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1 Statement of results

Let φ(z) be a holomorphic normalized Hecke-eigen cusp form of weight κ
with respect to the full modular group SL(2,Z), and denote by a(n) the nth
Fourier coefficient of φ(z). The Rankin-Selberg L-function attached to φ(z)
is defined by

Z(s) = ζ(2s)
∞
∑

n=1

a(n)2n1−κ−s

=
∞
∑

n=1

cnn−s, (1.1)

where s = σ + it is a complex variable, ζ(s) is the Riemann zeta-function,
and

cn = n1−κ
∑

m2|n
m2(κ−1)a(n/m2)2. (1.2)

The above Dirichlet series is absolutely convergent in the half plane σ > 1,
and can be continued meromorphically to the whole complex plane. The aim
of the present paper is to study the analytic behaviour of Z(s) in the strip
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1/2 ≤ σ ≤ 1. By m(A) we mean the Lebesgue measure of the set A. In
what follows ε denotes an arbitrarily small positive number, not necessarily
the same at each occurrence. One of the major result in this paper is the
following universality theorem.

Theorem 1 Let D = {s | 3/4 < σ < 1}, and K be any compact subset of
D with connected complement. Let f(s) be a continuous function on K such
that f(s) 6= 0 for any s ∈ K and holomorphic in the interior of K. Then,
for any ε > 0 we have

lim inf
T→∞

1

T
m{τ ∈ [0, T ]| sup

s∈K
|Z(s + iτ)− f(s)| < ε} > 0. (1.3)

This theorem gives an analogy of Voronin’s universality theorem [21] for
ζ(s), which asserts that the analogous conclusion for ζ(s) holds for any com-
pact subset with connected complement of {s | 1/2 < σ < 1}. The reason
why there is the restriction σ > 3/4 in our Theorem 1 is that, in the case of
Z(s), we can prove the necessary mean square estimate

∫ T

0
|Z(σ + it)|2dt = O(T ) (1.4)

only for σ > 3/4.
It is not difficult to prove (1.4) for σ > 3/4; in fact, it is sufficient to apply

Potter’s classical result (Theorem 3 of [15]). In this paper we will study the
mean square of Z(s) more closely and will obtain the following

Theorem 2 (i) In the case of 1/2 ≤ σ ≤ 3/4, we have
∫ T

0
|Z(σ + it)|2dt = O(T 4−4σ(log T )1+ε) (1.5)

for any ε > 0.
(ii) In the case of 3/4 < σ ≤ 1, we have

∫ T

0
|Z(σ + it)|2dt = T

∞
∑

n=1

c2
nn−2σ + O(T θ(σ)+ε), (1.6)

where

θ(σ) =







5
2
− 2σ if 3

4
< σ < 12+

√
19

20
= 0.8166 . . .,

60(1−σ)
29−20σ

if 12+
√

19
20

≤ σ ≤ 1.
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Note that the estimate (1.5) especially implies

∫ T

0
|Z(

1

2
+ it)|2dt = O(T 2(log T )1+ε), (1.7)

which is a slight improvement of (7.31) of Ivić [4].
From Section 2 to Section 6, we will present several approaches to the

mean square problem. As a by-product, an improvement on a result of Ivić,
Matsumoto and Tanigawa [5] will be shown in Section 2. The universality
theorem will be proved in the final section.

The author expresses his gratitude to Professor Yoshio Tanigawa and
Mr. Yuichi Kamiya for useful discussions. In particular, Mr. Kamiya kindly
pointed out an inaccurate point in the original version of the manuscript.

2 Auxiliary estimates

From Deligne’s estimate |a(n)| ≤ n(κ−1)/2d(n), where d(n) is the number
of positive divisors of n, it follows immediately that

cn = O(nε). (2.1)

The asymptotic formula

∑

n≤x

cn = A0x + ∆(x; φ) (2.2)

with

∆(x; φ) = O(x3/5) (2.3)

for x > 0, where A0 is the residue of Z(s) at s = 1, is due to Rankin [16] and
Selberg [18]. Also we can show that for any ε > 0, there exists an x0 = x0(ε),
for which the estimate

∑

n≤x

c2
n = O(x(log x)1+ε) (2.4)
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holds for any x ≥ x0. Note that the result of Moreno-Shahidi [12] and
Theorem 1 of Rankin [17] suggest that the true order of the left-hand side of
(2.4) would probably be x log x.

The proof of (2.4) is as follows. The function f(n) = c2
n is non-negative

multiplicative, and by using Deligne’s estimate it can be easily shown that
f(pl) = O(l6) for any prime power pl. Hence we can apply Shiu’s theorem
[19] to f(n) = c2

n, and obtain

∑

n≤x

c2
n � x

log x
exp





∑

p≤x

c2
pp
−1





=
x

log x
exp





∑

p≤x

|a(p)|4p1−2κ



 , (2.5)

where p denotes prime numbers. A special case of Theorem 2 of Rankin [17]
asserts that

∑

p≤x

|a(p)|4p2(1−κ) =
2x

log x
(1 + o(1)). (2.6)

Hence by partial summation we have

∑

p≤x

|a(p)|4p1−2κ ≤ (2 + ε) log log x

for x ≥ x0(ε). Therefore (2.5) implies (2.4).
We will use (2.4) essentially in the proof of Theorem 2. But before dis-

cussing it, here we mention another application of (2.4).
The Riesz means of the coefficients of Z(s) were studied by Ivić, Mat-

sumoto and Tanigawa [5]. In particular, they proved

∫ X

1
∆1(x; φ)2dx =

2

13
(2π)−4

( ∞
∑

n=1

c2
nn−7/4

)

X13/4 + O(X3+ε) (2.7)

for any X > 1, where ∆1(x; φ) is the error term of the asymptotic formula
of the Riesz mean defined by

∑

n≤x

(x− n)cn =
1

2
A0x

2 + Z(0)x + ∆1(x; φ).
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Now we show the following

Theorem 3 The error term O(X3+ε) on the right-hand side of (2.7) can be
replaced by the better estimate O(X3(log X)3+ε).

This improvement is small, but is of interest in view of Theorem 3 of [5].
Let M be a parameter satisfying M � X2+ε, and let

δ1(x; M) = (2π)−2x9/8
∑

n≤M

cnn−7/8 sin(8π(nx)1/4 + π/4).

Then, in the proof of Theorem 2 of [5], it is shown that

∫ 2X

X
δ1(x; M)2dx =

2

13
(2π)−4

( ∞
∑

n=1

c2
nn−7/4

)

(

(2X)13/4 −X13/4
)

+O(X13/4M−3/4+ε) + O(X3M ε). (2.8)

To prove the above theorem, it is sufficient to see that the second error term
on the right-hand side of (2.8) can be replaced by O(X3(log M)3+ε). In [5]
it is just indicated that the proof of the above (2.8) is similar to that of
Theorem 13.5 of Ivić [3]. Following this indication, we encounter the sum

SM =
∑

m≤M

cm

m7/8

∑

m/2≤n<m

cn

n7/8(m1/4 − n1/4)
,

which corresponds to the sum S ′′
1 in the proof of Theorem 13.5 of [3]. We

have easily

SM �
∑

m≤M

cm

m

∑

m/2≤n<m

cn

m− n
, (2.9)

and in [5], we simply estimate the inner sum by using (2.1) to obtain SM =
O(M ε), which gives the ε-factor in the second error term of (2.8). Here
we put r = m − n in (2.9), change the order of summation, and use the
Cauchy-Schwarz inequality to get

SM �
∑

1≤r≤M/2

1

r





∑

2r≤m≤M

c2
m

m





1

2





∑

2r≤m≤M

c2
m−r

m





1

2

.

Evaluating these sums by using (2.4) and partial summation, we obtain SM =
O((log M)3+ε) as desired. Hence the assertion of Theorem 3 follows.
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3 A general mean value theorem of Perelli

Perelli [13] considered analytic properties of a general class of L-functions.
Let

∆(s) =
N
∏

j=1

Γ(αjs + βj),

where Γ(s) denotes the gamma function, αj’s are real and βj’s are complex.
Perelli’s “general L-function” is defined by the Dirichlet series

L(s) =
∞
∑

n=1

ann−s, an � nε,

which is assumed to be continued meromorphically to the whole complex
plane with at most a simple pole at s = 1, and satisfy a certain growth
condition, an Euler product expansion, and the functional equation of the
form Φ(s) = WΦ∗(1 − s). Here W is a complex number with |W | = 1,
Φ(s) = Qs∆(s)L(s) with a certain real Q, and Φ∗(s) is defined similarly with
replacing L(s) by some other L-function

L∗(s) =
∞
∑

n=1

a∗nn−s.

For the rigorous definition of “general L-function”, see his paper [13]. Let

A =
N
∑

j=1

αj, B =
N
∑

j=1

βj,

and put H = 1 +<(B/A)− (N − 1)/2A. Perelli proved (Theorem 4 of [13])
that, if H > 0, then, for any ε > 0 and 1/2 ≤ σ ≤ 1, it holds that

∫ T

0
|L(σ + it)|2dt � T (QT )ω(1/2)ε + (QT A)2(1−σ)+ε

{

1 + Q−1T 1−A

+(1 + G(Q)2)(QT A)−2H
}

, (3.1)

where G(Q) is a certain quantity depending on Q, and ω(1/2) = 1 or 0
according as σ = 1/2 or 1/2 < σ ≤ 1, respectively. Actually, in Perelli’s
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statement, the term T (QT )ω(1/2)ε is missing. This mistake is caused by the
estimate written on l.5, p.300 of [13], which is stated as

∫ T

−T

∣

∣

∣

∣

∣

∣

∑

n≤x

ann−s

∣

∣

∣

∣

∣

∣

2

dt � (QT A)2(1−σ)+ε

(

1 +
1

QT A−1

)

, (3.2)

but the term T (QT )ω(1/2)ε should be added to the right-hand side.
In [13] it is indicated that (3.2), and the estimate

∫ T

−T

∣

∣

∣

∣

∣

∣

WQ1−2s ∆(1− s)

∆(s)

∑

n≤x

a∗nn−1+s

∣

∣

∣

∣

∣

∣

2

dt

� (QT A)2(1−σ)+ε

(

1 +
1

QT A−1

)

, (3.3)

which is stated on the next line l.6, p.300 of [13], can be shown by using
the Montgomery-Vaughan inequality (see (5.1) below). However, since x =
A′′QtA depends on t, it is better to apply the method of the proof of Theorem
7.3 of Titchmarsh [20]. In fact, by that method we can prove

∫ 2T

T

∣

∣

∣

∣

∣

∣

∑

n≤x

ann−s

∣

∣

∣

∣

∣

∣

2

dt

= TS + O

(

(QT A)2(1−σ)+ε

(

1 +
1

QT A−1

))

, (3.4)

where

S =

{

O((QT )ε) if σ = 1/2,
∑∞

n=1 |an|2n−2σ if 1/2 < σ ≤ 1.

Using (3.3), (3.4) and the Cauchy-Schwarz inequality, we can easily deduce
the following sharpening of Perelli’s (3.1):

Proposition 1 Let L(s) be Perelli’s “general L-function”. Then, for 1/2 ≤
σ ≤ 1 and any ε > 0, we have

∫ T

0
|L(σ + it)|2dt
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= TS + O

(

(QT A)2(1−σ)+ε

(

1 +
1

QT A−1
+

1 + G(Q)2

(QT A)2H

))

+O



T 1/2(QT A)1−σ+ε



1 +

(

1

QT A−1

)1/2

+
1 + G(Q)

(QT A)H







 .

The Rankin-Selberg L-function Z(s) is an example of general L-function
in the sense of Perelli, especially satisfies the functional equation

Γ(s + κ− 1)Γ(s)Z(s) = (2π)4s−2Γ(κ− s)Γ(1− s)Z(1− s). (3.5)

Hence, applying Proposition 1 to Z(σ + it), we obtain

∫ T

0
|Z(σ + it)|2dt = O

(

T 4−4σ+ε
)

(3.6)

for 1/2 ≤ σ ≤ 3/4, and

∫ T

0
|Z(σ + it)|2dt = T

∞
∑

n=1

c2
nn−2σ + O

(

T 5/2−2σ+ε
)

(3.7)

for 3/4 < σ ≤ 1. These results imply Theorem 2 for 1/2 ≤ σ ≤ (12 +√
19)/20, up to ε-factors. Moreover, it is not difficult to replace those ε-

factors by certain log-powers. But in any case, Perelli’s argument depends
on Lavrik’s approximate functional equation [9], whose proof is very long
and complicated. We will describe more self-contained approaches in the
following sections.

4 The reflection principle

Ivić stated, as (7.31) of his paper [4], that

∫ 2T

T
|Z(σ + it)|2dt � T 2+ε (4.1)

for 1/2 ≤ σ ≤ 1. He did not give the details of the proof, just indicated
that (4.1) may be obtained by using the mean value theorem for Dirichlet
polynomials and the technique of the reflection principle. Actually, following
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his indication, we can reduce the exponent on the right-hand side of (4.1)
when σ > 1/2. Also it is possible to replace the factor T ε by (log T )1+ε, and
the consequences are

∫ 2T

T
|Z(σ + it)|2dt = O

(

T 4−4σ(log T )1+ε
)

(4.2)

for 1/2 ≤ σ ≤ 3/4 and
∫ 2T

T
|Z(σ + it)|2dt = O(T ) (4.3)

for 3/4 < σ ≤ 1. In particular, (4.2) is the conclusion (1.5) of Theorem 2 in
the case of 1/2 ≤ σ ≤ 3/4. In this and the next section, we will present the
proof of the above two results, basically following Ivić’s indication.

First, in this section, we apply the reflection principle to obtain a certain
approximate functional equation for Z(s). The method is an analogue of the
argument described in Section 4.4 of Ivić’s book [3], but we show the details
for the convenience of readers.

We begin with the well-known formula

e−x =
1

2πi

∫

(c)
Γ(z)x−zdz =

1

2πi

∫

(c)
Γ(1 + z)x−z dz

z
, (4.4)

where c > 1, x > 0, and the path of integration is the vertical line from
c− i∞ to c + i∞. Let h = log2 T and Y ≥ 1. Putting x = (n/Y )h, z = w/h
in (4.4), multiplying the both sides by cnn−s and summing up, we obtain

∞
∑

n=1

exp(−(n/Y )h)cnn−s

=
1

2πi

∫

(c)
Γ
(

1 +
w

h

)

Y wZ(s + w)
dw

w
(4.5)

for 0 ≤ σ ≤ 1. Shifting the path of integration to <w = −(1/2)− σ, we find
that the right-hand side of (4.5) is equal to

Z(s) + Γ
(

1 +
1− s

h

)

A0

1− s
Y 1−s + I0,

where A0 is the same as in Section 2 and

I0 =
1

2πi

∫

(−(1/2)−σ)
Γ
(

1 +
w

h

)

Y wZ(s + w)
dw

w
.
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Substituting the functional equation (3.5) into the above and using (1.1), we
have

I0 =
1

2πi

∫

(−(1/2)−σ)
F (s, w)

∑

n≤M

cnn−1+s+ww−1dw

+
1

2πi

∫

(−(1/2)−σ)
F (s, w)

∑

n>M

cnn−1+s+ww−1dw

= I1 + I2, (4.6)

say, where M ≥ 1 and

F (s, w) = (2π)4(s+w)−2Y wΓ
(

1 +
w

h

)

Γ(κ− s− w)Γ(1− s− w)

Γ(s + w + κ− 1)Γ(s + w)
.

Assume h4 ≤ t ≤ 2T and Y � T C for a certain positive C. Then by using
(2.1) and partial summation it follows that

∑

n>2Y

exp
(

−(n/Y )h
)

cnn−s

� hY −h
∫ ∞

2Y
ξh−σ+ε exp

(

−(ξ/Y )h
)

dξ

� T−A

for any large positive A. Also using Stirling’s formula of the form

|Γ(x + iy)| = O
(

(|y|+ 1)x−1/2 exp(−π|y|/2)
)

, (4.7)

which is valid uniformly in any fixed vertical strip, we have

Γ
(

1 +
1− s

h

)

A0

1− s
Y 1−s = O(T−A).

Summarizing the above results, we obtain
∑

n≤2Y

exp
(

−(n/Y )h
)

cnn−s = Z(s) + I1 + I2 + O(T−A). (4.8)

Next consider I2. Shift the path of integration of I2 to the vertical line
<w = −σ − (h/2). Using Γ(s)Γ(1− s) = π/ sin(πs), we have

F (s, w) = π−2(2π)4(s+w)−2Y w sin(π(s + w + κ− 1)) sin(π(s + w))

×Γ
(

1 +
w

h

)

Γ(κ− s− w)Γ(1− s− w)Γ(2− s− w − κ)Γ(1− s− w).
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We estimate this quantity on the line <w = −σ−(h/2) by Stirling’s formula.
Apply (4.7) to the first gamma-factor, and estimate the other four gamma-
factors by

Γ(z + b) = (2π)1/2zz+b−1/2e−z(1 + O(|z|−1)), (4.9)

which is valid uniformly in the region | arg z| ≤ π − δ (δ > 0), except for
the neighbourhoods of z = 0 and poles of Γ(z + b), where b is a constant
(cf. Ivić [3], (A.33)). Put w = −σ − (1/2)h + iv, and apply (4.9) with
z = (1/2)h− i(t + v). We obtain

F (s, w)� Y −σ−(h/2)
(∣

∣

∣

∣

v

h

∣

∣

∣

∣

+ 1
)−σ/h ( z

2πe

)2h+2

× exp
(

−π

2

∣

∣

∣

∣

v

h

∣

∣

∣

∣

+ 2π|t + v|+ 4(t + v) arg z
)

.

In the case of |t + v| ≤ h2, we have

F (s, w) = O(exp(−c1h
3))

with a certain c1 > 0, because t ≥ h4. Hence the contribution of this case to
I2 is negligible. In the case of |t + v| > h2, we have

2π|t + v|+ 4(t + v) arg z = 2h + O(h−1),

hence the contribution of this case to I2 is

� Y −σ−(h/2)

(

∑

n>M

cnn−1−(h/2)

)

∫

|t+v|>h2

(∣

∣

∣

∣

v

h

∣

∣

∣

∣

+ 1
)−σ/h

exp
(

−π

2

∣

∣

∣

∣

v

h

∣

∣

∣

∣

)

×
(

|t + v|+ h

2π

)2h+2
dv

| − σ − (h/2) + iv| . (4.10)

From (2.2) it follows by partial summation that
∑

n>M

cnn−1−(h/2) = O
(

M−h/2
)

.

Also it is easy to see that the integral on the right-hand side of (4.10) is
O(T 2h+2). (Divide the integral into three parts according as |v| ≤ h, h <
|v| ≤ t and |v| > t, and estimate each part separately.) Hence we obtain

I2 � Y −σT 2(T 4/Y M)h/2,
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which implies I2 = O(T−A) under the assumption

Y M ≥ T 4+(B/h), (4.11)

where B is a constant satisfying B ≥ 2A + 4. Combining this with (4.8), we
now obtain the following approximate functional equation.

Proposition 2 Let T ≥ 2, h = log2 T, 1 ≤ Y � T C, M ≥ 1. Fix a large
positive number A, and assume (4.11) with B ≥ 2A+4. Then, for 0 ≤ σ ≤ 1
and h4 ≤ t ≤ 2T , we have

Z(s) =
∑

n≤2Y

exp
(

−(n/Y )h
)

cnn
−s − I1 + O(T−A), (4.12)

where I1 is defined by (4.6).

5 Upper bounds for the mean square

In this section we deduce from Proposition 2 the estimates (4.2) and (4.3),
by using (2.4) and the following mean value theorem of Dirichlet polynomials
due to Montgomery-Vaughan [11]: It holds that

∫ T

0

∣

∣

∣

∣

∣

∣

∑

n≤N

annit

∣

∣

∣

∣

∣

∣

2

dt = T
∑

n≤N

|an|2 + O





∑

n≤N

n|an|2


 (5.1)

for any complex numbers a1, . . . , aN .
Let 1/2 ≤ σ ≤ 1. From Proposition 2 we have

∫ 2T

T
|Z(σ + it)|2dt �

∫ 2T

T

∣

∣

∣

∣

∣

∣

∑

n≤2Y

exp
(

−(n/Y )h
)

cnn−σ−it

∣

∣

∣

∣

∣

∣

2

dt

+
∫ 2T

T
|I1|2dt + O(T 1−2A). (5.2)

To evaluate the first term on the right-hand side, we apply (5.1) with N = 2Y
and an = exp(−(n/Y )h)cnn−σ. By (2.4) and partial summation, we have

∑

n≤2Y

|an|2 ≤
∑

n≤2Y

c2
nn−2σ � (log Y )ω(1/2)(2+ε),
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where ω(1/2) is the same as in (3.1). The sum
∑

n≤2Y n|an|2 can be estimated
in a similar way, and then we obtain

∫ 2T

T

∣

∣

∣

∣

∣

∣

∑

n≤2Y

exp
(

−(n/Y )h
)

cnn−σ−it

∣

∣

∣

∣

∣

∣

2

dt

� T (log Y )ω(1/2)(2+ε) + Y 2−2σ(log Y )1+ω(1)+ε, (5.3)

where ω(1) = 1 or 0 according as σ = 1 or 1/2 ≤ σ < 1, respectively.
Next consider I1. Shifting the path of integration of I1 to <w = 1+δ−σ,

we have

I1 = −F (s, 0)
∑

n≤M

cnn−1+s −R(1− s)
∑

n≤M

cn(1− s)−1

+
1

2πi

∫

(1+δ−σ)
F (s, w)

∑

n≤M

cnn−1+s+ww−1dw,

where R(1− s) is the residue of F (s, w) at w = 1− s. Evaluating the factors
F (s, w), F (s, 0) and R(1− s) by Stirling’s formula (4.7), we have

I1 � t2−4σ

∣

∣

∣

∣

∣

∣

∑

n≤M

cnn−1+s

∣

∣

∣

∣

∣

∣

+
(

t

h

)(1/2)+(1−σ)/h

exp
(

−πt

2h

)

Y 1−σ|1− σ − it|−1

∣

∣

∣

∣

∣

∣

∑

n≤M

cn

∣

∣

∣

∣

∣

∣

+
∫ ∞

−∞

(

|v|
h

+ 1

)(1/2)+(1+δ−σ)/h

exp

(

−π|v|
2h

)

Y 1+δ−σ

×(|t + v|+ 1)−2−4δ

∣

∣

∣

∣

∣

∣

∑

n≤M

cnnδ+i(t+v)

∣

∣

∣

∣

∣

∣

dv

|1 + δ − σ + iv|
= I11 + I12 + I13,

say. We assume M � T C with a certain C > 0. Then we have clearly
∫ 2T

T
|I12|2dt = O(T−A) (5.4)

for any A > 0. Applying (2.4) and partial summation, we have
∫ 2T

T
|I11|2dt � T 5−8σM2σ−1(log M)1+ω(1/2)+ε

+T 4−8σM2σ(log M)1+ε. (5.5)
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As for I13, we further divide it as

I13 =
∫

|v|≤h
+
∫

h<|v|≤h2

+
∫

|v|>h2

= I
(1)
13 + I

(2)
13 + I

(3)
13 ,

say. Then, using the Cauchy-Schwarz inequality, for T ≤ t ≤ 2T we have

I
(1)
13 � Y 1+δ−σT−2−4δ

∫ h

−h

∣

∣

∣

∣

∣

∣

∑

n≤M

cnnδ+i(t+v)

∣

∣

∣

∣

∣

∣

dv

1 + |v|

≤ Y 1+δ−σT−2−4δ

(

∫ h

−h

dv

1 + |v|

)1/2






∫ h

−h

∣

∣

∣

∣

∣

∣

∑

n≤M

cnnδ+i(t+v)

∣

∣

∣

∣

∣

∣

2
dv

1 + |v|







1/2

and

I
(2)
13 � Y 1+δ−σT−2−4δ

∫ h2

h

(

v

h

)1/2

e−πv/2h

∣

∣

∣

∣

∣

∣

∑

n≤M

cnnδ+i(t+v)

∣

∣

∣

∣

∣

∣

dv

v

� Y 1+δ−σT−2−4δh−1/2

(

∫ h2

h
e−πv/hdv

)1/2

×







∫ h2

h

∣

∣

∣

∣

∣

∣

∑

n≤M

cnnδ+i(t+v)

∣

∣

∣

∣

∣

∣

2
dv

v







1/2

.

Since I
(3)
13 is clearly small, we get
∫ 2T

T
|I13|2dt � Y 2(1+δ−σ)T−4−8δ(log h)

×
∫ h2

−h2

∫ 2T

T

∣

∣

∣

∣

∣

∣

∑

n≤M

cnnδ+ivnit

∣

∣

∣

∣

∣

∣

2
dtdv

1 + |v| + T−A,

which is

� Y 2(1−σ)T−4(T + M)M
(

Y M

T 4

)2δ

(log M)1+ε(log log T )2 + T−A

by applying (5.1) and (2.4) again. This estimate with (5.4) and (5.5) gives
an upper bound of

∫ 2T

T
|I1|2dt,
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and, substituting it and (5.3) into (5.2), we obtain

∫ 2T

T
|Z(σ + it)|2dt � T (log Y )ω(1/2)(2+ε) + Y 2−2σ(log Y )1+ω(1)+ε

+T 5−8σM2σ−1(log M)1+ω(1/2)+ε + T 4−8σM2σ(log M)1+ε

+Y 2(1−σ)T−4(T + M)M
(

Y M

T 4

)2δ

(log M)1+ε(log log T )2

+T−A (5.6)

for 1/2 ≤ σ ≤ 1, where 1 ≤ Y � T C , 1 ≤ M � T C , and the condition (4.11)
is required. From (5.6) with the choice Y = M = T 2+(B/2h), the estimates
(4.2) and (4.3) immediately follow.

6 Asymptotic formulas for the mean square

The purpose of this section is to prove the second half of Theorem 2.
First we show that

∫ T

2
|Z(σ + it)|2dt = T

∞
∑

n=1

c2
nn−2σ + O(T (5/2)−2σ+ε) (6.1)

holds for 3/4 < σ ≤ 1.
This can be proved by the same method as the proof of Lemma 8.4 of

Ivić [3]. The outline is as follows. The starting point is

∫ T

2
|Z(σ + it)|2dt =

∫ T

2

∣

∣

∣

∣

∣

∣

∑

n≤L

cnn−σ−it

∣

∣

∣

∣

∣

∣

2

dt + O

(

∫ T

2
|F (σ + it)|dt

)

, (6.2)

where L ≥ 1 and

F (s) = Z2(s)−




∑

n≤L

cnn−s





2

.

By using (5.1) and (2.4) we have that the first term on the right-hand side
of (6.2) is equal to

T
∞
∑

n=1

c2
nn−2σ + O((T + L)L1−2σ(log L)1+ω(1)+ε). (6.3)
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As for the second term, we apply a convexity lemma (Lemma 8.3 of Ivić [3])
to obtain

∫ T

2
|F (σ + it)|dt ≤

(

∫ 2T

1

∣

∣

∣

∣

F
(

3

4
+ it

)∣

∣

∣

∣

dt + 1

)(4(1−σ)+4δ)/(1+4δ)

×
(

∫ 2T

1
|F (1 + δ + it)|dt + 1

)(4σ−3)/(1+4δ)

where δ > 0. The first factor on the right-hand side can be estimated by
using (4.2) with σ = 3/4 and (5.1), while the second factor can be estimated
by the Cauchy-Schwarz inequality and (5.1), with noticing

F (1 + δ + it) =
∞
∑

n=1

h(n)n−1−δ−it,

where h(n) = O(nε) for any positive integer n and h(n) = 0 for n ≤ L. The
result is that

∫ T

2
|F (σ + it)|dt �

(

T (log T )1+ε + L1/2(log L)1+ε
)(4(1−σ)+4δ)/(1+4δ)

×
(

T 1/2L−1/2(T 1/2 + L1/2)L−δ+ε
)(4σ−3)/(1+4δ)

.

From (6.2), (6.3) and the above estimate, with the choice L = T 2, we obtain
(6.1).

When σ > 1, using (5.1) we can easily see that

∫ T

2
|Z(σ + it)|2dt = T

∞
∑

n=1

c2
nn−2σ + O(1).

Therefore it is desirable to improve the error estimate in (6.1) to obtain the
error term whose exponent tends to zero (up to the ε-factor) when σ → 1−0.
In the rest of this section we prove such a formula, that is

∫ 2T

T
|Z(σ + it)|2dt = T

∞
∑

n=1

c2
nn

−2σ + O
(

T 60(1−σ)/(29−20σ)+ε
)

(6.4)

for 31/40 ≤ σ ≤ 1.
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Let σ > 1, X ≥ 1, and assume log T � X ε. We divide Z(s) as

Z(s) =
∑

n≤X

cnn−s +
∑

n>X

cnn−s,

and denote the second sum by f(s). By (2.2) and partial summation we have

f(s) =
∫ ∞

X
{A0(η −X) + ∆(η)−∆(X)}sη−s−1dη

=
A0

s− 1
X1−s −∆(X)X−s + s

∫ ∞

X
∆(η)η−s−1dη, (6.5)

where we abbreviate ∆(x; φ) to ∆(x). In view of (2.3), this gives the analytic
continuation of f(s), hence Z(s), to the region σ > 3/5.

Now let 3/4 < σ ≤ 1. We have

∫ 2T

T
|Z(σ + it)|2dt =

∫ 2T

T

∣

∣

∣

∣

∣

∣

∑

n≤X

cnn−σ−it

∣

∣

∣

∣

∣

∣

2

dt +
∫ 2T

T
|f(σ + it)|2dt

+O















∫ 2T

T

∣

∣

∣

∣

∣

∣

∑

n≤X

cnn−σ−it

∣

∣

∣

∣

∣

∣

2

dt







1/2
(

∫ 2T

T
|f(σ + it)|2dt

)1/2









, (6.6)

and the first term on the right-hand side is equal to

T
∞
∑

n=1

c2
nn

−2σ + O((T + X)X1−2σ(log X)1+ω(1)+ε) (6.7)

by (5.1) and (2.4). Also, using the expression (6.5) and the estimate (2.3),
we have

∫ 2T

T
|f(σ + it)|2dt � T−1X2−2σ + TX6/5−2σ + J, (6.8)

where

J =
∫ 2T

T

∣

∣

∣

∣

(σ + it)
∫ ∞

X
∆(η)η−σ−it−1dη

∣

∣

∣

∣

2

dt

=
∫ ∞

X

∫ ∞

X
∆(η)∆(ξ)(ηξ)−σ−1dηdξ

∫ 2T

T
(σ2 + t2)

(

ξ

η

)it

dt.
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The innermost integral is trivially O(T 3), while by integration by parts we
can see that it is also estimated as O(| log(ξ/η)|−1T 2). Hence

J � T 3
∫ ∞

X
|∆(η)|η−σ−1

∫ η+(η/T )

η−(η/T )
|∆(ξ)|ξ−σ−1dξdη

+T 2
∫ ∞

X
|∆(η)|η−σ−1

∫

I(η)
|∆(ξ)|ξ−σ−1 dξdη

| log(ξ/η)|
= J1 + J2,

say, where

I(η) = {ξ | ξ ≥ X, ξ /∈ (η − (η/T ), η + (η/T ))}.

Using (2.3) we have

J1 � T 3
∫ ∞

X
|∆(η)|η−σ−1

∫ η+(η/T )

η−(η/T )
ξ−σ−2/5dξdη

� T 2
∫ ∞

X
|∆(η)|η−2σ−2/5dη.

The upper bound

∫ 2Y

Y
|∆(η)|2dη � Y 2+ε (6.9)

is contained in Theorem 5 of Ivić [4]. (An alternative proof is mentioned in
the remark at the end of Section 2 of [5].) Hence

∫ 2Y

Y
|∆(η)|η−2σ−2/5dη ≤

(

∫ 2Y

Y
|∆(η)|2dη

)1/2 (
∫ 2Y

Y
η−4σ−4/5dη

)1/2

� Y −2σ+(11/10)+ε, (6.10)

which gives

J1 = O(T 2X−2σ+(11/10)+ε). (6.11)

Consider J2. We evaluate the inner integral by using | log(ξ/η)| ∼ η−1|ξ− η|
if η/T ≤ |ξ− η| ≤ η/2 and | log(ξ/η)| � 1 if |ξ− η| > η/2. Also we use (2.3)
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in the former case. Then the inner integral is

�
∫

η/T≤|ξ−η|≤η/2

ξ−σ−2/5η
dξ

|ξ − η| +
∫

ξ≥X
|ξ−η|>η/2

|∆(ξ)|ξ−σ−1dξ

� η−σ+3/5 log T +
∫ ∞

X
|∆(ξ)|ξ−σ−1dξ,

and similarly to (6.10) we see that the second term on the right-hand side is
O(X1/2−σ+ε). Hence

J2 � T 2
∫ ∞

X
|∆(η)|η−2σ−2/5 log Tdη

+T 2X1/2−σ+ε
∫ ∞

X
|∆(η)|η−σ−1dη.

These integrals can be estimated again similarly to (6.10), and the result is

J2 = O(T 2X−2σ+(11/10)+ε). (6.12)

From (6.8), (6.11) and (6.12) we get

∫ 2T

T
|f(σ + it)|2dt � T−1X2−2σ + TX6/5−2σ + T 2X−2σ+(11/10)+ε. (6.13)

Hence, with (6.6) and (6.7), we now obtain

∫ 2T

T
|Z(σ + it)|2dt = T

∞
∑

n=1

c2
nn−2σ

+O(X2−2σ(log X)1+ω(1)+ε + TX3/5−σ

+T 3/2X(11/20)−σ+ε + T 2X(11/10)−2σ+ε). (6.14)

The best way is to choose the value of X for which the first error term is (up
to ε-factors) dominant in the above; this requires

X � Tmax{30/(29−20σ), 20/9}.

If σ ≥ 31/40, then 30/(29− 20σ) ≥ 20/9, hence the best choice is

X = T 30/(29−20σ).
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Under this choice, (6.14) implies the desired result (6.4).
Since 60(1 − σ)/(29 − 20σ) ≤ 5/2 − 2σ when σ ≥ (12 +

√
19)/20, the

proof of Theorem 2 is now complete.

7 Proof of the universality

In this final section we prove Theorem 1. Our proof is analogous to the
argument described in Laurinčikas [6], due originally to Bagchi [1][2], which
gives an alternative proof of Voronin’s universality theorem for ζ(s). We
mention here that universality theorems for various zeta and L-functions
have recently been shown by Bagchi’s method. Among them we quote the
paper [8] by Laurinčikas and the author, in which the universality theorem
for the cusp form L-function

L(s; φ) =
∞
∑

n=1

a(n)n−s

attached to φ(z) has been proved.
In Bagchi’s proof of the universality for ζ(s), the well-known asymptotic

formula

∑

p≤x

1

p
= log log x + A1 + O

(

exp(−B1

√

log x )
)

, (7.1)

where p runs over primes and A1, B1 are certain constants, is used essentially.
The corresponding formula for L(s; φ) is not known, hence we need some
additional technical argument in [8]. The present case of Z(s) is actually
simpler, because the corresponding formula

∑

p≤x

cp

p
= log log x + A2 + O

(

exp(−B2

√

log x )
)

, (7.2)

with certain constants A2 and B2, can be easily deduced from Perelli’s
result([14])

∑

n≤x

a(n)2Λ(n) =
xκ

κ
+ O

(

xκ exp(−B2

√

log x )
)

.

Here Λ(n) denotes the von Mangoldt function.
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Another important fact on Z(s) is that it has the Euler product expansion

Z(s) =
∏

p

(1− λ2
pp
−s)−1(1− λpλ̄pp

−s)−2(1− λ̄2
pp
−s)−1

=
∏

p

(1− λ2
pp
−s)−1(1− p−s)−2(1− λ̄2

pp
−s)−1 (7.3)

for σ > 1, where λp’s are complex numbers satisfying

λp + λ̄p = a(p)p(1−κ)/2, |λp| = 1

(here λ̄p is the complex conjugate). Since we have the facts (1.4), (7.2) and
(7.3) for Z(s), the whole proof of our theorem can be developed analogously
to Bagchi’s original argument, so it is enough to give a brief sketch of the
proof.

Let M(D1) be the space of meromorphic functions on D1 = {s | σ > 3/4}
equipped with the topology of uniform convergence on compact subsets. For
any space S, we denote by B(S) the family of all Borel subsets of S. Define
a probability measure QT on (M(D1), B(M(D1))) by

QT (A) = T−1m{τ ∈ [0, T ] |Z(s + iτ) ∈ A}

for any A ∈ B(M(D1)). Next, let C be the complex number field, γ = {z ∈
C | |z| = 1}, and define

Ω =
∏

p

γp,

where p runs over all prime numbers and γp = γ for all p. By the product
topology Ω may be regarded as a compact Abelian group, hence there is the
unique probability Haar measure µ on (Ω, B(Ω)). For any ω ∈ Ω, we denote
by ω(p) the projection of ω on the coordinate space γp. For any positive
integer n, we define

ω(n) =
r
∏

j=1

ω(p)α(j) if n =
r
∏

j=1

pα(j).

The series

Z(s, ω) =
∞
∑

n=1

cnω(n)n−s
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is convergent almost surely for σ > 1/2, hence it defines an M(D1)-valued
(actually holomorphic) random element. Let P be the distribution of this
element, that is the probability measure on (M(D1), B(M(D1))) defined by

P (A) = µ{ω ∈ Ω |Z(s, ω) ∈ A}

for A ∈ B(M(D1)). We can apply the general limit theorem of Laurinčikas
[7] to Z(s), because the assumptions of his theorem are satisfied by (1.4) and
(7.3). The theorem of Laurinčikas [7] implies

Proposition 3 The measure QT converges weakly to P as T →∞.

This result may be regarded as the convergence in H(D), the space of
holomorphic functions on D = {s | 3/4 < σ < 1} with the topology of uniform
convergence on compact subsets.

Another key fact to the proof of Theorem 1 is the following “denseness
lemma”. Let ap ∈ γ, and define

fp(s; ap) = − log

(

1− λ2
pap

ps

)

− 2 log

(

1− ap

ps

)

− log

(

1− λ̄2
pap

ps

)

for s ∈ D. Then

Proposition 4 The set of all convergent (in H(D)) series of the form

∑

p

fp(s; ap)

is dense in H(D).

From these two propositions and Mergelyan’s approximation theorem
[10], we can easily deduce the conclusion of Theorem 1 in a standard way,
following the method written in Section 6.5 of Laurinčikas [6].

Therefore the only remaining task is to prove Proposition 4. Now we
outline the proof. The details, which are similar to the proof of Lemma 6.5.4
of Laurinčikas [6], are omitted.
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First, using Lemma 6.5.3 of [6], we find a sequence {âp}, âp ∈ γ, such
that

∑

p>p0

âpfp(s; 1)

(where p0 > 0 is fixed) converges in H(D). Put gp(s) = âpfp(s; 1). The most
essential part of the proof of Proposition 4 is the claim that the set S, which
consists of all convergent (in H(D)) series of the form

∑

p>p0

apgp(s), ap ∈ γ,

is dense in H(D). This claim is proved by applying the following general
denseness result (Theorem 6.3.10 of Laurinčikas [6], originally due to Bagchi
[1]).

Proposition 5 Let {fm} be a sequence in H(D) which satisfies
(a) if µ is a complex Borel measure on (C, B(C)) with compact support

contained in D such that

∞
∑

m=1

∣

∣

∣

∣

∫

C

fm(s)dµ(s)

∣

∣

∣

∣

< ∞,

then
∫

C

srdµ(s) = 0

for any non-negative integer r;
(b) the series

∑∞
m=1 fm converges in H(D);

(c) for any compact subset K of D,

∞
∑

m=1

sup
s∈K

|fm(s)|2 < ∞.

Then the set of all convergent series of the form
∑∞

m=1 amfm, |am| = 1, is
dense in H(D).
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We apply this proposition with fm = gp. The assumptions (b) and (c)
are clearly satisfied. In order to check (a), it is enough to prove that if

∑

p

∣

∣

∣

∣

∫

C

gp(s)dµ(s)
∣

∣

∣

∣

< ∞, (7.4)

then

ρ(z) =
∫

C

e−szdµ(s)

is identically equal to zero. Assume the contrary. Then from Lemma 6.4.10
of [6] we have

lim sup
r→∞

log |ρ(r)|
r

> −1. (7.5)

Then, similarly to Theorem 6.4.14 of [6], we can show
∑

p

cp|ρ(log p)| = ∞. (7.6)

In the course of the proof of (7.6), we should evaluate the sum
∑

p−1cp,
running over all primes satisfying

(m− 1/4)β < log p ≤ (m + 1/4)β,

where m is a positive integer and β > 0, fixed. This can be achieved by using
(7.2), and the result is

∑

p−1cp =
1

2m
+ O

(

1

m2

)

.

From this and Theorem 6.4.12 of [6], we can get (7.6). However from the
assumption (7.4) it can be easily seen that

∑

p

cp|ρ(log p)| < ∞,

which is a contradiction. Hence ρ(z) ≡ 0, and the assumption (a) is verified.
Our claim on the denseness of S now follows from Proposition 5.

Finally, from this claim, with a suitable choice of p0, we can deduce the
assertion of Proposition 4. This completes the proof of Theorem 1.
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[3] A.Ivić, The Riemann Zeta-Function, Wiley, 1985.
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