Now assume r > 2. First consider the case a; ¢ R<o,(1 < j < r —1). Then we may apply (7).
Hereafter we assume the validity of Proposition for (,_; and prove the case for (.. We write s; = o, + it;
and z; = x; +iy; (1 <j<r).

By using the order assumption (iii) for {,_1, we see that the integrand on the right-hand side of (7) is

<<€7§|tr71+yr71|(|tr71 +yr71| + 1)0‘7‘71“1’527‘717%

.e_%lyT—1|(|yT71| + 1)—IT71—% . e%‘t“1|(|tr,1| + 1)%—%—1 (8)

. f(tl, ey tT,Q, tT,1 =+ tr —+ yrfl) . epl‘t1|+---+9r72|tr72| |04r71 |1r—1epr—1 ‘yr—l‘_
Since we may assume p,_1 < 7, we find that the above tends to 0 when |y,_1| — oo. Hence we may shift
the path of integration of (7) to Rez,—1 = M — &, where M is a positive integer. The poles of the integrand
are as follows:
(I) poles —s,—1 — k, (k € Ny), coming from the factor I'(s,—1 + 2,-1),
(IT) poles k, (k € Np), coming from the factor I'(—z,_1), and

(ITI) poles coming from the factor ¢,_1.
By the assumption (ii) for ¢,_1, the poles (III) are

s1+ ...+ Se—a+(Spo1+ 8+ 2021) =1—k, (k € Ny),

that is,
ZT_1:1—]{3—(81+...+8T). (9)

Since
Rezp—1 <1—Re(s1+...+s.)=—-Re(s1+...+8—2) —Res,—1+ (1 —Res;) <0+ Cr_1 +0=C,_q,
we see that the poles (9) are all located to the left of the line Rez,_; = C,._1. The poles (I) are clearly to

the left of the same line, because —Re s,_1 < C,_1. Hence the only relevant poles are type (II). Thus, we
obtain

CGr((81yvy8r); (1, .o yap_1,0))

M—1
s , ,
Z ( ; 1)Cr—1((81, vy Sr—2y Sr—1 + Sp +7); (a1, ar_2,0))al_y

/ F(Srfl +Zr71>r(*zr71)
(M—e¢) F(ST—l)

i

_|_
[\

Cr—l((sla ey Sp—2,8r—1 + Sr + Zr—l); (ala ceey (2, 0))air_711 dzr—l-

(10)
Obviously, the poles of the integrand of the above integral, which are (I), (IT) and (IIT) listed above, do not
lie on the path of integration if

™

—Res,—1 <M —¢ and 1—Re(s1+...+s8) <M —g¢,

that is,
Res,—1 >—-M+¢c and Re(si+...+8)>1—M+e.

Therefore, since M is arbitrary, (10) gives the continuation of ¢, to the whole C"-space. The holomorphy
with respect to a1, ..., a,_1 is clear from (10) in case they are € R<q. Even if —1 < a;; < 0 for some j, we
can show the meromorphy with respect to s; and the holomorphy with respect to «; by using Remark 1,
because n+ a; > 0 for any positive integer n. (If a; < —1, we encounter the problem of multi-valuedness of
log(n + «;).) Moreover, the singularities are only coming from the factor

Cro1((81, -y 8r—2,8r—1 + 8 +J); (01 + ... + ap—2,0))
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in the first term on the right-hand side of (10). Those singularities are, by the assumption (ii) for {,_1,
81+...+Sr_2+(8r—1+87«+j):1—]{7 (kENo),

that is,
s1+...+s=1—75—k (j,kENo).

Therefore we now obtain the assertions (i) and (ii) of Proposition 1 for (.
Next we prove (iii). By using (8), we find that the integral on the right-hand side of (10) is

° T T T
< exp (— §|fr—1 +yr—1| — §|yr—1| + §|tr—1|) exp (p1lti] + ...+ pr—altr—2| + pr—1lyr—1])
— 00

. f(tla .. ;tr—Qatr—latTayT—l)dyr—l
™
=exp (prlta| + .- + prsftr—z| + Sltr-1)

*° i v
’ / F(ti,-.  tr,Yr—1) - €Xp ( - §|tr—1 + Yr—1l+ (pr—1 — §)|yr—1|)dyr—1-

Lemma 1. ([Mat2, §5, Lemma 3]) Let p, A, B,a,8 € R, A+ B < 0. Then

/ (lyl + )P exp (Aly + af + Bly + 8])dy = O((|a| + 1)P+1ePlo=Fl 4 (|8 4 1)PHleAle=Fl),

— 00
and the O-constant depends only on p, A and B.
By this lemma, the integral of the right hand side of (10) is
T
< exp (prlta] + ... + proaltr—a| + §|tr71|)
CF(ty, ..ty - (e*%\tr—ll + e(ppl*%)\tr—l\)
< f(tl, ceey tr> - exXp (p1|t1| + ...+ prf2|tr72| + prfl|tr71|)-

On the other hand, by using the assumption (iii) for ¢,_1 again, we find that the first term on the right-hand
side of (10) is
Flti,... ty) - errltaltotoralt—a]

Therefore, we obtain

(81505 80); (1, oy a1, 0))
KF(tr,- o tr) -exp (prlta] + ...+ proalte—o| + proiltr—1l),

which is the assertion (iii) of Proposition 1 for ¢, (with c,. = 0). The proof of Proposition 1 is now complete.
Moreover, from (10) we obtain the asymptotic expansion

Gr((81- 05 80); (a1y v vy e, 0))
(11)

M-1
—Sr—1 . i _
- Z < T )CTl((Sl7"'7ST2)ST1+ST +]);(a17'-'7a7“7270))a5~71+O(|OZT*1|I\/I E)
=0 N 7
with respect to |a,—1| when |a,.—1| — 0. Similarly, we may deduce the asymptotic expansion with respect
to |ay—1| when |a;,.—1| — oo by shifting the path of integration to the left.

Proposition 1 gives sufficient analytic information on function (.((s1,. .., $); (a1, ..., @r—1,0)). Now fi-
nally, combining Proposition 1 with the formula (6), we deduce analytic information on general zeta functions

CGr((81yvy8r);(0a, .o ay)).



We shift the path of integration on the right-hand side of (6) to Rez = M — . By using the estimate
Proposition 1(iii), we find that the integrand of (6) is

e Bt | 4 )7 R B (Jy| 4 )7 eI (| 4 1)R
F(try ot e+ y) - exp (prlta] + o+ proaftea]) o [Tern Y

(p; = larga;|, 1 < j <r) which tends to zero when |y| — oo if p, < 7, and we have already known (Remark
1) that we may assume this inequality p, < 7. Hence the shifting (indicated above) is possible. From
Proposition 1(ii) we see that the poles of (- ((s1,...,8r—1, 8- + 2); (@1, ..., @r—1,0)) are

S1+...+S—1+(sp+2)=1—k,

that is
z2=1—(s1+...+s.) — Kk, (k € Ny).

When Res; > 1, (1 <j <r), we have

Rez <1 —Re(s1+...+s-)=1—Re(s1+...+s.-1) — Res,
< —Res, (if r > 2)
<C,

that is, these poles are on the left of the original path Rez = C. Thus the only relevant poles are z =
0,1,2,..., M — 1. Counting the residues of those poles, we obtain

CGr((81yvy8r); (0, o))
M-l
= kz:% ( kT)CT((Sl,...,ST_l,ST+k>;(a1,...,a7«_1,0))af (12)

1 L(sy + 2)T'(—2)
+ — —————= -G ((s1,- -y Sp—1, 8 + 2); (01, - -, 21, 0)) 0 dz.

The poles of the integrand are
z=—s,—k, z=k, z=1—(s1+...+5s,) — k, (k € No),
which do not lie on the path Rez = M — ¢ if
—Res,, < M — ¢ and 1—Re(s1+...+8)<M-—ce.
Therefore the integral on the right-hand side of (12) is holomorphic (as a function in s1, ..., s,) in the region
Res, > —M +¢ and Re(si+...+s,)>1—M+e.

Since M is arbitrary, now (12) implies the meromorphic continuation of . ((s1,...,s:); (a1,...,a,)) to the
whole C"-space. All singularities are coming from the first term

M-1

Z (I:T) Cr((Sl, ceeySr—1,80 + k)? (alv . '704”"*1’0))0[&'

k=0

Hence, by using Proposition 1(ii), we find that ¢{-((s1,...,s); (a1,...,.)) is holomorphic except for the
possible singularities at
81+...+8T:1—k (k‘ENo)

Therefore we now obtain the first and the second assertions of the following
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Theorem A. For anyr > 1,

(i) The r-ple zeta function (. defined by (2) can be continued meromorphically with respect to si,...,s, to
the whole C"-space, and is holomorphic in vy, ..., a, if oy € C\R<(_1) (1 <5 <r);

(i1) The possible singularities of ¢, are only located at s1 +s2+ ...+ s, =1—k, (k€ Ny :=Z>o);

(i) If || < 1, then

(31 v80)i (s an)) = 3 (‘]jr)g«sl, e Sety e ) (a1, 0))ak,

k=0

Proof of Theorem A (%ii). This is just the Taylor expansion of ¢, with respect to a,.. The radius of convergence
is 1, because the assertion (i) implies that the singularity of «, nearest to the origin is a,, = —1.

Obviously, from Theorem A, we obtain the following

Theorem B. Let P(x), Q(x) be polynomials with complex coefficients. Assume that all roots —(1,...,—Pm
of Q(x)are not in R>1. Define the Dirichlet series ((s; P, Q) associated to P and Q by
P(k)
(s; P,Q) :
Z Q )s
Then, ((s; P,Q) can be meromorphically extended to the whole complex s-plane, and is holomorphic in
ﬂla R 6m
Now set
1 I'(sp +2)['(—2
IM = MC’“((SM ey Sp—1,Sp + 2)7 (ala ceey O, 0))aidz

270 J(M—e) L(sr)
From (12) and Theorem A(iii), we obtain
Lemma 2. With the same notation as above, impr—oc Iny =0 if || < 1.

In view of Remark 3 below, it is of interest to give a direct proof of this fact. The following argument
is valid if |arg a| < 7.

Using I'(—2) = — (57 smesy and Stirling’s formula T'(z) = 2me~7 273 (14 O(‘—i‘), we have
I _L/ (Z(1+S?T))ST+Z 3 (1+O(i))c ((S s s +z)(a a 0))04de
M 2€STF(ST) (M 5) (z(1+%))z+% Sin(ﬁz) |Z| r 1y Or—1y9r ) 1y--y -1, r .
Clearly,
(14 2y % = exp(s, + O(1) = (14+.0(2)),
z| E
and )
1+ o) —e (14 0().
(145 e (1+0(0)
Hence,
I e esrt / e (1 +O( ) X G ((s Sr—1,8r + 2); (« ar_1,0))aidz
M= 5 <~ N . . T T 1y---59r=1,9r 5 1y-eoy Gr—1, rl<.
2esrT(s,) (M—¢) Sin(mz) 2|

Now write y = M — ¢, z = u + 7y. Note that, since u & Z, |e”(“+iy) — e‘”i(“+iy)| >> elvl for any y € R.
Thus, writing sin(7z) = 5; (€™ — e7™), we have

o] +4 5T—1
I < I/ [ +iy) |(1+0(

67"|y| )) |§T((515 sy Sp—1, 8 + Z)? (alv sy Op—1, 0))| ' |OLT|M€pT‘y‘dy'

L+ [yl
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Write s, = o, + it,, then
[(p+iy)* ™Y < |+ iyl e

Thus, from 1+O(1+1y ) < 1, we have

esltrl % |(u +y) 7

oo ] (s s )i, 0)] ey,

IM<<|

Thus, by the fact that . ((s1,...,8r—1,8-+2); (a1,...,a.—1,0)) is absolutely convergent if Re(z) = p = M—¢

is sufficiently large, we get
e o] +Z or—1
Iy <</ LCR i ef‘/g‘ . |, [Ferrvidy.
— 00

But if |y| < p (vesp. |y| > u), then |p +iy| ~ p (resp. |u+ dy| ~ |y|), hence we have

fopr ! lyl 7!
Iy <</ 2. |aT|“epT‘y‘dy +/ . |aT|u€pT|y|dy
—n

erlyl ly|>p emlyl
oo —_
dy ly[o—*
<o Mol [ e+ dy.
oo €lm= Thor)ly] lyl> elm—pr)lyl

If p, = |arg a.| < m, we have
Iy < p7 o o+ o |

where < depends on o,. Therefore limp; o0 Ipy = 0 if |a,| < 1.

Remark 2. Similarly to Theorem A(iii), we can prove that, if |a,.—1] < 1,
Cr((815- 05 80); (g, ooy a1, 0))
- Z < )CT 1((517 ey Sr—2,8r—1 + Sy +])7 (alv sy Qp_2, 0))04171'

Remark 3. In [Mat 1,2], we have encountered asymptotic expansions which are similar to (11), (12) but each
term in the expansions includes an additional factor like ((—k,b), where ((s,b) stands for the Hurwitz zeta
function. By using the formula (2.17.3) of [T] it is easily seen that |¢(—Fk,b)| ~ (2emw) ~¥kF+2, which implies
that the expansions in [Mat 1,2] are not convergent.

1.2 Regularity at non-positive integers

Now we consider the situation at non-positive mtegers of (- ((s—kys,...,9);(a1,...,a.)). By (12), it is
enough to consider the case o, = 0, that is, ¢ ((s — ,8); (@1, Qe 1,0)) Let n € N and h € Ny.
We study the following somewhat more general form: CT(( —k,s,...,8,ns+h);(a1,...,r-1,0)).

First we discuss the case r = 2. By (10) we have

C((s — k,ns+ h); (aq,0))
M—
= Z (S * k> ((n+1)s — k+h+ j)od + (integral term). (13)
7=0

Since the integral term is holomorphic, the poles are coming only from the factors {((n + 1)s — k + h + j).
Hence

Lemma 3. All poles of (2((s — k,ns + h); (@1,0)) are at most of order 1.
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The poles of {(((n+1)s —k+h+j)isat (n+1)s—k+h+j =1, that is

k—h—j+1

5= n+1

On the other hand, we have

i T s R (—sHk—1) . (—s+E—j+ 1), ifi>1,

and the zeros of the latter are at
s=kk—-1,...,k—j5+1. (14)

When j = 0, the pole s = k;—ff{l is really a pole of (2((s — k,ns+h); («1,0)). When j > 1, the pole ’“Z%{H

is cancelled by a zero in the list of (14) if and only if there exists an

k—h—-—j+1
leNp, 0L<I<j—-1, ————— =k —1. 15
0 S0x ) nt1 ( )
These conditions are valid if and only if —h+¢1 € Z and j >k+1—|— . That is,
E—h—j+1 —h—j E—h—(E+1+2)+1
k-h-a+t €Z and koh j+1§ (kt1t5)+ :_ﬁ_
n+1 n+1 n+1 n

Summarizing the above argument, we now obtain
Lemma 4. The set of all poles of (2((s — k,ns + h); (aq1,0)) is

k—h—j+1

{ n+1

h
; 7 >0} \ {integers < ——},
n

and poles are all simple.

Note that, from (13), the residue of (o((s — k,ns + h); (a,0)) at s = E=Rdtl jg

n+1
I G =
- , : (16)
n+1 7
Next we consider the case r = 3. By (10), we have
M-l _
G((s — k,s,ns+ h); (a1, a2,0)) = Z ( i >§2((s —k,(n+1)s+h+j);(a1,0))ad + (integral term).
=0

Using Lemma 4, we have that (2((s —k, (n+1)s+h+j); (@1,0)) has a pole at s = %,j’ >0 and
the residue there is by (16)
i’ k—(h+3) +1
al <l€ - _(nJ,»]l)Jrjl )
(n+1)+1 j’
Let j + j' = 1. The same s = w ,1 > 0 appears from the pairs (4,5') = (0,1), (1,0 — 1),...,(,0). (We

assume M is sufficiently large so M — 1 > 1.) Therefore, the residue at s = % of (5((s — k,s,ns +

h); (a1, as9,0)) is equal to

L k—h—I+1 5’ k_ k=h—l+1 L/ k—h—I+1 L k=h—l+1

Z n+2 ) g (n+1)+1 Z n+2 nt2 ool (17)
(n+1)+1 7 2= = b

Jj=0




If

k—h—-1+1
7+:—mez,m207 (18)
n—+2
_k=h-l+1 . —k=h-l41 .
then( T;:“ ):0f0r32m+1and( l_"J“ ):Oforggl—k—m—l. Therefore we can conclude

that if
m<l—k—m-—1, (19)

then the right hand side of (17) is zero, so actually (3((s—k, s, ns+h); (a1, @2,0)) is holomorphic at s = —m.
The condition (19) is equivalent to I > k + 2m + 1, hence from (18) we have
—mn+2) =k—h—1+1<k—h—(k+2m+1)+1,

ie., m> % This argument implies that the negative integers —m with m > % is not singular.
Now we study the general case. The above results suggest that the function

Gr((s—k,s,...,8,n8+ h); (a1,...,ar-1,0))

is holomprphic at s = —m, which is an integer and < —2. We prove this fact by induction. Assume that
the above claim is true for (,_;. Recall that we have

Q((s—kz Sy...,8,ns+h); (ar,...,a.—-1,0))
M-

Z ( )Q (s =k, s,...,8,(n+1)s+h+4);(a1,...,am_2,0))al_; + (holomorphic term)
=0

(20)

where in particular the binomial coefficients are (;S) instead of (7Sj+k) as r > 3. First, it is easy to see that

Lemma 5. All poles of (((s — k,s,...,8,ns+ h);(a1,...,0,-1,0)), (n € N,h € Ng) are at most of order
1.

Proof. We already know this fact for r = 2. (See e.g., Lemma 3.) Hence, by using (20), the general case
immediately follows by induction.

The induction hypothesm says that (,—1((s—k,s,...,s,(n+1)s+h+j); (ai,...,a.—2,0)) is holomorphic
at s=-mymeZ,m> ﬂ . On the other hand, by Lemma 5 we see that
(7)o = ks (ot st Bt (a2, (21)
is not singular at s =0,—1,—2,-3,...,—(j — 1). Hence we find that if
h+j3 .
< 22
nt1-7 (22)

then the term (21) is non-singular for any non-positive integer. The condition (22) is equivalent to h 4+ j <
(n+1)j, hence j > % This implies that the terms on the right-hand side of (20) with j > % are non-singular
at non-positive integers.

Consider the terms (21) with 0 < j < ﬁ We have already shown that these terms are holomorphic at

s=-meZ,m> hi{ Hence if s = —m, mE Z> is singular, then 0 < m < h‘” . Since j < 2 we find
h+2
m < = —.
n+1 n

Therefore if s = —m, m € Zx¢, is a pole of the right hand side of (20), it is necessary that m < % In other
words,s = —m, m € Zxo,m > % is not a singular point of (20) as desired. We have proved the following
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Proposition 2. The function (.((s — k,s,...,s,ns + h); (a1,...,a,-1,0)) is holomorphic at any integer

s = —-m < f%. In particular, ¢-((s — k,s,...,8); (a1, ...,ar—1,0)) is holomorphic at any non-positive
integers.
The same conclusion holds for (. ((s—k, s, ...,s,ns+h); (a1,...,a,.—1,a,)), which can be easily checked

by using (12). As a direct consequence, we obtain the following

Theorem C. For any two polynomials P(x) and Q(x), the associated zeta function ((s; P, Q) is holomorphic
at any non-positive integers.

2. Special Values

2.1. The Value ¢(0; P,Q)

Let P(z), Q(x),((s; P,Q) be as in the previous section. Denote n := degP, m := degQ® and in this
section we write P(z) = 31 ; a;a’ and Q(z) = b[[}", (x+ B;). Assume that 8; ¢ R<(—1),1 < j <m. Then
by the results in Section 1, {(s; P, Q) is holomorphic at s = 0. Hence it makes sense to talk about {(0; P, Q)
and ¢’'(0; P, Q). In this section, we evaluate those values.

Lemma 6. Assume |3;] <1 (1 <j <m). Then we have

¢(0; P, i — - )
Q) = ZaC +m;;H1 —B;)
Proof. By a direct calculation using m = Zz o (7 )(%) i, we have

c- (k)
PO =2 ST By v By

S S TR < > <zm>21;ak”f R
ZZ SRR GO ( )
:i“ib_s[“@—mii (lj)cmsﬂ — )

+ > B (B () (

#{4;1;#0}>2

k
( ) (ms+li+...4+1ln—1)

) (ms+1+ ... 4 lym —1)].

Therefore, noting ¢(s) = &5 +co+c1(s — 1) +..., and (?) =01if [ # 0, we get

C0P.Q) =3 o)+ 30 3 ()
—0 i .

i j=11;=1 J

:Z az[g(_z) + Z(Bj)i+1 ( + 1) Q(ms + 1)‘5 O]
i=0 j=1

:ZGZC(—Z) + Zalz(ﬁj)iﬂ( s)(=s—1) t JE 1<)9 —(+1)+ I)C(ms 1)
=0 =0 j=1



n m . 71i+1 1
fZazé +Z%Z<ﬂj>’“% "

i=0  j=1
1 m n a; .

This completes the proof of Lemma 6.

In view of Theorem B, the left-hand side of the formula in the statement of Lemma 6 is holomorphic
in 8; € C\R<(_1) (1 < j < m). Hence by analytic continuation with respect to f,...,Bmn, we have the
following

Theorem D. Let P(x),Q(x) be as above. Assume that B; € R<(—1),1 < j < m and define the Dirichlet
series ((s; P, Q) == > 0", 5((:))5. Then,

n n

1 & i )i
CO0:P.Q) = Y ail(—i) + - D~ = ()

i=0 j=11i=0

2.2. The Value ('(0; P, Q)

In this subsection, we evaluate ¢’(0; P, Q). We first introduce the following auxiliary functions.

_ZZQ(k)Sl g(k + B;),

j=1k=1
B(s) i=b~" mZZ() s X Ges o () ()
=0 j=1u= Uiyl =0 ! "

X 3 (k4 By) T log (k4 3)).

Here l} means that /; is omitted from the summation.

Lemma 7. With the same notation as above, under the assumption |3;| < 1/3 (1 < j < m), we have,

(i) ¢'(0; P,Q) = —((0; P, Q) logh — A(0);

(i) A(0) = B(0) and hence {'(0; P,Q) = —((0; P, Q) logb — B(0).

Proof. The proof of (i) is given by a direct calculation. As for (ii), we first note that the assumption
8] < 1/3 (1 < j < m) implies

By —

|/€+ﬁj

<1 (1<j<m, 1<p<m)

for any positive integer k. Therefore

e =y (e ) = 3 () ()"

Ip=0

and similarly

= ) - (G2

=0

Using these formulas we obtain A(0) = B(0), hence (ii) follows.

12



Next we consider B(0). For this, we again introduce the following auxiliary functions. First, for §;,
define

and denote its derivatives by (;. Note that (;(s) = ((s, 1+/3;), where the right-hand side denotes the standard
Hurwitz zeta-function. In the sequel we sometimes write (}(ms + ¢), which means (d/dw)(;(w)|w=ms+c. We
set

[ j=1u=0
n m 4
B*(s) :=b"* Z a; Z (u
=0  j=1u=0 p#j,p=11,=1

Jo
Ve 3 3 - ([ )gms 1, -
)

< i ) i_ (By — B3)" (B4 —ﬁj)l‘I(;S) (:)g(msﬂpﬂq —u),

p

a 52%%2( ) > > G- B) (B

#{p#51p #0231y, 1, L =0

x <ls>...<lS>g(ms+l1+...+l}+...+lm—u).
1 m

Since the innermost sum in the definition of B(s) is —(j(ms +1{1 +...+1l; + ...+l — u), by a direct
calculation, we have the following

Lemma 8. With the same notation as above, under the assumption |3;| < 1/3 (1 <j < m), we have,
B(0) = —B'(0) — B*(0) — B*(0) — B*(0).

In particular,

¢'(0; P,Q) = —¢(0; P,Q) logb + B*(0) + B*(0) + B3(0) + B*(0).

Lemma 9. With the same notation as above, under the assumption |3;| < 1/3 (1 < j <m), we have,

(i) B'(0) = Z] 121 oazzu 0( )( ﬁ])z ”C'( w);
(ii) B2(0 ):_#EifoaiZj 1m0 () (=8 7 S0 (85 = Bp)" T oy Sy

o i—u P "lp_q "lq.
(i) B3(0) = — b 0 S0 @i S (D) (=B5) ™ g et * oty 1y 1ty b1yt g i PP
(iv) B4(0) =

Proof. First, from the definition, (i) follows immediately.

Note that (j(s) = =25 4+ co+c1(s — 1) +... (see e.g., [I]). Thus by (?) = 0if [ # 0, from the definition,
B*(0) = 0, which gives (iv).
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As for (iii), we have

x > (Bp = B;)'" (B4 — B;)'
J#p,J#4,p#4p,q=1,lp+lg—u=1
(=s)(=s—1)...(=s—lp+1) (=s)(=s—1)...(=s—1lg+1) 1
! ! m2s

m

n m i i .
Sad ()Y
i j J#p,J#4q,p#4q,p,q=1
) N Gt DL |

X E (6;0 - ﬂj)lp (ﬁq - ﬂj) ! : DY
lp ly m
Ipylg>1,lp+lg=14u
m n [ . m . .
1 i i (=Bp + Bj)™ (=84 + B5)™
DI S DD b £ 05)7 (2B 1P
me = u l l
j=1i=0 u=0 p#q,p,a=1 lp,lg>1,lp+lg=1+u P 1

This gives (iii).

Finally, let us consider B?(s). For this, we need the following
Sublemma. With the same notation as above, we have

ii@ (1) o - g =0,

Proof. Clearly,

S0 (3) g - 5

_ 1 i i (2 + 1) (—ﬁj)(i+1)_(u+l)(ﬁj _ ﬁp)u+1

F) )k )

1 m 141 i 1 .
“r X () -t )
j,p:l k=0
1 « . .
=7 2 (B8 =)™ = (=)™)

This completes the proof of the sublemma.
Now let us come back to the proof of Lemma 9(ii). By the definition,



1
—— 5+ holomorphic terms)| _

provided that

iai i i <;> (=8 i(ﬂj — Bp) u—lk - =0.

But by the sublemma above,

> () e s <o

u=0 j=1p=1

This then completes the proof of (ii) and hence Lemma 9.
By analytic continuation, we may remove the assumption |3;| < 1/3 (1 < j < m). Therefore, we have
the following

Theorem E. Let P(z) = Y.I ja;z’, Q(z) = bITjZ, (z + Bj) be polynomials with complex coefficients.
Assume that §; € R<(_1),1 < j < m. Define the Dirichlet series ((s; P,Q) := >~ Pn) Then,

n=1 Q(n)°
(0, P,Q) = <<0PQlogb+ZZalZ() 8 ()

1 & = —Bp + B))'* (=B + B;)'"
_m_zz Z() Z Z ( pl i) ( ql j
j=1i=0 u=0 p#q,p,q=1lp,lg>1,lp+lg=1+u p q
1 - - Z u u 1 1
NN Z() %) ple—ﬁp) +1u—+1;;

Here (j(s) := Y poy W = ((s,1 4 B;) denotes the standard Hurwitz zeta function associated to (3;.

2.3. Determinant of the Laplacian

Concerning the zeta-function Hy 4(s) defined by (5) in the Introduction, Kumagai [Ku, Lemma 3] proves
that

/ o £ — %o _ i . ﬂ dt1 l
g,d(O)*;(k g)*logk — 5 d+1 1Sl§l:0dd <l+1)1<j<lz,j;oddj W
d (—p



On the other hand, Theorem E with P(z) = ¢, Q(z) = z(z + g) (and hence 31 = 0, 3 = g) implies

u+1 u

5.a(0) +Z<) 9)" ¢ (- u,1+g)*i( d+1<d+1z Z<> ] ;l) (2)

Substituting the standard formula

g
((—u,149) = (—u) +>_ k" logk,
k=2
we find that the right-hand side of (2) is

d d d d g
— / d "(—u _ \d—u u
=+ oS () o 3 () oYk s
gd+1

d u
% d+1 (jzl ;<Zii>(1)u+1;%)'

We will show that the above coincides with the right-hand side of (1). Since the third term of the above is
equal to > 7_,(k — g)%log k, what we have to check is that

> <;lj:11) > %2d”(§%+i(1)““<iii)gl). (3)

1<i<d,l:0dd 1<j<l,j:0dd -7

(Z:[D = (uil) + (Z) for u<d, (4)

Moreover, noting

we have .
S ()2
u=1 utl ]:1‘7
d—1 u d—1 u d
d 1 d 1 1
e ()R Ee e
u=1 u+ j=1 Jo= u j=1 J j=1 J
d u—1 d—1 u—1 d
1 d 1 1 1
= _ —1)% ( — _) 1 d+1 -
S () 55 -2 () () r ey
u=2 j=1 u=1 7j=1 Jj=1

En):

Therefore, it suffices to prove the following
Lemma 10. The following identity holds:
d d
d+1 1 _ 1 (d\ 1
> () x i X)) g
1<1<d, l:0dd 1<j<l,jiodd 7 =7 =2 17

Before proving this Lemma, let us consider the left-hand side first. For this, let

1<5<l,j Oddj
d+1
1(d) = ) sw),
141
1<1<d,l:0dd
d+1
J(d) = ( + )s<z+1)
+1
0<i<d—1,l:even



Then the left-hand side of (5) is just I(d), and we have
I(d)y=I(d—1)+ J(d—1)+(d)S(d), (6)

2d 1—6(d)

J(d) = J(d=1)+1(d = 1)+ (26(d) = )S(d) + 57 = —

(7)

where §(d) = 1 or 0 according as d is odd or even. In fact, (6) comes directly from (4). As for (7), by
definition and (4), we have

sty =sa-n+a@sa@+ Y (f)sa+n

0<Il<d-—1,l:even

d
=J(d—1)+8(d)S(d) + 1+ Stk 1 2)
OSkggg;km¢j<k‘*1>

=(J(d—=1)+6(d)S(d)+1)+I(d—1)— (1 —6(d)S(d—1) + > (d) !

1<k<d—2,k:odd k+1/k+2
Here in the last step we use the fact that S(k + 2) = S(k) + k41-2 for k odd. But (k+1) k}_Q = #(zi;)
Hence to complete the proof of (7), it suffices to show that
d+1
> =29 (d+1)— (1 —6(d)),
k+2
1<k<d—2,k:0dd
which may be deduced from
d+1) <& 1
—9d+l 3 o =
> ( ) Z( )_2 d=3=5(d+1)(d+2)
1<k<d—2 h=3
and the similar identity
d+1 1
Z (1)k< + ) =d——(d+1)(d+2)— (-1)%1,
k42 2
1<k<d—2
Now, from (6) and (7), we obtain the following recursion formula
I(d+1) = I(d) = I(d) + 6(d + 1)S(d + 1) + (5(d) — 1)S(d) + 20 _1-41)
B d+1 d+1
Easily,
1—4(d
0(d+1)S(d+1)+ (6(d) —1)S(d) — (@) =0
d+1
Hence, we arrive at the relation
2d
Id+1)=2I(d . 8
(d+1) = 21(d) + Q

Proof of Lemma 10. Induction on d. Clearly if d = 1,2, 3, (5) holds. Assume now that (5) is valid for d > 3,
then from the induction hypothesis and (8), we have

I(d+1) = 2% 1(% +d+1+d Z ())
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Thus it suffices to show that

d d+1
1 N (d+ 1)1
e (f)i=-ew (s )
d+1 o J/J = J /7
Noting (jfl)% = dLH (d;.rl) as before, we have
d+1
. 1\ 1
>
J J

Jj=2

ji(l)j (j) % + %ﬂ ji(l)j (dj 1> + (71)d+1di 1
:jz:(_”j (j); - ﬁ (4= %) + <—1>d+1d%1

d
S5

which is equivalent to (9). This completes the proof of Lemma 10, and hence establish the equivalence of
(1) and (2).
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