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Abstract. In this paper, we first give a brief survey on the the-
ory of meromorphic continuation and natural boundaries of mul-
tiple Dirichlet series. Then we consider the double Dirichlet series
Φ2(s) defined by the convolution of logarithmic derivatives of the
Riemann zeta-function. Especially we propose the conjecture that
Φ2(s) would have the natural boundary on <s = 1, and give a
supportive evidence. We further present an application of Φ2(s)
to the Riesz mean, and discuss its multiple analogues.

1. The analytic continuation of multiple Dirichlet series

Let s = σ+it be a complex variable, and P (X1, . . . , Xr) a polynomial
of complex coefficients. The multiple zeta-function

ζr(s; P ) =

∞
∑

m1=1

· · ·

∞
∑

mr=1

P (m1, . . . , mr)
−s(1.1)

was first studied by Mellin [29], [30], and independently by Barnes [5],
[6] for P a linear form, at the beginning of the 20th century. Mellin
proved the meromorphic continuation of (1.1) to the whole complex
plane C if all the coefficients of P have positive real parts. Several
mathematicians after Mellin proved the meromorphic continuation of
(1.1) under weaker assumptions. At present, the assumption (H0S)
introduced by Essouabri [12] is the weakest. Essouabri [11] also pointed
out that the multi-variable generalization

ζr(s1, . . . , sn; P1, . . . , Pn) =
∞
∑

m1=1

· · ·
∞
∑

mr=1

P1(m1, . . . , mr)
−s1(1.2)

× · · · × Pn(m1, . . . , mr)
−sn

of (1.1), where s1, . . . , sn ∈ C and P1, . . . , Pn ∈ C[X1, . . . , Xr], can be
continued meromorphically to the whole space Cn under the same type
of assumption.
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A special type of multi-variable multiple series

ζEZ,r(s1, . . . , sr) =

∞
∑

m1=1

· · ·

∞
∑

mr=1

m−s1

1 (m1 + m2)
−s2(1.3)

× · · · × (m1 + · · ·+ mr)
−sr ,

which is called the Euler-Zagier r-fold sum, has been studied exten-
sively in recent years. The meromorphic continuation of (1.3) to Cr

is included in the above theorem of Essouabri [11], but [11] is unpub-
lished. Various different proofs of the continuation were published by
Arakawa and Kaneko [3], Zhao [37], Akiyama, Egami and Tanigawa
[1], and the second-named author [27]. The method in [27] is based on
the Mellin-Barnes integral formula

(1 + λ)−s =
1

2πi

∫

(c)

Γ(s− z)Γ(z)

Γ(s)
λ−zdz(1.4)

(where s, λ ∈ C, λ 6= 0, | argλ| < π, <s > 0, 0 < c < <s, and the path
of integration is the vertical line from c − i∞ to c + i∞), which was
already used in Mellin’s papers [29], [30].

For arithmetical applications, it is important to consider various mul-
tiple Dirichlet series with arithmetical coefficients. Peter [32] discussed
the analytic continuation of the series

∞
∑

m1=1

· · ·

∞
∑

mr=1

a1(m1) · · ·ar(mr)

P (m1, . . . , mr)s
,(1.5)

where ak(mk) (1 ≤ k ≤ r) are complex numbers. Actually he treated
the more general situation that P (m1, . . . , mr) in the denominator is
replaced by P (λ1(m1), . . . , λr(mr)), where λk(m) are complex numbers
in a certain fixed cone on C satisfying limm→∞ |λk(m)| = ∞ (1 ≤ k ≤
r). The multi-variable series

∞
∑

m1=1

· · ·

∞
∑

mr=1

f(m1, . . . , mr)

ms1

1 · · ·m
sr

r

,(1.6)

where f(m1, . . . , mr) is a non-negative arithmetical function, was stud-
ied by de la Bretéche [8].

In connection with sums of the Euler-Zagier type, multiple L-series
defined by twisting (1.3) by Dirichlet characters have been investigated
by Goncharov [19], Arakawa and Kaneko [3], [4], Akiyama and Ishikawa
[2], and Ishikawa [21], [22].
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More generally, we may claim that if Dirichlet series

ϕk(s) =

∞
∑

m=1

ak(m)

ms
(1 ≤ k ≤ r)(1.7)

behave nicely, then we can show that the multiple Dirichet series of the
form

Φr(s1, . . . , sr; ϕ1, . . . , ϕr) =

∞
∑

m1=1

· · ·

∞
∑

mr=1

a1(m1)

ms1

1

a2(m2)

(m1 + m2)s2

(1.8)

× · · · ×
ar(mr)

(m1 + · · ·+ mr)sr

also behaves nicely. In fact, the following theorem was proved in Mat-
sumoto and Tanigawa [28].

Theorem 1.1. ([28]) Assume that ϕk(s) (1 ≤ k ≤ r) are abso-

lutely convergent for σ > αk(> 0), can be continued meromorphically

to the whole plane C, holomorphic except for a possible pole (of or-

der at most 1) at s = αk, and of polynomial order in any fixed strip

σ1 ≤ σ ≤ σ2. Then Φr(s1, . . . , sr; ϕ1, . . . , ϕr) can be continued mero-

morphically to the whole space Cr, and the location of its possible singu-

larities can be described explicitly. In particular, if all ϕk(s) are entire,

then Φr(s1, . . . , sr; ϕ1, . . . , ϕr) is also entire.

The proof of the above theorem is an analogue of the second-named
author’s proof of the meromorphic continuation of (1.3) given in [27],
whose basic tool is the Mellin-Barnes formula (1.4). The idea of apply-
ing formula (1.4) in such a situation had been already mentioned by
the first-named author [10] in the one-variable case.

The authors express their sincere gratitude to Professor Gautami
Bhowmik for pointing out an error in the original manuscript, and
useful suggestions. In particular, the form of Conjecture (B) below
was first suggested by her.

2. An example of double Dirichlet series with a natural

boundary

In Theorem 1.1, there is the condition that ϕk(s) are holomorphic
except for only one possible pole. Actually it is possible to prove a
result of similar type under the weaker condition that each ϕk(s) has
finitely many poles.
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However, if some of ϕk(s) has infinitely many poles, the behaviour
of the multiple series Φr(s1, . . . , sr; ϕ1, . . . , ϕr) may be quite different.
The following simple example illustrates this phenomenon. Let Λ(n)
be the von Mangoldt function, and

M(s) = −
ζ ′

ζ
(s) =

∞
∑

n=1

Λ(n)

ns
,(2.1)

where ζ(s) is the Riemann zeta-function. Then M(s) is meromorphic
in the whole plane, and has infinitely many poles because all zeros of
ζ(s) are the poles of M(s). In fact it is known that

N(T ) ∼
1

2π
T log T (T ≥ 2)(2.2)

(Theorem 9.4 of Titchmarsh [36]), where N(T ) is the number of zeros
(counted with multiplicity) of ζ(s) in the region 0 < σ < 1, 0 < t ≤ T ,
which is expected to be equal to the number of poles of M(s) in the
same region because all zeros of ζ(s) are conjectured to be simple.

Let

Φ2(s) = Φ2(0, s; M, M) =

∞
∑

k=1

∞
∑

m=1

Λ(k)Λ(m)

(k + m)s
.(2.3)

This can be rewritten as

Φ2(s) =

∞
∑

n=1

G2(n)

ns
,(2.4)

where

G2(n) =
∑

k+m=n

Λ(k)Λ(m).(2.5)

The series on the right-hand side of (2.3), (2.4) is absolutely convergent
for <s > 2, because

G2(n) ≤
n−1
∑

k=1

log k · log(n− k) ≤ n(log n)2.(2.6)

In the present paper we will show, under the assumption of certain
conjectures, that Φ2(s) has the natural boundary on the line <s = 1
(Theorem 2.2 below). Therefore it seems that the behaviour of Φ2(s)
is completely different from that of multiple series studied in [28].

The history of the investigation of natural boundaries of Dirichlet se-
ries also goes back to the beginning of the 20th century. The analytic
continuation and the natural boundary of the function

∑

p p−s (p runs

over primes) were studied by Kluyver [23], Landau [25], and Landau
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and Walfisz [26]. In 1928, Estermann published two papers [13], [14]
on natural boundaries of Dirichlet series. In the former paper [13], he
considered a certain class of Dirichlet series which have Euler products,
and gave a criterion when the series can be continued to the whole plane
and when it has the natural boundary. The continuation and natural
boundaries of Euler products were further studied in more general situ-
ations by several mathematicians such as Dahlquist [9], Kurokawa [24].
A multi-variable generalization was recently discussed by Bhowmik,
Essouabri and Lichtin [7].

The results in the present paper give a different direction of research
on natural boundaries of Dirichlet series. A part of the present work
was already announced on the occasion of a conference on number
theory (in honour of Professor Akio Fujii) held at Rikkyo University,
Tokyo, in January 2005. On the other hand, independently of the
present work, Tanigawa and Zhai [35] have considered Dirichlet series
which are more general than ours, and have discussed the same type
of problems (except for the Riesz mean). Their proof of the claim
on natural boundaries (Theorem 1.3 of [35]) seems incomplete; some
condition similar to our (B) below seems to be necessary to verify their
argument.

We mention here the number-theoretic motivation of the study of
Φ2(s). The function G2(n) defined by (2.5) is a classical subject matter
of number theory, because it is connected with the famous conjecture
of C. Goldbach (that is, any even integer (≥ 4) can be expressed as a
sum of two primes); in fact, the conjecture implies that G2(n) > 0 for
all even n ≥ 4. Fujii [15] studied the mean value of G2(n) and proved
that, if we assume the Riemann hypothesis (RH) for ζ(s), then

∑

n≤X

G2(n) =
1

2
X2 + O(X3/2)(2.7)

for any large positive X. In [16], Fujii improved his result to obtain

∑

n≤X

G2(n) =
1

2
X2 −H(X) + O((X log X)4/3)(2.8)

under RH. Here

H(X) = 2
∑

ρ

X1+ρ

ρ(1 + ρ)
,

where ρ runs over the non-trivial zeros of ζ(s), counted with multiplic-
ity.
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From the work [20] of Hardy and Littlewood it is expected that G2(n)
for even n is approximated by nS2(n), where

S2(n) =
∏

p|n

(

1 +
1

p− 1

)

∏

(p,n)=1

(

1−
1

(p− 1)2

)

.(2.9)

Moreover it follows from Lemma 1 of Montgomery and Vaughan [31]
that

∑

n≤X

nS2(n) =
1

2
X2 + O(X log X).(2.10)

From this viewpoint, Fujii [16] reformulated his formula (2.8) into
∑

n≤X

(G2(n)− nS2(n)) = −H(X) + O((X log X)4/3).(2.11)

Hence the term H(X) represents the main oscillation in the above
formulation of Goldbach’s problem. Some properties of H(X) have
been studied in Fujii [17].

By (2.4) and Perron’s formula we have

∑

n≤X

G2(n) =
1

2πi

∫ c+iT

c−iT

Φ2(s)
Xs

s
ds + O(T−1X2+ε)(2.12)

with c > 2. Therefore the study of Φ2(s) will be useful to understand
the behaviour of G2(n). In the next section we will prove the following:

Theorem 2.1. (under RH) The function Φ2(s) can be continued mero-

morphically to the half-plane <s > 1, and holomorphic except for the

simple poles at s = 2 (with residue 1) and s = 1 + ρ (with residue

−2n(ρ)/ρ) for any non-trivial zero ρ of ζ(s), where n(ρ) is the multi-

plicity of ρ.

By this theorem, we can shift (under RH) the path of integration on
the right-hand side of (2.12) to <s = 1 + ε. We encounter the poles
s = 2 and s = 1 + ρ, and the sum of their residues is (1/2)X2−H(X),
which coincides with the explicit terms on the right-hand side of (2.8).
In particular, we find that the properties of H(X) are closely connected
with the behaviour of Φ2(s) on the line <s = 3/2.

Next we consider the behaviour of Φ2(s) on the line <s = 1. We
propose the following:

Conjecture 2.1. The line <s = 1 is the natural boundary of Φ2(s).
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In the present paper we will show an evidence which supports the
above conjecture. Let I be the set of all imaginary parts of non-trivial
zeros of ζ(s). A well-known conjecture speculates that the positive
elements of I would be linearly independent over the rationals. The
following statement is a special case of this conjecture:

(A) If γj ∈ I (1 ≤ j ≤ 4) and γ1 + γ2 = γ3 + γ4(6= 0), then (γ3, γ4)
equals (γ1, γ2) or (γ2, γ1).

These conjectures were mentioned on p.50 of Fujii [18]. In that paper
Fujii made an extensive study on additive properties of the zeros of ζ(s).
For instance he proved that the set

{γ1 + γ2 | γ1, γ2 ∈ I, γ1 > 0, γ2 > 0}

is uniformly distributed mod 1 (Corollary 3 of [18]).
Here we introduce the following quantitative version of (A):

(B) There exists a constant α, with 0 < α < π/2, such that if γj ∈ I
(1 ≤ j ≤ 4), γ1 + γ2 6= 0, and (γ3, γ4) is neither equal to (γ1, γ2) nor to
(γ2, γ1), then

|(γ1 + γ2)− (γ3 + γ4)| ≥ exp (−α(|γ1|+ |γ2|+ |γ3|+ |γ4|)) .(2.13)

Clearly (B) implies (A).
In Section 4 of the present paper we will prove that, under RH, the

set

K = {κ | κ = γ1 + γ2 for some γ1, γ2 ∈ I} \ {0}(2.14)

is dense in the whole set of real numbers R. This result will yield the
following theorem.

Theorem 2.2. (under RH) If we assume that (B) is true, then Con-

jecture 1 is true.

Hence the continuation achieved by Theorem 1.1 seems to be best-
possible. It is therefore not rash to propose the following

Conjecture 2.2. The error term on the right-hand side of (2.8) is to

be O(X1+ε) and Ω(X), where Ω(X) means that it is not o(X).
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3. Proof of Theorem 2.1

In this section we prove Theorem 2.1. First we assume <s > 2 + 2ε.
Then we have

Φ2(s) =
∞
∑

k=1

∞
∑

m=1

Λ(k)Λ(m)

(k + m)s
(3.1)

=
∞
∑

k=1

∞
∑

m=1

Λ(k)Λ(m)

ks

(

1 +
m

k

)−s

.

We apply the Mellin-Barnes formula (1.4) with λ = m/k to (3.1) to
obtain

Φ2(s) =
∞
∑

k=1

∞
∑

m=1

Λ(k)Λ(m)

ks

1

2πi

∫

(c)

Γ(s− z)Γ(z)

Γ(s)

(m

k

)−z

dz(3.2)

=
1

2πi

∫

(c)

Γ(s− z)Γ(z)

Γ(s)

∞
∑

k=1

Λ(k)k−s+z
∞
∑

m=1

Λ(m)m−zdz.

Two infinite series in the integrand are convergent when σ− c > 1 and
c > 1. These conditions, and also the condition 0 < c < σ (which is
necessary to apply (1.4)), are satisfied by the choice c = 1 + ε. Under
this choice of c, we have

Φ2(s) =
1

2πi

∫

(c)

Γ(s− z)Γ(z)

Γ(s)
M(s− z)M(z)dz.(3.3)

The next step is to shift the path of integration from <z = c = 1+ ε
to <z = −ε. First we have to show that this shifting is possible. It is
known that

N(T + 1)−N(T ) � log T(3.4)

for any T ≥ 2, where f � g means f = O(g) (Theorem 9.2 of Titch-
marsh [36]). Hence we can find an arbitrarily large T such that

|T − γ| � (log T )−1(3.5)

for any γ ∈ I. Combining (3.5) with the formula

M(z) = −
∑

|y−γ|<1

1

z − ρ
+ O(log(|y|+ 2)) (y = =z, γ = =ρ),(3.6)

which is known to hold uniformly for −1 ≤ x = <z ≤ 2 (Theorem
9.6(A) of [36]), we see that, if T satisfies (3.5), then

M(z) � (log T )2(3.7)
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for z = x+ iT , −1 ≤ x ≤ 2. Also, M(s−z) = O(1) for −ε ≤ x ≤ 1+ε.
Hence, using Stirling’s formula, we have

∫ 1+ε+iT

−ε+iT

Γ(s− z)Γ(z)

Γ(s)
M(s− z)M(z)dz � e−(π/2)(T+|t−T |−|t|)(3.8)

×
(|t− T |+ 1)σ−1/2(log T )2

(|t|+ 1)σ−1/2T 1/2

∫ 1+ε

−ε

(|t− T |+ 1)−xT xdx

for any T satisfying (3.5), and (3.8) tends to 0 as T tends to infinity.
This implies that the above shifting is possible.

In the course of this shifting, we encounter the poles z = 1, z = ρ
for any non-trivial zero, and z = 0. The residues of the integrand at
those poles are

M(s− 1)

s− 1
, −n(ρ)

Γ(s− ρ)Γ(ρ)

Γ(s)
M(s− ρ)

and
M(s)M(0) = −M(s) log 2π,

respectively. Hence we obtain

Φ2(s) =
M(s− 1)

s− 1
−
∑

ρ

Γ(s− ρ)Γ(ρ)

Γ(s)
M(s− ρ)−M(s) log 2π(3.9)

+
1

2πi

∫

(−ε)

Γ(s− z)Γ(z)

Γ(s)
M(s− z)M(z)dz.

Now we continue Φ2(s) meromorphically by using (3.9). The first and
the third terms on the right-hand side of (3.9) are clearly meromorphic
on the whole plane. The poles of the third term coincide with the poles
of M(s), which are s = 1 and s = ρ (non-trivial zeros). The poles of
the first term are s = 2, s = ρ + 1, and s = 1. The residues of the first
term at s = 2 and s = ρ + 1 are 1 and −n(ρ)/ρ, respectively.

The integral on the right-hand side of (3.9) is convergent uniformly in
any compact subset of the half-plane <s > 1−ε, and hence holomorphic
in that half-plane. Actually it is possible to continue this integral
meromorphically to the whole plane, by shifting the path further to
the left.

The most difficult part is the second term

B2(s) = −
∑

ρ

Γ(s− ρ)Γ(ρ)

Γ(s)
M(s− ρ).(3.10)

The factor Γ(s − ρ) has poles at s = ρ − ` (` = 0, 1, 2, . . .), while the
factor M(s − ρ) has poles at s = ρ + 1 and at s = ρ + ρ′, where ρ′

denotes the non-trivial zeros of ζ(s). In order to control this situation,
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we now assume RH (to the end of this section). Then the only poles
of B2(s) in the region <s > 1 are s = ρ + 1 for non-trivial zeros ρ, and
the residue there is

−n(ρ)
Γ(1)Γ(ρ)

Γ(ρ + 1)
= −

n(ρ)

ρ
.

These poles are isolated singularities, and hence B2(s) can be continued
to <s > 1. This implies the meromorphic continuation of Φ2(s) to
<s > 1. The residue of Φ2(s) at s = 2 is 1, and at s = 1 + ρ is

−
n(ρ)

ρ
−

n(ρ)

ρ
= −

2n(ρ)

ρ
.

Now the proof of Theorem 2.1 is complete.

4. Proof of Theorem 2.2

To prove Theorem 2.2, we use the classical explicit formula

M(s) = b +
1

s− 1
+

1

2

Γ′

Γ

(s

2
+ 1
)

−
∑

ρ

(

1

s− ρ
+

1

ρ

)

,(4.1)

where b = 1 + (C0/2) − log 2π and C0 is Euler’s constant (formula
(2.12.7) of [36]). Substituting this into (3.10), for <s > 1 we obtain

B2(s) =−
∑

ρ

Γ(s− ρ)Γ(ρ)

Γ(s)

{

b +
1

s− ρ− 1
+

1

2

Γ′

Γ

(

s− ρ

2
+ 1

)}

(4.2)

+
∑

ρ

∑

ρ′

Γ(s− ρ)Γ(ρ)

Γ(s)

(

1

s− ρ− ρ′
+

1

ρ′

)

=B21(s) + B22(s),

say. Clearly B21(s) is meromorphic on the whole plane, and has no pole
on the line <s = 1. To investigate B22(s), we assume RH (to the end
of this section), and rewrite ρ = ρ1 = 1/2+ iγ1 and ρ′ = ρ2 = 1/2+ iγ2

to obtain

B22(s) =
1

Γ(s)

∑

ρ1

∑

ρ2

Γ(s + 1− ρ1)Γ(ρ1)

(s− ρ1 − ρ2)ρ2
(<s > 1).(4.3)

Therefore B22(s) may behave singularly as s tends to ρ1 + ρ2, that is,
any point of the form 1+ iκ with κ ∈ K (where K is the set defined by
(2.14)). Before studying this phenomenon closely, we first prove

Lemma 4.1. (under RH) The set K is dense in R.
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Proof. It is classically known that

N(T ) =
1

2π
T log T − C1T + O(log T )

(

C1 =
1 + log 2π

2π

)

(Theorem 9.4 of [36]), and, under RH, the error term in the above
formula can be replaced by O(log T/ log log T ) (Theorem 14.13 of [36]).
Therefore, for any fixed h ∈ R, the number of zeros on the interval
(1/2 + iT, 1/2 + i(T + h)] is

1

2π
(T + h) log(T + h)− C1(T + h)

(4.4)

−
1

2π
T log T + C1T + O

(

log T

log log T

)

=
1

2π
T

{

log T + log

(

1 +
h

T

)}

+
1

2π
h

{

log T + log

(

1 +
h

T

)}

− C1h−
1

2π
T log T + O

(

log T

log log T

)

=
h

2π
log T + O

(

log T

log log T

)

.

There exists a sufficiently large T0 = T0(h), such that the right-hand
side of (4.4) is positive for any T ≥ T0. Let α be any non-zero real
number, and ε be arbitrarily small. Then, by using this positivity, we
can find a sufficiently large T = T (α, ε) and γ1, γ2 ∈ I, satisfying

γ1 ∈ (T + α− ε/2, T + α + ε/2], γ2 ∈ (−T − ε/2,−T + ε/2].

Hence |α − (γ1 + γ2)| < ε. Moreover, if ε < |α|, then γ2 6= −γ1, so
γ1 + γ2 ∈ K. Thus we conclude the assertion of the lemma.

In view of the above lemma we now know that the points of the form
1 + iκ (κ ∈ K) are dense on the line <s = 1. Now we assume (B), and
prove the following

Lemma 4.2. (under RH and (B)) For any κ ∈ K, the function B22(s)
tends to infinity as s tends to 1 + iκ from the right.

Proof. By (A) we see that there is only one pair (γ0
1 , γ

0
2) (and its

reverse-ordered pair (γ0
2 , γ

0
1) ) satisfying γ0

1 + γ0
2 = κ. Put ρ0

1 = (1/2)+
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iγ0
1 , ρ0

2 = (1/2) + iγ0
2 . Then

B22(s) =
n(ρ0

1)n(ρ0
2)

Γ(s)

{

Γ(s + (1/2)− iγ0
1)Γ((1/2) + iγ0

1)

(s− 1− iγ0
1 − iγ0

2)((1/2) + iγ0
2)

+
Γ(s + (1/2)− iγ0

2)Γ((1/2) + iγ0
2)

(s− 1− iγ0
1 − iγ0

2)((1/2) + iγ0
1)

}

+
1

Γ(s)

∑

γ1

∑

γ2

∗ Γ(s + 1− ρ1)Γ(ρ1)

(s− ρ1 − ρ2)ρ2

= B∗
22(s) + B∗∗

22(s),

say, where the symbol
∑∑∗ means the sum over all (γ1, γ2) satisfying

(γ1, γ2) 6= (γ0
1 , γ

0
2), (γ

0
2 , γ

0
1). Then B∗

22(s) is meromorphic on the whole
plane, and its residue at s = 1 + iκ = 1 + i(γ0

1 + γ0
2) is

n(ρ0
1)n(ρ0

2)

Γ(1 + iκ)

{

Γ((3/2) + i(κ− γ0
1))Γ((1/2) + iγ0

1)

(1/2) + iγ0
2

(4.5)

+
Γ((3/2) + i(κ− γ0

2))Γ((1/2) + iγ0
2)

(1/2) + iγ0
1

}

=
2n(ρ0

1)n(ρ0
2)

Γ(1 + iκ)
Γ(ρ0

1)Γ(ρ0
2),

which does not vanish. That is, B∗
22(s) →∞ as s → 1 + iκ. Therefore

the remaining task is to show that B∗∗
22(s) remains finite as s → 1 + iκ.

Putting s = 1 + η + iκ (η ≥ 0, small), we have

B∗∗
22(1 + η + iκ) =

1

Γ(1 + η + iκ)
(4.6)

×
∑

γ1

∑

γ2

∗ Γ((3/2) + η + i(κ− γ1))Γ((1/2) + iγ1)

(η + i(κ− γ1 − γ2)((1/2) + iγ2)
.

To prove the lemma, it is enough to show that the right-hand side
of (4.6) is absolutely convergent, uniformly in η. By using Stirling’s
formula we have

B∗∗
22(1 + η + iκ) �

1

Γ(1 + η + iκ)

∑

γ1

(|κ− γ1|+ 1)1+η(4.7)

×e−(π/2)(|κ−γ1 |+|γ1|)
∑

γ2

∗ 1

|κ− γ1 − γ2|(1 + |γ2|)
.

The inner sum on the right-hand side of (4.7) can be divided into
∑

0<|γ2−λ|≤1

+
∑

|γ2−λ|>1

= Σ1 + Σ2,
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say, where λ = κ − γ1. If λ = 0, then obviously Σ2 = O(1). If λ > 0,
we divide Σ2 as

Σ2 =
∑

γ2>λ+1

+
∑

o<γ2<λ−1

+
∑

γ2<0

= Σ21 + Σ22 + Σ23,

say. The sum Σ23 is clearly O(1), while by using partial summation
and (2.2) we can easily show that Σ21, Σ22 are O(log(λ+1)). The case
λ < 0 can be treated similarly. The conclusion is that

Σ2 = O(log(|κ− γ1|+ 1)).(4.8)

Next consider Σ1. Since 0 < |γ2−λ| ≤ 1, we have 1+ |γ2| � 1+ |λ|.
Hence

Σ1 �
1

1 + |λ|

∑

0<|γ2−λ|≤1

1

|κ− γ1 − γ2|
.

Then, since κ = γ0
1 + γ0

2 , applying assumption (B) we have

Σ1 �
1

1 + |λ|

∑

0<|γ2−λ|≤1

exp
(

α(|γ1|+ |γ2|+ |γ0
1 |+ |γ0

2 |)
)

�
1

1 + |λ|
exp

(

α(|γ1|+ |λ|+ |γ0
1 |+ |γ0

2 |)
)

∑

0<|γ2−λ|≤1

1,

where we have used |γ2| ≤ |λ|+ 1. Applying (3.4) we obtain

Σ1 �
log(1 + |λ|)

1 + |λ|
exp

(

α(|γ1|+ |λ|+ |γ0
1 |+ |γ0

2 |)
)

.(4.9)

Substituting (4.8) and (4.9) into (4.7), we find that

B∗∗
22(1 + η + iκ) �

exp (α(|γ0
1 |+ |γ0

2 |))

Γ(1 + η + iκ)

∑

γ1

(|κ− γ1|+ 1)1+η(4.10)

× log(|κ− γ1|+ 1) exp
((

α−
π

2

)

(|γ1|+ |κ− γ1|)
)

,

which is absolutely convergent because α < π/2. Hence the assertion
of Lemma 4.2 follows.

From Lemma 4.1 and Lemma 4.2 we can conclude that singular
points of Φ2(s) are distributed densely on the line <s = 1. In fact,
(4.5) implies

Φ2(s) ∼
2

Γ(1 + iκ)
n(ρ0

1)n(ρ0
2)Γ(ρ0

1)Γ(ρ0
2)

1

s− (1 + iκ)
(4.11)

as s → 1 + iκ. This completes the proof of Theorem 2.2.
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5. An application to the Riesz mean

At present the authors have no idea how to prove the desired estimate
O(X1+ε) of Conjecture 2.2. Instead, in this section we consider the
Riesz mean of G2(n), that is,

D2,a(X) =
1

Γ(a + 1)

∑

n≤X

(X − n)aG2(n)(5.1)

where a > 0. The treatment ofD2,a(X) becomes easier when a becomes
larger. The aim of this section is to prove the following theorem.

Theorem 5.1. (under RH) For any a > 1/2, the asymptotic formula

D2,a(X) =
1

Γ(3 + a)
X2+a −

∑

ρ

2Γ(1 + ρ)

ρΓ(2 + ρ + a)
X1+ρ+a(5.2)

+ O(X1+a+ε)

holds.

If (5.2) would hold for a = 0, then it would give (2.8) with the desired
error estimate O(X1+ε).

The basic tool for the proof of Theorem 5.1 is the Mellin transfor-
mation formula

D2,a(X) =
1

2πi

∫

(2+ε)

Γ(s)

Γ(s + a + 1)
Φ2(s)X

s+ads.(5.3)

In order to obtain (5.2), we shift the path of integration on the right-
hand side of (5.3) to the left. By Theorem 2.1 we know that Φ2(s) can
be continued to <s > 1. Therefore we shift the path to <s = 1 + ε.
To check that this shifting procedure is possible, we need the following
lemma.

Lemma 5.1. (under RH) There exists an arbitrarily large T for which

the estimate

Φ2(s) � T 1/2(log T )2(5.4)

holds for s = σ + iT , 1 + ε ≤ σ ≤ 2 + ε.

Proof. We estimate each term on the right-hand side of (3.9) for
1 + ε ≤ σ ≤ 2 + ε.
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First we do not assume RH, and let T = =s be any sufficiently large
positive number. Since M(s) is absolutely convergent for σ ≥ 1 + ε,
we have

M(s) log 2π = O(1) (1 + ε ≤ σ ≤ 2 + ε).(5.5)

Next, denote the integral term on the right-hand side of (3.9) by
I2(s). From (3.6) we have

M(−ε + iy) �
∑

|y−γ|<1

1 + O(log(|y|+ 2)) � log(|y|+ 2),(5.6)

where in the second inequality we have used (3.4). It is clear that
M(s− (−ε + iy)) = O(1) for 1 + ε ≤ σ ≤ 2 + ε. Using these estimates
and Stirling’s formula, we find that

I2(s) �e(π/2)T T 1/2−σ

∫ ∞

−∞

e−(π/2)(|y|+|T−y|)(5.7)

× (|T − y|+ 1)σ+ε−1/2(|y|+ 1)−ε−1/2 log(|y|+ 1)dy

= e(π/2)T T 1/2−σ

(
∫ 0

−∞

+

∫ T

0

+

∫ ∞

T

)

= e(π/2)T T 1/2−σ(J1 + J2 + J3),

say. By changing y by −y, we see that

J1 = e−(π/2)T

∫ ∞

0

e−πy(T + y + 1)σ+ε−1/2(y + 1)−ε−1/2 log(y + 1)dy.

Divide the last integral into two parts at y = T . In the interval [0, T ]
we use T + y + 1 � T to conclude that the integral from 0 to T is
O(T σ+ε−1/2). The integral from T to ∞ is of exponential decay. Hence
J1 � e−(π/2)T T σ+ε−1/2. As for J3, changing y − T by y we obtain

J3 = e−(π/2)T

∫ ∞

0

e−πy(y + 1)σ+ε−1/2(T + y + 1)−ε−1/2 log(T + y + 1)dy.

Dividing the integral at y = T and proceeding similarly to the case
of J1, we find that J3 � e−(π/2)T T−ε−1/2 log T . Lastly, dividing at
y = T/2 we find that

J2 �e−(π/2)T

{

∫ T/2

0

T σ+ε−1/2(y + 1)−ε−1/2 log(y + 1)dy

+

∫ T

T/2

(T − y + 1)σ+ε−1/2T−ε−1/2 log Tdy

}

� e−(π/2)T T σ log T.



16 SHIGEKI EGAMI AND KOHJI MATSUMOTO

Substituting these estimates into (5.7), we obtain

I2(s) = O(T 1/2 log T ).(5.8)

In order to treat the second term B2(s) on the right-hand side of
(3.9), we now assume RH (to the end of this section). Then from (3.6)
we have

M(s− ρ) = M

(

σ −
1

2
+ I(T − γ)

)

(5.9)

= −
∑

γ′

|T−γ−γ′|<1

1

σ − 1 + i(T − γ − γ ′)
+ O(log(|T − γ|+ 1))

�
∑

γ′

|T−γ−γ′|<1

1 + O(log(|T − γ|+ 1))

� log(|T − γ|+ 1)

(using (3.4) for the last inequality) for 1 + ε ≤ σ ≤ 2 + ε, where
γ′ runs over all imaginary parts of non-trivial zeros of ζ(s) satisfying
|T − γ − γ′| < 1. By using Stirling’s formula and (5.9), we have

B2(s) � e(π/2)T T 1/2−σ(5.10)

×
∑

ρ

e−(π/2)(|γ|+|T−γ|)(|T − γ|+ 1)σ−1 log(|T − γ|+ 1)

= e(π/2)T T 1/2−σ

(

∑

γ<0

+
∑

0<γ≤T

+
∑

γ>T

)

= e(π/2)T T 1/2−σ(C1 + C2 + C3),

say. We can estimate Cj analogously to the case of Jj (j = 1, 2, 3). As
for C1, changing γ by −γ, we obtain

C1 = e−(π/2)T
∑

γ>0

e−πγ(T + γ + 1)σ−1 log(T + γ + 1).

Divide the last sum into two parts corresponding to 0 < γ ≤ T and
γ > T , respectively. Using partial summation and (2.2), we find that
the first sum is O(T σ−1 log T ) and the second sum is of exponential
decay. Hence C1 � e−(π/2)T T σ−1 log T . The treatment of C3 is even
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simpler than that of J3; by partial summation and (2.2) we have

C3 = e(π/2)T
∑

γ>T

e−πγ(γ − T + 1)σ−1 log(T − γ + 1)

� e(π/2)T

∫ ∞

T

ξ log ξ · e−πξ(ξ − T + 1)σ−1 log(ξ − T + 1)dξ

� e−(π/2)T T σ(log T )2.

Lastly, dividing C2 into two parts corresponding to 0 < γ ≤ T/2 and
T/2 < γ ≤ T , and applying partial summation and (2.2), we obtain
C2 � e−(π/2)T T σ(log T )2. Therefore

B2(s) = O(T 1/2(log T )2).(5.11)

Now the only remaining term on the right-hand side of (3.9) is the
first term M(s − 1)/(s − 1). For the purpose of estimating this term
suitably, we now specify T ; we choose the same T as in (3.5), and put
s = σ + iT . Then from (3.6) we obtain

M(s− 1) = M(σ − 1 + iT ) = O((logT )2).(5.12)

From (5.5), (5.8), (5.11) and (5.12), the assertion of Lemma 5.1 follows.

In the above proof, the special choice of T is necessary only for
obtaining (3.5). But (3.5) is required only when σ − 1 is near 1/2.
In fact, if σ /∈ (3/2 − ε, 3/2 + ε), then just using (3.6) we obtain
M(s− 1) � log T for any T (under RH). Therefore we obtain

Lemma 5.2. (under RH) The estimate (5.4) of Lemma 5.1 is valid

for any T if 1 + ε ≤ σ ≤ 3/2− ε or 3/2 + ε ≤ σ ≤ 2 + ε.

Remark 1. The estimate of Lemma 5.1 can be improved for 3/2+ε ≤
σ ≤ 2 + ε. In fact, from Lemma 5.2 we have

Φ2((3/2) + ε + iT ) � T 1/2(log T )2

for any T . It is clear that Φ2(2 + ε + iT ) = O(1). Moreover from
Theorem 2.1 we know that Φ2(s) is holomorphic (except for s = 2) in
the region 3/2 + ε ≤ σ ≤ 2 + ε. Therefore by the Phragmén-Lindelöf
convexity principle we obtain

Φ2(σ + iT ) �
(

T 1/2(log T )2
)2(2+ε−σ

� T 2−σ+ε(5.13)

for any T when 3/2 + ε ≤ σ ≤ 2 + ε (under RH).
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Now we complete the proof of Theorem 5.1. Choose T as in Lemma
5.1, and write (5.3) as

D2,a(X) = lim
T→∞

1

2πi

∫ 2+ε+iT

2+ε−iT

Γ(s)

Γ(s + a + 1)
Φ2(s)X

s+ads.(5.14)

Deform the path into the oriented polygonal path joining 2 + ε − iT ,
1 + ε − iT , 1 + ε + iT , and 2 + ε + iT . By using Lemma 5.1 and
Stirling’s formula we see that the integrand is O(T−a−1/2(log T )2Xσ+a)
on the horizontal segments, and hence the integrals on these segments
vanish as T → ∞. On the line <s = 1 + ε, estimate (5.4) is valid
for any T by Lemma 5.2. Hence, as T → ∞, the integral on the line
<s = 1 + ε is

�

∫ ∞

−∞

T−a−1/2(log T )2X1+ε+adT � X1+ε+a

if a > 1/2. Therefore we can shift the path of integration on the right-
hand side of (5.3) to <s = 1 + ε if a > 1/2. The relevant poles are at
s = 2 and s = 1 + ρ, the residues at which are

1

Γ(3 + a)
X2+a, −

Γ(1 + ρ)

Γ(2 + ρ + a)
·
2n(ρ)

ρ
·X1+ρ+a,

respectively. The assertion of Theorem 5.1 now follows.

Remark 2. From the case a = 1 of Theorem 5.1, with the aid of (2.6),
we can deduce

∑

n≤X

G2(n) =
1

2
X2 −H(X) + O(X3/2+ε)(5.15)

(under RH) by the standard difference-operator argument. However
this is weaker than Fujii’s result (2.8).

6. The multiple case

So far we have mainly discussed the double Dirichlet series Φ2(s),
but it is possible to consider the multiple case in an analogous manner.
Let

Gr(n) =
∑

k1+···+kr=n

Λ(k1) · · ·Λ(kr) (r ≥ 2)(6.1)

and

Φr(s) =

∞
∑

n=1

Gr(n)

ns
=

∞
∑

k1=1

· · ·

∞
∑

kr=1

Λ(k1) · · ·Λ(kr)

(k1 + · · ·+ kr)s
.(6.2)
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Similarly to (2.6) we have Gr(n) ≤ nr−1(log n)r, and hence the series
(6.2) is absolutely convergent for <s > r. In this section we prove some
analytic properties of Φr(s).

It is to be noted that in the paper [32] quoted in Section 1, Peter
considered the more general series

Sr(s) =
∞
∑

k1=1

· · ·
∞
∑

kr=1

Λ(k1) · · ·Λ(kr)

P (k1, . . . , kr)s

for the purpose of evaluating
∑

P (k1,...,kr)≤X

Λ(k1) · · ·Λ(kr).(6.3)

The reason why Peter’s method can treat Sr(s) is that his method is
based on the idea of Sargos [33], [34], which can be applied to the case
when the associated single series has infinitely many poles. By using
the Tauberian theorem of Ikehara, Peter proved a certain asymptotic
formula for (6.3).

The first purpose of this section is to show the following:

Theorem 6.1. (under RH) The function Φr(s) (r ≥ 2) can be contin-

ued meromorphically to <s > r − 1, and holoporphic there except for

the simple poles at s = r and s = r − 1 + ρ for all non-trivial zeros ρ
of ζ(s). The residues at s = r and s = r − 1 + ρ are

1

(r − 1)!
, −

r · n(ρ)

ρ(1 + ρ) · · · (r − 2 + ρ)
,

respectively.

We prove this theorem by induction on r. When r = 2, this theorem
is exactly Theorem 2.1. Assume that the theorem is true for r − 1.
Applying (1.4) to (6.2), we obtain

Φr(s) =
1

2πi

∫

(c)

Γ(s− z)Γ(z)

Γ(s)
Φr−1(s− z)M(z)dz(6.4)

for <s > r, where 1 < c < <s − (r − 1). Shift the path of integration
to <z = −ε. By using the same T as in (3.5), we can show that this
shifting is possible. (Note that in the strip −ε ≤ <z ≤ c the factor
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Φr−1(s−z) is in the domain of its absolute convergence, hence is O(1).)
The result is that

Φr(s) =
Φr−1(s− 1)

s− 1
−
∑

ρ

Γ(s− ρ)Γ(ρ)

Γ(s)
Φr−1(s− ρ)(6.5)

− Φr−1(s) log 2π +
1

2πi

∫

(−ε)

Γ(s− z)Γ(z)

Γ(s)
Φr−1(s− z)M(z)dz.

Under the induction assumption, this expression gives the continuation
of Φr(s) to <s > r − 1. Moreover, the residues of Φr−1(s− 1)/(s− 1)
at s = r, s = r − 1 + ρ are

1

(r − 1)!
, −

(r − 1)n(ρ)

ρ(1 + ρ) · · · (r − 2 + ρ)
,

respectively, while the residue of

Br(s) = −
∑

ρ

Γ(s− ρ)Γ(ρ)

Γ(s)
Φr−1(s− ρ)

at s = r − 1 + ρ is

−n(ρ) ·
Γ(r − 1)Γ(ρ)

Γ(r − 1 + ρ)
·

1

(r − 2)!
= −

n(ρ)

ρ(1 + ρ) · · · (r − 2 + ρ)
.

Hence the assertion of Theorem 6.1 follows.

The function Φr−1(s − ρ) is singular at s = r − 2 + ρ + ρ′ for any
non-trivial zero ρ′. Hence, in view of Lemma 4.1, it is natural to raise
the following:

Conjecture 6.1. The line <s = r−1 is the natural boundary of Φr(s).

In fact, under a certain assumption, we can show that

Φr(s) ∼
r(r − 1)

Γ(r − 1 + iκ)
n(ρ0

1)n(ρ0
2)Γ(ρ0

1)Γ(ρ0
2)

1

s− (r − 1 + iκ)
(6.6)

as s → r − 1 + iκ for any κ = γ0
1 + γ0

2 ∈ K. This implies, as in the
proof of Theorem 2.2, that Conjecture 6.1 is true.

When r = 2, (6.6) is nothing but (4.11), which has been shown under
RH and (B).
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We prove (6.6) for general r by induction. When s → r− 1 + iκ, we
have

Φr−1(s− 1)

s− 1
∼

(r − 1)(r − 2)

Γ(r − 2 + iκ)
n(ρ0

1)n(ρ0
2)Γ(ρ0

1)Γ(ρ0
2)(6.7)

×
1

r − 2 + iκ

1

(s− 1)− (r − 2 + iκ)

=
(r − 1)(r − 2)

Γ(r − 1 + iκ)
n(ρ0

1)n(ρ0
2)Γ(ρ0

1)Γ(ρ0
2)

1

s− (r − 1 + iκ)

by induction assumption. Next, we divide Br(s) as

Br(s) = −n(ρ0
1)

Γ(s− ρ0
1)Γ(ρ0

1)

Γ(s)
Φr−1(s− ρ0

1)(6.8)

− n(ρ0
2)

Γ(s− ρ0
2)Γ(ρ0

2)

Γ(s)
Φr−1(s− ρ0

2)

−
∑

ρ6=ρ0

1
,ρ0

2

Γ(s− ρ)Γ(ρ)

Γ(s)
Φr−1(s− ρ)

= Br1(s) + Br2(s) + Br3(s),

say. The factor Φr−1(s−ρ0
1) has a pole at s = r−1+iκ = r−2+ρ0

1+ρ0
2,

whose residue is given by Theorem 6.1. Therefore

Br1(s) ∼ −n(ρ0
1)

Γ(r − 2 + ρ0
2)Γ(ρ0

1)

Γ(r − 1 + iκ)
(6.9)

×

(

−
(r − 1)n(ρ0

2)

ρ0
2(1 + ρ0

2) · · · (r − 3 + ρ0
2)

)

1

s− (r − 1 + iκ)

=
r − 1

Γ(r − 1 + iκ)
n(ρ0

1)n(ρ0
2)Γ(ρ0

1)Γ(ρ0
2)

1

s− (r − 1 + iκ)

as s → r − 1 + iκ. The asymptotic behaviour of Br2(s) when s →
r − 1 + iκ is exactly the same. Therefore, if we assume

(C)r The sum Br3(s) remains finite when s → r − 1 + iκ,

then we have

Br(s) ∼
2(r − 1)

Γ(r − 1 + iκ)
n(ρ0

1)n(ρ0
2)Γ(ρ0

1)Γ(ρ0
2)

1

s− (r − 1 + iκ)
(6.10)

as s → r− 1 + iκ. From (6.5), (6.7) and (6.10), we obtain (6.6), which
implies the following:

Theorem 6.2. (under RH) If we assume that (B) and (C)k (k ≤ r)
are true, then Conjecture 6.1 is true.



22 SHIGEKI EGAMI AND KOHJI MATSUMOTO

References

[1] S. Akiyama, S. Egami and Y. Tanigawa, Analytic continuation of multiple
zeta functions and their values at non-positive integers, Acta Arith. 98 (2001),
107-116.

[2] S. Akiyama and H. Ishikawa, On analytic continuation of multiple L-functions
and related zeta-functions, in “Analytic Number Theory”, C. Jia and K. Mat-
sumoto (eds.), Dev. Math. Vol.6, Kluwer, 2002, pp.1-16.

[3] T. Arakawa and M. Kaneko, Multiple zeta values, poly-Bernoulli numbers, and
related zeta functions, Nagoya Math. J. 153 (1999), 189-209.

[4] T. Arakawa and M. Kaneko, On multiple L-values, J. Math. Soc. Japan 56

(2004), 967-991.
[5] E. W. Barnes, The theory of the double gamma function, Philos. Trans. Roy.

Soc. (A) 196 (1901), 265-387.
[6] E. W. Barnes, On the theory of the multiple gamma function, Trans. Cam-

bridge Philos. Soc. 19 (1904), 374-425.
[7] G. Bhowmik, D. Essouabri and B. Lichtin, Meromorphic continuation of mul-

tivariable Euler products, Forum Math., to appear.
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