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The purpose of the present article is to survey some mean value results obtained recently in
zeta-function theory. We do not mention other important aspects of the theory of zeta-functions,
such as the distribution of zeros, value-distribution, and applications to number theory. Some of
them are probably treated in the articles of Professor Apostol and Professor Ramachandra in the
present volume.

Even in the mean value theory, we do not discuss many important recent topics. Those in-
clude: Recent progress in the theory of large values and fractional moments made by Heath-Brown
[55] and the Indian school (Ramachandra, Balasubramanian, Sankaranarayanan and others, see
Ramachandra [172]); mean values taken at the zeros or at the points near the zeros (Gonek [30]
[31], Fujii [23]-[26] and others); the mean square of the product of the zeta-function and a Dirichlet
polynomial (see Conrey-Ghosh-Gonek [19] and the papers quoted there). All of these three topics
are closely connected with the distribution of zeros of zeta-functions, hence the full account of them
would require too many pages. We will only discuss the theory of Titchmarsh series very briefly
in Section 7. In the fourth power moment theory there have been remarkable developments which
may be characterized by the use of the spectral theory of Maass wave forms. We mention this
theory occasionally, but only in connection with the mean square problems. For the full details of
this theory, see Chapters 4 and 5 of Ivić [68], Motohashi’s book [155], and Jutila’s series of papers.

In the present article we only discuss the mean square theory of zeta-functions. This is a rather
restricted topic, but still it is impossible to mention all the relevant results because the recent
progress in this area is very big. The main tools appearing in this article are the approximate
functional equations and Atkinson methods, emphasis are laid on the latter. The readers will find,
however, that these two tools are not irrelevant (see Sections 4 and 6). Efforts are made to explain
the mutual connections among various methods and results.

In Section 1, we summarize the results on the mean square Iσ(T ) of the Riemann zeta-function,
obtained by applying various approximate functional equations. In Sections 3 and 5, Iσ(T ) is
studied ¿from the viewpoint of the method of Atkinson. The background of Atkinson’s method
is the divisor problem, which is mentioned in Sections 2 and 6. Then, after a brief discussion on
some short interval results in Section 7, we proceed to survey the results on more general zeta
and L-functions. Sections 8, 9, 10 and 11 are devoted, respectively, to the mean square theory of
Dedekind zeta-functions, L-functions attached to cusp forms, Dirichlet L-functions, and Hurwitz
zeta and other related zeta-functions.
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Throughout this article, s = σ + it is a complex variable, ζ(s) the Riemann zeta-function,
Γ(s) the gamma-function, γ the Euler constant, φ(n) the Euler function, d(n) the number of
positive divisors of n, and σa(n) =

∑
0<d|n d

a. When x tends to infinity, f(x) ∼ g(x) means
limx→∞ f(x)/g(x) = 1, f(x) = O(g(x)) or f(x) � g(x) means |f(x)| ≤ Cg(x) with a certain C > 0,
f(x) = Ω+(g(x)) (resp. f(x) = Ω−(g(x))) means that f(xn) > Cg(xn) (resp.f(xn) < −Cg(xn))
holds for infinitely many xn such that xn →∞, with a certain C > 0, and f(x) = Ω(g(x)) means
that |f(x)| = Ω+(g(x)). The letter ε denotes an arbitrarily small positive number, C, C1, C2, · · ·
denote certain constants, which are not necessarily the same at each occurrence. The references
are by no means complete.

The author expresses his gratitude to Professors Martin N.Huxley, Aleksandar Ivić, Matti Jutila,
Shigeru Kanemitsu, Masanori Katsurada, Isao Kiuchi, Shin-ya Koyama, Antanas Laurinčikas, K.
Ramachandra, Vivek V. Rane, Yoshio Tanigawa and Kai-Man Tsang for valuable comments and
information. He is also indebted to Miss Yumiko Ichihara for her laborious work of typesetting this
long article.

1 The approximate functional equations

A classical problem in the mean value theory of ζ(s) is to search for the asymptotic formula of
the mean square

Iσ(T ) =

∫ T

0

∣∣∣ζ(σ + it)
∣∣∣
2
dt,

where T ≥ 2. (If σ = 1, we replace the interval of integration by [1, T ].) In view of the functional
equation ζ(s) = χ(s)ζ(1− s), where

χ(s) = 2(2π)s−1 sin

(
1

2
πs

)
Γ(1− s),

we may restrict our consideration to the case σ ≥ 1/2. When σ > 1, the asymptotic formula

Iσ(T ) ∼ ζ(2σ)T (1.1)

is an easy consequence of the definition of ζ(s). It was proved by Landau [127, §228, p.816] and
Schnee [180] that (1.1) holds for any σ > 1/2. To prove this fact, the simple approximate formula

ζ(s) =
∑

n≤ξ

n−s − ξ1−s

1− s
+O(ξ−σ) (|t| ≤ πξ) (1.2)

is enough (see Titchmarsh [190, Theorem 7.2]). The most difficult case σ = 1/2 was settled in 1918
by Hardy-Littlewood [47],who proved

I 1
2
(T ) ∼ T log T, (1.3)

by using the Mellin transform. Five years later, Hardy-Littlewood [49] gave an alternative proof of
(1.3). It is based on the approximate functional equation

ζ(s) =
∑

n≤ξ

n−s + χ(s)
∑

n≤η

ns−1 +R1(s; ξ, η), (1.4)
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which is a refinement of (1.2). Here ξ, η are positive, 2πξη = t, and

R1(s; ξ, η) = O
(
ξ−σ + ησ−1t

1
2
−σ
)
. (1.5)

The formula (1.4) first appeared in Hardy-Littlewood [48], with a slightly weaker error estimate
than (1.5), and the main instrument of the proof in [48] is the Poisson summation formula

∑

a≤n≤b

′
f(n) =

∫ b

a
f(u)du+ 2

∞∑

n=1

∫ b

a
f(u) cos(2πnu)du (1.6)

(for f ∈ C1[a, b]; the symbol
∑′ indicates that 1

2f(a) and 1
2f(b) are to be taken instead of f(a)

and f(b), respectively). In [49], Hardy-Littlewood presented an alternative complex-analytic proof
of (1.4) and (1.5).

The formula (1.4) and its relatives are really useful, and dominated the next sixty years of the
mean value theory. Littlewood [134] announced that

I 1
2
(T ) = T log T − (1 + log 2π − 2γ)T +E(T ) (1.7)

with E(T ) = O(T 3/4+ε) (actually the term 2γ is missing in [134]). Ingham [63] improved it to
E(T ) = O(T 1/2 log T ). Further improvement was done by Titchmarsh [188], who proved

E(T ) = O(T
5
12 log2 T ). (1.8)

Titchmarsh succeeded because he could use the Riemann-Siegel formula, proved by Siegel [182],
which gives the very precise asymptotic expansion of R1(s;

√
t/2π,

√
t/2π).

Hardy-Littlewood [49] also studied the fourth power moment

I2,σ(T ) =

∫ T

0

∣∣∣ζ(σ + it)
∣∣∣
4
dt,

and they showed

I2,σ(T ) ∼ ζ4(2σ)

ζ(4σ)
T (

1

2
< σ < 1) (1.9)

and

I2, 1
2
(T ) = O(T log4 T ). (1.10)

Ingham [63] improved (1.10) to

I2, 1
2
(T ) = (2π2)−1T log4 T +O(T log3 T ), (1.11)

by using the approximate functional equation of ζ 2(s) due to Hardy-Littlewood [50], that is

ζ2(s) =
∑

n≤x

d(n)

ns
+ χ2(s)

∑

n≤y

d(n)

n1−s
+R2(s;x, y) (1.12)
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for positive x, y with 4π2xy = t2, where

R2(s;x, y) = O

(
x

1
2
−σ
(
x+ y

t

) 1
4

log t

)
. (1.13)

In [189], Titchmarsh gave a different proof of (1.12) with

R2(s;x, y) = O(x
1
2
−σ log t). (1.14)

Recall that the original proof of (1.4) by Hardy-Littlewood is based on (1.6). Hardy-Littlewood
deduced

ζ(s) =
∑

n≤x

n−s − x1−s

1− s
+ 2

∞∑

n=1

∫ ∞

x
u−s cos(2πnu)du +O(x−σ) (1.15)

¿from (1.6) in the first stage of their argument. As an analogue of (1.15), Titchmarsh [189] proved

ζ2(s) =
∑

n≤x

d(n)

ns
− x−s

∑

n≤x

d(n) +
2s− s2

(s− 1)2
x1−s +

s

s− 1
x1−s(2γ + log x) +

1

4
x−s

−24sπ2s−2s
∞∑

n=1

d(n)

n1−s

∫ ∞

4π
√

nx

K1(u) + π
2Y1(u)

u2s
du, (1.16)

where K1 and Y1 are Bessel functions. This is the basis of Titchmarsh’s proof of (1.14).
A climax of applications of approximate functional equations to the mean value problems came

in the late 1970s, with the works of Balasubramanian, Good and Heath-Brown. A very careful
analysis based on the Riemann-Siegel formula enabled Balasubramanian [4] to obtain the explicit
formula

E(T ) = 2
∑∑

m,n≤K
m6=n

sin
(
T log ( n

m)
)

(mn)
1
2 log ( n

m )
+ 2

∑∑

m,n≤K
m6=n

sin(2θ1 − T logmn)

(mn)
1
2 (2θ′1 − logmn)

+O(log2 T ), (1.17)

where θ1 = θ1(T ) = 1
2T log(T/2π) − 1

2T − 1
8π, θ1

′ is the derivative of θ1, and K = [(T/2π)1/2].
Then, applying his own idea of multiple integration process to (1.17), Balasubramanian obtained
the estimate of the form

E(T ) = O(T α+ε) (1.18)

with a certain α < 1/3. (In [4], the value α = 27/82 was given.) Good [34] proved an explicit
formula of E(T ) similar to (1.17) but with certain smoothing factors, and from this formula he [35]
proved

E(T ) = Ω
(
T

1
4

)
. (1.19)

Heath-Brown’s work [53] gives an improvement on (1.11). He proved a new type of approximate
functional equation, from which he deduced

I2, 1
2
(T ) = T

4∑

j=0

aj logj T +E2(T ),
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where aj’s are constants, a4 = (2π2)−1, and

E2(T ) = O
(
T

7
8
+ε
)
. (1.20)

Heath-Brown’s paper also includes an alternative proof of (1.18).
Inspired by these papers, strong interests in the mean value problems revived. Really big

progress has been made since 1980, which is the main theme of the present article. But first, we
will discuss a closely related problem concerning the behaviour in mean of the divisor function in
the next section.

2 The Dirichlet divisor problem

The title of this section means the problem of evaluating the error term ∆(x) defined by

∑

n≤x

′
d(n) = x log x+ (2γ − 1)x+

1

4
+ ∆(x) (2.1)

for x ≥ 2, where
∑′ indicates that the last term is to be halved if x is an integer. As can be

observed by comparing (2.1) with (1.7), there is a strong analogy between ∆(x) and E(T ). Usually
the study of ∆(x) is easier than that of E(T ), hence the results on ∆(x) are quite suggestive of
guessing the behaviour of E(T ). Here we quote several known facts on ∆(x).

Dirichlet himself proved ∆(x) = O(x1/2), and Voronöı [195] improved it to obtain

∆(x) = O
(
x

1
3 log x

)
. (2.2)

The explicit formula

∆(x) = − 2

π
x

1
2

∞∑

n=1

d(n)

n
1
2

{
K1(4π

√
nx) +

π

2
Y1(4π

√
nx)

}

=
x

1
4

π
√

2

∞∑

n=1

d(n)n−
3
4 cos

(
4π
√
nx− π

4

)

− 3

32
√

2π2
x−

1
4

∞∑

n=1

d(n)n−
5
4 sin

(
4π
√
nx− π

4

)
+O

(
x−

3
4

)
(2.3)

is due to Voronöı [196]. Sometimes the truncated form

∆(x) =
x

1
4

π
√

2

∑

n≤N

d(n)n−
3
4 cos

(
4π
√
nx− π

4

)
+O

(
xε + x

1
2
+εN− 1

2

)
(2.4)

is useful. For instance, the formula

∫ X

2
∆2(x)dx =

ζ4( 3
2)

6π2ζ(3)
X

3
2 + δ(X) (2.5)

with δ(X) = O(X5/4+ε), due originally to Cramér [21], can be proved by substituting (2.4) into
the left-hand side and squaring them out. Tong [191] obtained the improved estimate δ(X) =
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O(X log5X), and an alternative simple proof was given by Meurman [142]. The best estimate at
present is

δ(X) = O(X log4X) (2.6)

due to Preissmann [164].
As for the real order of δ(X), the author (1992) conjectured (cf.[115]) that δ(X) ∼ CX(logX)B

with a certain B > 0. Lau-Tsang [128] proved

∫ X

2
δ(x)dx = − 1

8π2
X2 log2X + C1X

2 logX +O(X2), (2.7)

which implies δ(X) = Ω−(X log2X), and conjectured

δ(X) = − 1

4π2
X log2X + C2X logX +O(X). (2.8)

Moreover, Tsang [193] proved that (2.8) is valid for almost all X in a certain mean value sense. A
generalization of the result of Lau-Tsang [128] was recently obtained by Furuya [27].

Another mean value formula for ∆(x) is

∫ X

2
∆(x)dx =

1

2
√

2π2
X

3
4

∞∑

n=1

d(n)n−
5
4 sin

(
4π
√
nx− π

4

)

+
15

64
√

2π3
X

1
4

∞∑

n=1

d(n)n−
7
4 cos

(
4π
√
nx− π

4

)
+O(1), (2.9)

which is due to Voronöı. Recently the mean value of the above quantity was studied in detail
by Furuya-Tanigawa [28]. In several references (2.9) was quoted incorrectly. Note that sometimes
∆(x) is defined by (2.1) without the term 1/4; then the term 1

4X should be added on the right-hand
side of (2.9).

The formula (2.5) includes the fact ∆(x) = Ω(x1/4), and furthermore, it is known that

∆(x) = Ω−
{
x

1
4 exp

(
C(log log x)

1
4 (log log log x)−

3
4

)}
(2.10)

(Corrádi-Kátai [20]) and

∆(x) = Ω+

{
(x log x)

1
4 (log log x)

3+log 4
4 exp

(
− C

√
log log log x

)}
(2.11)

(Hafner [45]). In view of these Ω-results, it is quite plausible that

∆(x) = O(x
1
4
+ε). (2.12)

This is indeed a classical conjecture, but is believed to be extremely difficult. At present, the best
known upper-bound is

∆(x) = O
(
x

23
73

+ε
)

(2.13)

due to Huxley [59]. This is just a small improvement on (2.2), but such a kind of improvement
requires quite hard analysis on exponential sums. That is, we should use the theory of exponent
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pairs, created by van der Corput, and refined by many authors. For instance, Kolesnik [120] proved
∆(x) = O(x35/108+ε) by using his own elaborated version of the theory of exponent pairs, and later
he [121] improved the exponent to 139/429 + ε.

Bombieri-Iwaniec [13] [14] invented a new method of treating exponential sums, which gives an
essentially new exponent pairs (see Huxley-Watt [62]). Combining this method with the expression

∆(x) = −2
∑

n≤√x

ψ

(
x

n

)
+O(1), (2.14)

where ψ(x) = x− [x]− 1
2 , Iwaniec-Mozzochi [80] obtained the estimate ∆(x) = O(x7/22+ε). Huxley

achieved to prove (2.13) by a further refinement of the method of Bombieri-Iwaniec. For the details
of the theory of exponent pairs, the readers are referred to Graham-Kolesnik [39] or Huxley [61].

3 The Atkinson formula and the recent results on E(T )

As we mentioned in the previous section, there is an analogy between ∆(x) and E(T ). Therefore
it is natural to search a formula analogous to Voronöı’s (2.3) or (2.4). This was carried out in 1949
by Atkinson [3]. To state his result, we prepare several notations. Let X � T (i.e. T � X � T ),

arsinh x = log

(
x+

√
1 + x2

)
, and define

e(T, n) =

(
1 +

πn

2T

)− 1
4
(

2T

πn

)− 1
2
(

arsinh

√
πn

2T

)−1

,

f(T, n) = 2Tarsinh

√
πn

2T
+ (π2n2 + 2πnT )

1
2 − π

4
,

g(T, n) = T log

(
T

2πn

)
− T +

π

4
,

B(T, ξ) =
T

2π
+

1

2
ξ2 − ξ

(
T

2π
+

1

4
ξ2
) 1

2

,

∑
1,σ

(T,X) =
√

2

(
T

2π

) 3
4
−σ ∑

n≤X

(−1)nσ1−2σ(n)nσ− 5
4 e(T, n) cos

(
f(T, n)

)

and

∑
2,σ

(T,X) = 2

(
T

2π

) 1
2
−σ ∑

n≤B(T,
√

X)

σ1−2σ(n)nσ−1
(

log
T

2πn

)−1

cos
(
g(T, n)

)
.

Then Atkinson’s explicit formula can be stated as

E(T ) =
∑

1, 1
2

(T,X)−
∑

2, 1
2

(T,X) +O(log2 T ). (3.1)

The starting point of Atkinson’s proof of (3.1) is the product ζ(u)ζ(v), where u and v are
independent complex variables. At first assume Re u > 1, Re v > 1. Then

ζ(u)ζ(v) =
∞∑

m=1

∞∑

n=1

m−un−v.
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Divide this double sum into three parts according to the conditions m = n, m > n and m < n
(Atkinson’s dissection). The part corresponding to m = n is clearly ζ(u+ v). By using the Poisson
summation formula (1.6), Atkinson showed an integral expression of the remaining parts, which
enables the analytic continuation. Then he transformed this expression by applying Voronöı’s
formula (2.3), and evaluated the resulting integrals by his own saddle-point lemma, which gives an
asymptotic formula for the integral of the type

∫ b

a
g(x) exp

(
2πi
(
f(x) + kx

))
dx (3.2)

with real k and certain functions f(x) and g(x). The details of the proof are rather long and
complicated.

When Atkinson published (3.1), no one noticed its usefulness. After the disregard during about
thirty years, Heath-Brown first gave attention to Atkinson’s paper. In [51], Heath-Brown proved

∫ T

2
E2(t)dt =

2ζ4(3
2 )

3(2π)
1
2 ζ(3)

T
3
2 + F (T ) (3.3)

with

F (T ) = O
(
T

5
4 log2 T

)
, (3.4)

as an application of (3.1). This is the analogy of (2.5), and implies (1.19) of Good. Heath-Brown’s
another paper [52] deduced the estimate

∫ T

0

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
12

dt = O(T 2 log17 T ) (3.5)

¿from a certain estimate of the mean square of |ζ(1/2 + it)| in short intervals. Atkinson’s formula
(3.1) was used to prove the latter estimate. (See also Chapter 7 of Ivić [66] for a different proof.)

These works of Heath-Brown showed the fruitfulness of Atkinson’s formula (3.1), but it was
Jutila [81I] who noticed the real value lying in Atkinson’s method. He sketched in [81I] how easily
can (1.18) be obtained from (3.1). Following Jutila’s idea, and combining with Kolesnik’s technique
[120], Ivić described a proof of

E(T ) = O
(
T

35
108

+ε
)

(3.6)

in Section 15.5 of [66].
The main theme of Jutila’s aforementioned paper [81I] is the analogy between E(T ) and a

modification of ∆(x), that is

∆∗(x) = −∆(x) + 2∆(2x) − 1

2
∆(4x).

A consequence of his analysis is the hypothetical bound

E(T ) = O
(
T

5
16

+ε
)

(3.7)
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under the assumption of the conjecture (2.12). The exponent 5/16 in (3.7) was later improved to
3/10 by Jutila [81II]. In [82], Jutila proved

∫ T

2

(
E(t)− 2π∆∗

(
t

2π

))2

dt = O
(
T

4
3 log3 T

)
. (3.8)

The transformation method for Dirichlet polynomials was created by Jutila [83]. The basic tool
of this method is Voronöı’s summation formula

∑

a≤n≤b

′
d(n)f(n) =

∫ b

a
f(u)(log u+ 2γ)du

+
∞∑

n=1

d(n)

∫ b

a
f(u)

(
4K0

(
4π
√
nu
)
− 2πY0

(
4π
√
nu
) )
du, (3.9)

valid for f ∈ C2[a, b], where K0 and Y0 are Bessel functions. Jutila’s idea is to transform the
Dirichlet polynomial

S(M1,M2; t) =
∑

M1≤m≤M2

d(m)m− 1
2
−it (3.10)

by applying (3.9), and then use a lemma of Atkinson’s type to evaluate the resulting expressions.
One of his results is an explicit formula for |ζ(1/2 + it)|2, whose shape is similar to Atkinson’s
formula. Several new ideas are included in his argument. One of them is the device of multiplying
the original polynomial (3.10) by trivial factors e2πirm, where r is an integer. Another novelty is
the multiple-averaged version of Atkinson’s saddle-point lemma, which gives an asymptotic formula
for the integral of the form

U−J
∫ U

0
du1 · · ·

∫ U

0
duJ

∫ b−u1−···−uJ

a+u1+···+uJ

g(x) exp

(
2πi
(
f(x) + kx

))
dx (3.11)

instead of (3.2). This point was fully developed in Jutila [87]. We will encounter the transformation
method again in Sections 7 and 9.

By using the above averaged saddle-point lemma of Jutila, Meurman [142] improved (3.4) to

F (T ) = O(T log5 T ). (3.12)

In fact, Meurman proved an averaged version of Atkinson’s formula, which can be stated as

E(T ) =
∑∗

1, 1
2

(T )−
∑∗

2, 1
2

(T ) + π +O(T−
1
4 log T ), (3.13)

where
∑∗

j, 1
2
(T ) is a certain weighted sum similar to

∑
j, 1

2
(T,X) (j = 1, 2). The deduction of (3.12)

from (3.13) is basically analogous to the argument of Heath-Brown [51].
The estimate (3.12) was proved also by Motohashi [149IV] [150] independently. From his asymp-

totic formula for R2(s; t/2π) (see the next section), Motohashi deduced another version of Atkin-
son’s formula, and from which he otained (3.12). Motohashi’s argument includes an alternative
proof of the original formula (3.1) with a slightly better error term O(log T ). Note that another
different proof of (3.1) was obtained by Jutila [92]. His argument is based on the Laplace transform
of |ζ(1/2 + it)|2, and does not appeal to Atkinson’s dissection device.
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Inspired by Preissmann’s proof of (2.6) (which is an application of the inequality (8.12) below
due to Montgomery-Vaughan), Preissmann himself [165] and Ivić [68, (2.100)] independently of
each other proved

F (T ) = O(T log4 T ), (3.14)

which is the best at present. There is a conjecture of the author that F (T ) ∼ CT (log T )B would
hold with a certain B > 0. Probably B = 2.

Higher power moments of E(t) were first studied by Ivić [64], who proved

∫ T

2

∣∣∣E(t)
∣∣∣
α
dt = O(T 1+ α

4
+ε)

(
0 ≤ α ≤ 35

4

)
(3.15)

and
∫ T

2

∣∣∣E(t)
∣∣∣
α
dt = O(T

38+35α
108

+ε)

(
α ≥ 35

4

)
. (3.16)

Heath-Brown [56] proved the existence of the limit

lim
T→∞

T−1−α
4

∫ T

2

∣∣∣E(t)
∣∣∣
α
dt (3.17)

for 0 ≤ α < 28/3. Tsang [192] obtained

∫ T

2
E(t)kdt = C(k)T 1+ k

4 +O
(
T 1+ k

4
−δ
)

(3.18)

for k = 3 or 4, where C(k) is an explicitly written positive constant, and δ > 0. Recently Ivić [73]
showed, using (3.8), that one can take δ = 1/14 for k = 3 and δ = 1/23 for k = 4.

In view of the Ω-result (1.19), it is plausible that

E(T ) = O
(
T

1
4
+ε
)
, (3.19)

as an analogue of (2.12). The above results on higher power moments can also be regarded as
supporting facts of this conjecture. The best known upper-bound is, however, still far from this
conjecture. Heath-Brown and Huxley [57] applied the methods of Bombieri, Iwaniec and Mozzochi

(mentioned in Section 2) and some lemmas proved in [53] to obtain E(T ) = O
(
T 7/22(log T )111/22

)
,

which is better than (3.6), and this was further improved to

E(T ) = O
(
T

72
227 (log T )

679
227

)
(3.20)

by Huxley [60].
The Ω-result (1.19) was refined by Hafner-Ivić [46], who showed, analogously to (2.10) and

(2.11), that

E(T ) = Ω−
{
T

1
4 exp

(
C(log log T )

1
4 (log log log T )−

3
4

)}
(3.21)

and

E(T ) = Ω+

{
(T log T )

1
4 (log log T )

3+log 4
4 exp

(
−C

√
log log log T

)}
. (3.22)
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The local behaviour of sign-changes of E(T ) was studied by Ivić [67], Ivić-te Riele [78], and (inde-
pendently) Heath-Brown and Tsang [58]. Ivić [67] showed that there exist positive constants C1

and C2, such that every interval [T, T + C1

√
T ] (for T ≥ T0) contains numbers t1, t2 for which

E(t1) > C2t
1/4
1 , E(t2) < −C2t

1/4
2

hold. This result is also included in Heath-Brown and Tsang [58].
¿From Atkinson’s formula Hafner-Ivić [46] deduced, as an analogue of (2.9), that

∫ T

2
E(t)dt = πT +

1

2

(
2T

π

) 3
4
∞∑

n=1

(−1)nd(n)

n
5
4

sin

(
2
√

2πnT − π

4

)
+O

(
T

2
3 log T

)
. (3.23)

This implies that the function E(t) has the mean value π. Hence it is natural to consider the zeros
of the function E(t) − π, which we denote by tn (2 ≤ t1 < t2 < · · ·). Then the above mentioned
result implies that

tn+1 − tn � t1/2
n . (3.24)

Let κ = inf{c ≥ 0 ; tn+1 − tn � tcn}. Then (3.24) implies that κ ≤ 1/2. Ivić-te Riele [78]
studied {tn} both theoretically and numerically, and proposed the conjecture that κ = 1/4. This
conjecture is very strong because it would lead to (3.19) (see Theorem 1 of [78]). However, this
conjecture was disproved by Heath-Brown and Tsang [58]. They showed that for any δ > 0 and
any T ≥ T0(δ), there are at least C1δT

1/2 log5 T disjoint subintervals of length C2δT
1/2(log T )−5 in

[T, 2T ] such that

∣∣∣E(t)
∣∣∣ > (B0 − δ)t

1
4 , B0 =

ζ2(3
2)

2(2π)
1
4 ζ(3)

1
2

whenever t lies in any of these subintervals. In particular E(t) does not change sign in any of these
subintervals. Therefore the local behaviour of E(t) is much more mysterious than was expected by
Ivić and te Riele.

4 The remainder term in the approximate functional equation for

ζ2(s)

In the middle of 1980s, new light was shed on the remainder term R2(s;x, y) in (1.12). Jutila
[83] pointed out that (1.12) with (1.14) can be deduced from the Voronöı summation formula (3.9);
this should be compared with the fact, mentioned in Section 1, that (1.4) can be deduced from
the Poisson summation formula (1.6). The details are presented in Ivić [65] [66] (see Section 4.2 of
[66]).

In the special case x = y = t/2π (“the symmetric case”), Motohashi [148I] showed that the
estimate (1.14) for R2(s; t/2π, t/2π) (which we abbreviate as R2(s; t/2π)) follows from the estimate
(1.5) for R1(s;

√
t/2π,

√
t/2π) by the Dirichlet device. However, we know much more precise

information on R1(s;
√
t/2π,

√
t/2π), that is the Riemann-Siegel formula. What can we obtain

if we combine Motohashi’s argument with the Riemann-Siegel formula? This idea was pursued
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by Motohashi himself, and he [148II] [150] [153] obtained a very precise asymptotic formula of
R2(s; t/2π). His result includes

χ(1− s)R2

(
s ;

t

2π

)
=

(
t

2π

)− 1
4
∞∑

n=1

d(n)h(n)n−
1
4 sin

(
2
√

2πtn+
π

4

)
+O

(
t−

1
2 log t

)
, (4.1)

where

h(n) =

(
2

π

) 1
2
∫ ∞

0
(u+ nπ)−

1
2 cos

(
u+

π

4

)
du

= − 1

π
n−

1
2 +O

(
n−

3
2

)
.

Actually Motohashi’s formula is more precise and complicated; the error term in (4.1) is replaced
by some more explicit terms and a smaller error O(t−1 log t). A simple consequence of (4.1) and
(2.3) is the relation

χ(1− s)R2

(
s ;

t

2π

)
= −

√
2

(
t

2π

)− 1
2

∆

(
t

2π

)
+O

(
t−

1
4

)
, (4.2)

which was announced in [148I]. A formula of the same type was already given long before in Taylor’s
posthumous article [186], but Motohashi [153] pointed out that Taylor’s argument was incorrect.

Jutila [85] gave an alternative proof of (4.2). His starting point is Titchmarsh’s explicit formula
(1.16). His idea is to smooth the right-hand side of (1.16) by using multiple integration, and then
apply his own saddle-point lemma mentioned in Section 3. So far Jutila’s method cannot give a
proof of Motohashi’s precise formula ((4.1) and more). An advantage of Jutila’s approach is that
it can be applied to many other Dirichlet series, satisfying a certain functional equation. In [85],
Jutila presented analogous results on

ϕ(s, F ) =
∞∑

n=1

a(n)n−s, (4.3)

where a(n)’s are the Fourier coefficients of a holomorphic cusp form F (z) =
∑∞

n=1 a(n) exp(2πinz)
of weight κ (an even integer) for the full modular group SL(2,Z). There are many analogous
properties shared by ζ2(s) and ϕ(s, F ), but a big difference is that ζ2(s) has the good square-root
function (i.e. ζ(s)), while ϕ(s, F ) does not. This is why Motohashi’s approach cannot be applied to
ϕ(s, F ). Recently, Guthmann [42] [43] [44] has developed another unified approach to the remainder
terms in the approximate functional equations for ζ 2(s) and ϕ(s, F ).

The formula (4.2) tells that a strong analogy between R2(s ; t/2π) and ∆(t/2π) should exist
(cf. Ivić [69]). Kiuchi-Matsumoto [114] proved, as an analogue of (2.5), that

∫ T

2

∣∣∣∣R2

(
1

2
+ it ;

t

2π

)∣∣∣∣
2

dt =
√

2πC0T
1
2 +K(T ), (4.4)

where

C0 =
∞∑

n=1

d2(n)h2(n)n−
1
2 (4.5)
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and K(T ) = O(T
1
4 log T ). The proof is based on (4.1). Using a more precise form of Motohashi’s

formula, Kiuchi [111] gave the improved bound K(T ) = O(log5 T ), and suggested the conjecture

K(T ) ∼ C log3 T. (4.6)

The hitherto best upper-bound is

K(T ) = O(log4 T ) (4.7)

due to Kiuchi [113II]. On the other hand, Ivić [72] proved

∫ T

2
K(t)dt = C1T log3 T + C2T log2 T +O(T log T ) (4.8)

with C1 < 0, analogously to (2.7). This implies

K(T ) = Ω−(log3 T ), (4.9)

which supports the conjecture (4.6).
Motohashi’s formula has been obtained in the symmetric case x = y = t/2π. How is the non-

symmetric case? Motohashi [148III] [150] proved a formula when x = αt/2π, y = t/2πα with a
rational number α, but the result is not so precise as in the symmetric case. Jutila [85] considered
the general situation, and in some non-symmetric cases his bound is better than (1.14). See also
Jutila [86]. Mean-value results in the non-symmetric case were discussed by Kiuchi[112].

5 The mean square of ζ(s) in the critical strip

Now we return to the problem of evaluating Iσ(T ), and discuss the case 1/2 < σ ≤ 1. After
the classical result (1.1) of Landau and Schnee, the development in this direction had been very
slow (cf. Ingham [63] and (8.112) of Ivić [66]). In 1989, the author [135] published the analogue of
Atkinson’s formula in the strip 1/2 < σ < 3/4. It is stated as

Eσ(T ) =
∑

1,σ
(T,X) −

∑
2,σ

(T,X) +O(log T ), (5.1)

where Eσ(T ) is defined, for 1/2 < σ < 1, by

Iσ(T ) = ζ(2σ)T + (2π)2σ−1 ζ(2− 2σ)

2− 2σ
T 2−2σ +Eσ(T ). (5.2)

It can be easily seen that Eσ(T ) → E(T ) as σ → 1/2 + 0. In the same paper [135], as applications
of (5.1), the author showed that

Eσ(T ) = O
(
T

1
1+4σ log2 T

) (
1

2
< σ <

3

4

)
(5.3)

(the O-constant may depend on σ) and

∫ T

2
Eσ(t)2dt = A1(σ)T

5
2
−2σ + Fσ(T )

(
1

2
< σ <

3

4

)
(5.4)
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with Fσ(T ) = O(T 7/4−σ log T ), where

A1(σ) =
2

5− 4σ
(2π)2σ− 3

2
ζ(3

2)2

ζ(3)
ζ

(
5

2
− 2σ

)
ζ

(
1

2
+ 2σ

)
.

Independently of [135], Laurinčikas [129I] obtained the analogue of Atkinson’s formula near the
critical line, that is an explicit formula for the error term in the asymptotic formula of the integral

∫ T

0

∣∣∣ζ(σT + it)
∣∣∣
2
dt,

where σT = 1/2 + l−1
T , 0 < lT � log T , and lT tends to infinity as T → ∞. See also Laurinčikas

[129II] [131] [132] [133]; in [132], he proved that (5.3) (with a slightly different log-factor) holds
uniformly in σ.

An asymptotic formula over short intervals was obtained by Sankaranarayanan-Srinivas [179]
by a quite different method. They proved

1

H

∫ T+H

T
|ζ(σ + it)|2dt = ζ(2σ) +O

(
exp

(
− C1(log T )2−2σ

log log T

))

for exp((log T )2−2σ) ≤ H ≤ T and (1/2) + C2(log log T )−1 ≤ σ ≤ 1 − C3 under the assumption
of the Riemann hypothesis. It should be noted that their method can be applied to much more
general Dirichlet series.

The basic tool of the author [135] is Oppenheim’s Voronöı-type formula [161] for the error term
∆1−2σ(x) defined by

∑

n≤x

′
σ1−2σ(n) = ζ(2σ)x+

ζ(2− 2σ)

2− 2σ
x2−2σ − 1

2
ζ(2σ − 1) + ∆1−2σ(x). (5.5)

The series in Oppenheim’s formula is convergent only for σ < 3/4, which is the reason why the
restriction 1/2 < σ < 3/4 exists. It was pointed out in [135] that the coefficient A1(σ) tends to
infinity when σ → 3/4 − 0, which suggests some singular situation occurring at σ = 3/4. Now we
know that the behaviour of Eσ(T ) in fact transposes at σ = 3/4, which can be well observed by
the following refinement of (5.4):

∫ T

2
Eσ(t)2dt =





A1(σ)T
5
2
−2σ +O(T ) ( 1

2 < σ < 3
4)

A0T log T +O(T ) (σ = 3
4)

O(T ) (3
4 < σ < 1),

(5.6)

where A0 = ζ2(3/2)ζ(2)/ζ(3). These are due to Matsumoto-Meurman [140II] (1/2 < σ < 3/4),
Lam [125] (σ = 3/4), and Matsumoto-Meurman [140III] (3/4 < σ < 1), respectively. (In [140III],
the formula for σ = 3/4 was given with a slightly weaker error term O(T (log T )1/2).)

To prove the result for 1/2 < σ < 3/4, that is Fσ(T ) = O(T ), Matsumoto-Meurman [140II] gave
a new averaged version (somewhat similar to (3.13)) of Atkinson-type formula, which is proved by
combining the methods of Meurman [142] and Preissmann [165] with some additional new idea. In
the same paper [140II], the conjecture

Fσ(T ) ∼ 4π2ζ(2σ − 1)2T

(
1

2
< σ <

3

4

)
(5.7)

14



was proposed. There are several heuristic arguments which may suggest (5.7) (see [115] [136]). The
reason presented in [140II] is the fact that Eσ(T ) has the mean value −2πζ(2σ− 1). This fact was
discovered independently by Ivić [68]; he proved

∫ T

2
Eσ(t)dt = B(σ)T +O

(
T

5
4
−σ
) (

1

2
< σ <

3

4

)
(5.8)

((3.39) of [68]). The expression of B(σ) given in [68] is complicated, but it is actually equal to
−2πζ(2σ − 1) (see Appendix of Matsumoto-Meurman [140II]). The above (5.8) is a direct conse-
quence of

∫ T

2
Eσ(t)dt = B(σ)T + 2σ− 3

4

(
T

π

) 5
4
−σ ∞∑

n=1

(−1)nσ1−2σ(n)nσ− 7
4 sin

(√
8πnT − π

4

)

+O
(
T 1− 2

3
σ log T

)
(5.9)

((3.30) of Ivić [68]), which is the analogue of (3.23). We mention here that it might be better to
define the “real” error term in (5.2) (resp. (1.7)) as Eσ(T ) + 2πζ(2σ − 1) (resp. E(T ) − π). The
constant −2πζ(2σ − 1) (resp. π) corresponds to −(1/2)ζ(2σ − 1) in (5.5) (resp. 1/4 in (2.1)).

Matsumoto-Meurman [140III] proved that the formula (5.1) is valid for all σ satisfying 1/2 <
σ < 1. When σ ≥ 3/4 the Voronöı-type formula for the Riesz mean of σ1−2σ(n) is applied in [140III],
because Oppenheim’s series is divergent. It is again a certain averaged version of Atkinson-type
formula from which the case 3/4 < σ < 1 of (5.6) was deduced in [140III]. (Here we note that in
the statement of Lemma 4 of [140III], σ should be deleted. The author would like to thank Dr.
Hideki Nakaya who pointed out this mistake.)

As an extension of (5.7), the author proposed the conjecture that the error terms O(T ) in (5.6)
could be replaced by A2(σ)T + o(T ) for 1/2 < σ < 1, with a certain constant A2(σ) (see [137]). A
refined version is:

Conjecture 1 The error terms O(T ) in (5.6) could be replaced by

A2(σ)T +O
(
T 2−2σ(log T )C

)
(5.10)

for 1/2 < σ ≤ 3/4, where C ≥ 0, and by

A2(σ)T +A3(σ)T
5
2
−2σ +O

(
T 2−2σ(log T )C

)
(5.11)

with a certain A3(σ) for 3/4 < σ < 1.

The reason of the error estimates O(T 2−2σ(log T )C) is the result (6.6) mentioned in the next
section. The author proposed (5.10) first in correspondence, which is mentioned in Ivić-Kiuchi
[74]. The conjecture (5.11) first appeared in [115] (though the term A3(σ)T 5/2−2σ is missing there).
Even the weaker form of the above conjecture is still open.

The formula (5.4) obviously implies Eσ(T ) = Ω(T 3/4−σ) for 1/2 < σ < 3/4. Ivić [68] improved
this to Ω±(T 3/4−σ) with some information about local sign-changes of Eσ(T ). The best known
Ω-results at present are

Eσ(T ) = Ω−

{
T

3
4
−σ exp

(
C(log log T )σ− 1

4 (log log log T )σ− 5
4

)} (
1

2
< σ <

3

4

)
(5.12)
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(Ivić-Matsumoto [75]), exactly corresponding to (3.21), and

Eσ(T ) = Ω+

(
T

3
4
−σ(log T )σ− 1

4

) (
1

2
< σ <

3

4

)
(5.13)

(Matsumoto-Meurman [140III]). It is much more difficult to obtain any Ω-result in the strip 3/4 ≤
σ < 1. The only known result is

E 3
4
(T ) = Ω

(
(log T )

1
2

)
, (5.14)

a direct consequence of the case σ = 3/4 of (5.6).
What is the real order of Eσ(T )? In view of (5.6) and the above Ω-results, we may formulate

the conjecture

Eσ(T ) �




T

3
4
−σ+ε

(
1
2 < σ < 3

4

)

T ε
(

3
4 ≤ σ < 1

)
.

(5.15)

In Ivić-Matsumoto [75] this conjecture is stated, and also it is pointed out that if we assume the
very strong conjecture that (ε, 1/2+ ε) would be an exponent pair for any ε > 0, then (5.15) would
follow.

The critical behaviour of Eσ(T ) at σ = 3/4 is again clear in (5.15); it might suggest some unex-
pected properties of ζ(s). In connection with this observation, an interesting discussion concerning
the Lindelöf hypothesis is given in Ivić [71]. See also the final section of [136].

The proof of the conjecture (5.15) seems to be out of reach now. As for the upper bound of
Eσ(T ), Motohashi (unpublished) proved that (5.3) holds for any σ satisfying 1/2 < σ < 1. His idea,
inspired by his own work [151] on the fourth power mean of ζ(s), is to use the weighted integral

1

∆
√
π

∫ ∞

−∞

∣∣∣ζ(σ + i(T + t))
∣∣∣
2
e−( t

∆
)2dt (∆ > 0). (5.16)

Ivić [68] combined Motohashi’s idea with the theory of exponent pairs, and obtained various im-
proved upper bounds of Eσ(T ). This direction was further studied by Ivić-Matsumoto [75] and
Kačėnas [94] [95]; for instance, we have

Eσ(T ) = O

(
T

2(1−σ)
3 (log T )

2
9

) (
1

2
< σ < 1

)

(Ivić-Matsumoto [75]) and

Eσ(T ) = O
(
T

72
227

− 1
2
δ+ε
) (

1

2
< σ <

51

100

)

with δ = σ − 1/2 (Kačėnas [95]). The latter is uniform in σ, and exactly corresponds to Huxley’s
bound (3.20).

We conclude this section with mentioning the case σ = 1. No analogue of Atkinson’s formula
is known in this case. Starting from the simple approximate formula (1.2), Balasubramanian-Ivić-
Ramachandra [7] proved the asymptotic formula

I1(T ) = ζ(2)T − π log T + Ẽ1(T ) (5.17)
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with

Ẽ1(T ) = O
(
(log T )

2
3 (log log T )

1
3

)
. (5.18)

The connection between Eσ(T ) and Ẽ1(T ) is given by

lim
σ→1−0

{
ζ(2σ)T + (2π)2σ−1 ζ(2− 2σ)

2− 2σ
(T 2−2σ − 1)

}
= ζ(2)T − π log T

(Ivić [70]). In [7], they also proved the mean value results

∫ T

2
Ẽ1(t)dt = O(T ),

∫ T

2
Ẽ1(t)

2dt = O
(
T (log log T )4

)

and conjectured that the latter integral would be asymptotically equal to CT .
To show the estimate (5.18), the method of I.M.Vinogradov and Korobov, based on the deep

theory of I.M.Vinogradov on the estimation of exponential sums, is applied. In fact, it is noted in

[7] that from (5.18) one can deduce the estimate ζ(1+it) = O
(
(log t)2/3(log log t)1/3

)
, which is very

close to the sharpest known bound ζ(1 + it) = O((log t)2/3), obtained by the Vinogradov-Korobov
theory (see Chapter 6 of Ivić [66]).

6 Mean values of ∆1−2σ(x) and R2(σ + it; t/2π)

In Section 3 we explained that a guiding principle of the study of E(T ) is to pursue the analogy
with ∆(x). Similarly, it is useful to study the behaviour of ∆1−2σ(x), defined by(5.5), which is the
object analogous to Eσ(T ).

We already mentioned in Section 5 that the Voronöı-type formula for ∆1−2σ(x) due to Oppen-
heim [161] was used in the proof of (5.1). By using the truncated Voronöı-type formula, Kiuchi
[109] proved that

∫ X

2
∆1−2σ(x)2dx = B1(σ)X

5
2
−2σ +O

(
X

7
4
−σ+ε

) (
1

2
< σ <

3

4

)
(6.1)

with

B1(σ) =
ζ(3

2)2

2π2(5− 4σ)ζ(3)
ζ

(
5

2
− 2σ

)
ζ

(
1

2
+ 2σ

)
.

It was already mentioned by Cramér [22] that the left-hand side of (6.1) is asymptotically equal to
B1(σ)X5/2−2σ for 1/2 < σ < 3/4. Meurman [143] refined (6.1) to obtain

∫ X

2
∆1−2σ(x)2dx =





B1(σ)X
5
2
−2σ +O(X) ( 1

2 < σ < 3
4)

B0X logX +O(X) (σ = 3
4)

O(X) (3
4 < σ < 1)

(6.2)

with B0 = ζ2(3/2)/24ζ(3). The formula (6.2) gives the complete analogue of (5.6). Hence the
following analogue of Conjecture 1 can be formulated.
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Conjecture 2 The error term O(X) in (6.2) could be replaced by

B2(σ)X +O
(
X2−2σ(logX)C

)
(6.3)

for 1/2 < σ ≤ 3/4, and by

B2(σ)X +B3(σ)X
5
2
−2σ +O

(
X2−2σ(logX)C

)
(6.4)

for 3/4 < σ < 1, with certain B2(σ), B3(σ) and C ≥ 0.

Meurman first proposed (6.3) in correspondence, while (6.4) appeared in Kiuchi-Matsumoto
[115], though the term B3(σ)X5/2−2σ is missing there.

In Section 4, we discussed the analogy between ∆(x) and R2(1/2 + it; t/2π). We can find that
there also exists an analogy between ∆1−2σ(x) and R2(σ + it; t/2π) for 1/2 < σ < 1. Kiuchi [113I]
proved that

∫ T

2

∣∣∣R2(σ + it; t/2π)
∣∣∣
2
dt =





C1(σ)T
3
2
−2σ +O(1) ( 1

2 < σ < 3
4)

πC0 log T +O(1) (σ = 3
4)

O(1) (3
4 < σ ≤ 1),

(6.5)

where C0 is defined by (4.5) and C1(σ) = (2π)2σ− 1
2C0/(3−4σ). This precisely corresponds to (5.6)

and (6.2).
A remarkable fact is that we can go further in this case. Now it is known that the terms O(1)

in (6.5) can be replaced by



C2(σ) +O

(
T 1−2σ(log T )4

)
(1
2 < σ ≤ 3

4)

C2(σ) + C1(σ)T
3
2
−2σ +O

(
T 1−2σ(log T )4

)
(3
4 < σ ≤ 1)

(6.6)

with a certain constant C2(σ). The author [137] showed (6.6) in the case of 1/2 < σ ≤ 3/4, and
in the same paper the weaker result with the error estimate O(T 1/4−σ) was given for 3/4 < σ ≤ 1.
The result of the form (6.6) for 3/4 < σ ≤ 1 is due to Kiuchi [113II]. The above (6.6) implies that
the facts corresponding to Conjectures 1 and 2 are indeed true for R2(σ + it; t/2π).

Higher moments of R2(σ + it; t/2π) have also been discussed. The results analogous to (3.15)-
(3.18) for R2(1/2 + it; t/2π) were obtained by Kiuchi [110] and Ivić [69]. The k-th power moment
of R2(σ + it; t/2π), where k is a positive even integer and 0 ≤ σ ≤ 1, was studied by Kiuchi-
Matsumoto [115]. Their results especially imply that the transposing line for the k-th power
moment is σ = 1/4 + 1/k, unconditionally for k =2,4,6 and 8, and under a certain plausible
assumption for any even k.

In the case 3/4 < σ < 1, the bound O(X) in (6.2) is not the best known result. Already in
1932, Chowla [18] proved the asymptotic formula

∫ X

2
∆1−2σ(x)2dx =

1

2π2

{ ∞∑

n=1

(
σ2−2σ(n)

n

)2
}
X +O

(
X

5
2
−2σ logX

) (
3

4
< σ < 1

)
, (6.7)

which gives the partial solution of the case 3/4 < σ < 1 of Conjecture 2. Recently, Yanagisawa
[198] rediscovered (6.7) and also obtained more general results. The basic tool of both Chowla and
Yanagisawa is a generalization of (2.14), that is

∆1−2σ(x) = −G1−2σ(x)− x1−2σG2σ−1(x) +O
(
x

1
2
−σ
)
, (6.8)
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where

Ga(x) =
∑

n≤√x

naψ

(
x

n

)
.

(As for (6.8), see Kanemitsu [98].) An asymptotic formula for the mean square of ∆−1(x) was given
by Walfisz [197].

On the other hand, as an analogue of (2.7), Lam-Tsang [126] proved

∫ X

2
δσ(x)dx = C(σ)X2 +O

(
X

2+
(1−2σ)(3−4σ)

2(3−2σ) logX

) (
1

2
< σ <

3

4

)
, (6.9)

where

δσ(X) =

∫ X

2
∆1−2σ(x)2dx−B1(σ)X

5
2
−2σ

and

C(σ) = − ζ(2σ)2ζ(3− 4σ)

12(2π)3−4σζ(4σ)
Γ(3− 4σ) sin(2πσ).

This result clearly implies the fact

δσ(X) = Ω−(X)

(
1

2
< σ <

3

4

)
, (6.10)

which may be regarded as a support for the case 1/2 < σ < 3/4 of Conjecture 2. The order of
δσ(X) for 1/2 < σ < 3/4 is completely determined by (6.2) and (6.10).

It is an interesting problem to prove the analogue of Lau-Tsang’s (2.7) or Lam-Tsang’s (6.9) for
F (T ) or Fσ(T ). Another attractive problem is to search the analogue of the method of Chowla and
Yanagisawa for the function Eσ(T ) in the case 3/4 < σ < 1; or at least, to find the analogue of (6.8)
for Eσ(T ). The last type of problem was sometimes mentioned by S. Kanemitsu in correspondence
and oral communication.

7 Some mean value results in short intervals

We mentioned in Section 1 that Good [35] showed E(T ) = Ω(T 1/4). He actually proved an
asymptotic formula for the integral

∫ T

0

(
E(t+ U)−E(t)

)2
dt (1 ≤ U � T

1
2 ),

and the Ω-result is its corollary. The same formula is also used in the proof of Heath-Brown and
Tsang [58] mentioned in Section 3.

Next, Jutila [84] studied a similar problem, but for short intervals, by using Atkinson’s formula.
His result is

∫ T+H

T

(
E(t+ U)−E(t)

)2
dt =

1√
2π

∑

n≤ T
U

d(n)2n−
3
2

∫ T+H

T
t

1
2

∣∣∣∣ exp

(
i

(
2πn

t

) 1
2

U

)
− 1

∣∣∣∣
2

dt

+O(T 1+ε) +O
(
HU

1
2T ε

)
(7.1)
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for T ≥ 2, 1 ≤ U � T 1/2 � H ≤ T . Note that the right-hand side can be estimated as

� (HU + T )T ε. (7.2)

Jutila did not give the details of the proof; instead, he described the proof (based on the truncated
Voronöı formula (2.4)) of the corresponding formula for ∆(x), that is

∫ X+H

X

(
∆(x+ U)−∆(x)

)2
dx =

1

4π2

∑

n≤ X
2U

d(n)2n−
3
2

∫ X+H

X
x

1
2

∣∣∣∣∣ exp

(
2πi

(
n

x

) 1
2

U

)
− 1

∣∣∣∣∣

2

dx

+O(X1+ε) +O
(
HU

1
2Xε

)
(7.3)

for X ≥ 2, 1 ≤ U � X1/2 � H ≤ X. Moreover, Jutila raised the problem of extending (7.1) and
(7.3) to higher power moments. In particular, he pointed out that if one could prove

∫ T

2

(
E(t+ U)−E(t)

)4
dt = O(T 1+εU2),

then the very important conjectural bound

∫ T

0

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
6

dt = O(T 1+ε)

would follow.
A formula for ∆1−2σ(x) (1/2 < σ < 1), analogous to (7.3), was recently obtained by Kiuchi-

Tanigawa [116]; they actually treated a more general quantity which involves exponential factors.
Yanagisawa [199] studied the same problem by the method similar to his another work [198] men-
tioned in the preceding section. The analogy of (7.1) for Eσ(T ) (1/2 < σ < 1) was given by
Kiuchi-Tanigawa [117]. In [118], they studied the same type of short interval mean square of
R2(σ + it;αt/2π, t/2πα) for rational α.

In [88I], Jutila proved the estimate

∫ T+H

T

(
E(t+ U)−E(t)

)2
dt = O

(
(HU + T

2
3U

4
3 )T ε

)
(7.4)

for 1 ≤ H, U ≤ T , which improves (7.2) when U � T 1/4. Jutila noted that (7.4) implies the
estimate

∫ T+T
2
3

T

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
4

dt = O
(
T

2
3
+ε
)
, (7.5)

due originally to Iwaniec [79]. In fact, since

∫ t+U

t

∣∣∣∣ζ
(

1

2
+ iu

)∣∣∣∣
2

du

can be approximated by E(t+ U)−E(t), (7.5) easily follows ¿from (7.4) with H = T 2/3, U = T ε,
by applying Lemma 7.1 of Ivić [66].

Iwaniec’s proof [79] of (7.5) was really epoch-making, because it was the first successful ap-
plication of Kuznetsov’s trace formula [122] to the mean value theory of zeta-functions, and was
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followed by many important works of Zavorotnyi, Motohashi, Ivić, Jutila and others in the fourth
power moment theory. The full account of this theory is out of the scope of this article, but here
we should mention Jutila’s alternative proof [89] of (7.5). The basic idea of Jutila is to transform a
certain relevant exponential sum by using (3.9), hence it is under the same philosophy as [83] [87].
The remarkable feature of Jutila’s proof is that it only uses classical means, without the fancy tools
of spectral theory. In Jutila’s proof, a lemma due to Bombieri-Iwaniec [13] plays an important role.
This lemma contains the arithmetic essence of (7.5), which is included in Kuznetsov’s formula (or
Kloosterman’s sum) in Iwaniec’s original proof.

Extending the above idea, Jutila [88I, II] studied the integral of the type

J =
R∑

r=1

∫ V

0

∣∣∣∣
∑

M≤m≤M ′

d(m)g(m, v, yr) exp
(
2πif(m, v, yr)

)∣∣∣∣
2

dv, (7.6)

where M is a large positive number, M < M ′ ≤ 2M , V > 0, the functions f and g satisfy certain
regularity conditions, and yr (1 ≤ r ≤ R) runs over a well-spaced set of numbers lying in [0,1]. Jutila
[88I] proved a certain upper-bound of J , and from which he deduced (7.4) as well as its analogue
for ∆(x). A further development of this method, with applications to Dirichlet L-functions, can be
found in Jutila [90].

Lastly in this section we mention briefly the theory of Titchmarsh series developed by Ra-
machandra and his colleagues. Here we do not give the definition of general Titchmarsh series.
They are elements of a certain class of Dirichlet series, including ζ(s)k (for any positive integer
k) as an example. In [169I], Ramachandra raised a conjecture on the lower bound of the mean
square of Titchmarsh series over short intervals. Ramachandra (partly with Balasubramanian)
wrote many papers ([9], [168]-[170]) on this topic, and finally, Balasubramanian-Ramachandra [12]
(and Ramachandra [171]) solved completely the conjecture in a more precise form. This solution
especially implies

1

H

∫ T+H

T

∣∣∣∣ζ
(

1

2
+ it

) ∣∣∣∣
2k

dt ≥ Ck(logH)k2
+O

(
log log T

H
(logH)k2

)
+O

(
(logH)k2−1

)
(7.7)

for log log T � H ≤ T , where

Ck =
1

Γ(k2 + 1)

∏

p

{
(1− p−1)k

2
∞∑

m=0

(
Γ(k +m)

m!Γ(k)

)2

p−m

}
.

Ramachandra [171] includes an interesting lower bound of the mean square of ζ(1 + it) over short
intervals. Upper and lower bounds of the mean value

1

H

∫ T+H

T

∣∣∣∣∣
dl

dsl
ζ(s)2k

∣∣∣∣∣
s= 1

2
+it

dt

were studied by Ramachandra [168].
In the present article we do not discuss the full details of the theory of Titchmarsh series. This

theory includes the treatment of the mean value of |ζ(s)2k| with non-integral complex values of
k, various Ω-results, sign-change theorems on argζ(s), and generalizations etc. The readers are
referred to Ramachandra’s lecrure note [172].
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8 Several general principles and the mean square of Dedekind

zeta-functions

In the previous sections we discussed mainly the mean square of the Riemann zeta-function
and related problems. A very important direction of research is to generalize the obtained results
to various other zeta-functions. From this viewpoint, it is useful to find some general principles to
obtain mean value results. One of them is the following classical theorem of Carlson [15], which is
a generalization of (1.1) due to Landau and Schnee. Let

f(s) =
∞∑

n=1

ann
−s

be a Dirichlet series, convergent in a certain half-plane. Assume that f(s) can be continued to a
holomorphic (or with possible poles included in a fixed compact set) function of finite order in the
region σ ≥ α+ ε > α. Moreover suppose that

∫ T

−T

∣∣∣f(σ + it)
∣∣∣
2
dt = O(T ) (8.1)

for σ ≥ σ0 > α. Then Carlson’s theorem asserts that

∫ T

−T

∣∣∣f(σ + it)
∣∣∣
2
dt ∼ 2

( ∞∑

n=1

|an|2n−2σ

)
T (8.2)

for σ > σ0. (The part of the range of integration near the poles is omitted.) Potter [163I, II]
studied this matter further. Potter’s results are especially useful when f(s) can be continued to
the whole plane and satisfies a certain functional equation.

Carlson’s theorem can be applied to the mean square of the Dedekind zeta-function ζK(s)
attached to an algebraic number field K, and the result is

∫ T

1

∣∣∣ζK(σ + it)
∣∣∣
2
dt ∼

( ∞∑

n=1

aK(n)2n−2σ

)
T (σ > 1− l−1),

where l = [K : Q] ≥ 2 and aK(n) is the number of integral ideals in K with norm n. But this
is not the best known result. Chandrasekharan-Narasimhan [16] developed a general theory of
approximate functional equations, and the following is a consequence of their theory:

∫ T

1

∣∣∣ζK(σ + it)
∣∣∣
2
dt =

( ∞∑

n=1

aK(n)2n−2σ

)
T +O

(
T

l−lσ+1
2 (log T )

l
2

)
(8.3)

if σ > 1− l−1, and

∫ T

1

∣∣∣ζK(σ + it)
∣∣∣
2
dt = O

(
T l(1−σ)(log T )l

)
(8.4)

if 1/2 ≤ σ ≤ 1 − l−1. When l = 2, that is the case that K is a quadratic field, (8.3) gives the
asymptotic formula for σ > 1/2. In the case of σ = 1/2, (8.4) gives the upper-bound O(T log2 T ).
At the end of their paper [16], Chandrasekharan-Narasimhan conjectured

∫ T

1

∣∣∣∣ζK
(

1

2
+ it

)∣∣∣∣
2

dt ∼ C2T log2 T (8.5)
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for any real quadratic field K, with a certain constant C2.
Let D be the discriminant of a quadratic field K, χD the Dirichlet character defined as the

Kronecker symbol χD(n) = (D
n ), and L(s, χD) the corresponding Dirichlet L-function. It is well-

known that ζK(s) = ζ(s)L(s, χD), hence the mean square of ζK(1/2 + it) is a generalization of the
fourth power moment of ζ(1/2 + it). As for the latter problem, Titchmarsh [187] proved

∫ ∞

0

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
4

e−δtdt ∼ 1

2π2δ
log4 1

δ
(8.6)

as δ → 0. This immediately implies

∫ T

0

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
4

dt ∼ 1

2π2
T log4 T, (8.7)

because there is the general principle that if f(t) ≥ 0 for all t and

∫ ∞

0
f(t)e−δtdt ∼ 1

δ
logm 1

δ
(8.8)

as δ → 0, then

∫ T

0
f(t)dt ∼ T logm T (8.9)

(see Section 7.12 of Titchmarsh [190]). This principle is, in a sense, a kind of Tauberian theorem.
Following the idea of Titchmarsh, Motohashi [147] proved that

∫ ∞

0

∣∣∣∣ζK
(

1

2
+ it

)∣∣∣∣
2

e−δtdt = C2
1

δ
log2 1

δ
+O

(
1

δ
log

1

δ

)
, (8.10)

thereby established the conjecture (8.5). He found that

C2 =
6

π2
L2(1, χD)

∏

p|D

(
1 +

1

p

)−1

.

Another useful general principle is the mean value theorem for Dirichlet polynomials. For any
complex numbers a1, . . . , aN , we have

∫ T

0

∣∣∣∣
∑

n≤N

ann
it

∣∣∣∣
2

dt = T
∑

n≤N

|an|2 +O

( ∑

n≤N

n|an|2
)
. (8.11)

(This remains valid for N = ∞, if the series on the right-hand side converge.) The formula (8.11)
is due to Montgomery-Vaughan [146], and the key of their proof is the following generalization of
Hilbert’s inequality: Let λ1, . . . , λR be distinct real numbers and δn = minm6=n |λm − λn|. Then,
for any complex numbers a1, . . . , aR, we have

∣∣∣∣∣∣

∑∑

m6=n

aman

λm − λn

∣∣∣∣∣∣
≤ 3π

2

∑

n

|an|2δ−1
n . (8.12)

This inequality has a close connection with the theory of large sieve inequalities; see Montgomery
[144] [145].
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Using (8.11), Ramachandra [166] gave a simple proof of Ingham’s (1.11). Applying the same
idea to ζK(1/2 + it), it is possible to prove

∫ T

0

∣∣∣∣ζK
(

1

2
+ it

)∣∣∣∣
2

dt = C2T log2 T +O(T log T )

for a quadratic field K.
A further refinement was done by Müller [156], who generalized Heath-Brown’s proof of (1.20).

His result is that
∫ T

0

∣∣∣∣ζ
(

1

2
+ it

)
L

(
1

2
+ it, χ

)∣∣∣∣
2

dt = C̃2T log2 T + C1T log T + C0T +O
(
q

35
16

+εT
7
8
+ε
)
, (8.13)

where χ is a primitive Dirichlet character (mod q ≥ 2), and C̃2 is similar to C2, just replacing
L2(1, χD) by |L(1, χ)|2.

Another possible way is to generalize the recent spectral-theoretic developments of the fourth
power moment theory of ζ(s). See Motohashi [154], in which a certain explicit formula is given.

9 L-functions attached to cusp forms

In the preceding section we discussed the analogy between ζK(s) for quadratic fields and ζ2(s).
Another class of Dirichlet series, which may be regarded as an analogue of ζ 2(s), is L-functions
ϕ(s, F ) attached to holomorphic cusp forms, defined by (4.3). The function ϕ(s, F ) is convergent
absolutely for σ > (κ + 1)/2, and can be continued to an entire function. The critical strip is
(κ − 1)/2 ≤ σ ≤ (κ + 1)/2. In this section we survey the results on the mean square of ϕ(s, F ).
Some of the quoted papers actually study more general cases (e.g. congruence subgroups), but here
we restrict ourselves to the case of the full modular group for simplicity. Also we assume that F (z)
is a normalized eigenform (i.e. a simultaneous eigenfunction of Hecke operators with a(1) = 1).

The connection between F (z) and ϕ(s, F ) was established by Hecke in 1936-37. Just a few
years later, the mean square of ϕ(s, F ) was already studied by Potter [163I, II]. Let

Iσ(T, F ) =

∫ T

0

∣∣∣ϕ(σ + it, F )
∣∣∣
2
dt.

As a consequence of his general theorem, Potter [163I] proved

Iσ(T, F ) ∼
( ∞∑

n=1

a2(n)n−2σ

)
T

(
σ >

κ

2

)
, (9.1)

and then he [163II] proved that Iκ/2(T, F ) = O(T log T ).
In the middle of 1970s, Good began deeper investigations of Iσ(T, F ). First, Good [32] applied

Titchmarsh’s idea of using the Tauberian principle (8.8)-(8.9) to the present case, and obtained the
asymptotic formula

Iκ/2(T, F ) ∼ 2κA0T log T, (9.2)

where

A0 =
12(4π)κ−1

Γ(κ+ 1)

∫ ∫

F

∣∣∣F (x+ iy)
∣∣∣
2
yκ−2dxdy,
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the integral being taken over a fundamental domain F of SL(2,Z). The constant A0 appears in
Rankin’s celebrated formula

∑

n≤x

a2(n) = A0x
κ +O

(
xκ− 2

5

)
,

which is essentially used in Good’s proof of (9.2).
The next paper [33] of Good gives a certain approximate functional equation for ϕ(s, F ). Let

ω : [0,∞) → R be a (fixed) C∞-function such that ω(ρ) = 1 if 0 ≤ ρ ≤ 1/2 and ω(ρ) = 0 if ρ ≥ 2.
Define ω0(ρ) = 1− ω(1/ρ). Then, a useful form of Good’s formula can be stated as

ϕ(s, F ) =
l∑

j=0

γj(s, |t|−1)
∞∑

n=1

a(n)n−sω(j)
(
n

y1

)(
− n

y1

)j

+(−1)
κ
2 (2π)2s−κ Γ(κ− s)

Γ(s)

l∑

j=0

γj(κ− s, |t|−1)
∞∑

n=1

a(n)ns−κω
(j)
0

(
n

y2

)(
− n

y2

)j

+O

(∥∥∥ω(l+1)
∥∥∥
1
y

κ+1
2
−σ

1 |t|− l
2

)
+O

(∥∥∥ω(l+1)
0

∥∥∥
1
y

κ
2
−σ

1 y
1
2
2 |t|−

l
2

)
(9.3)

for l ≥ (κ + 1)/2 and 4π2y1y2 = t2, where ‖ · ‖1 means the L1-norm and γj(s, |t|−1) is a quantity
defined by a certain integral. Note that γ0(s, |t|−1) ≡ 1. It is possible to deduce the approximate
functional equation of classical type (like (1.4)) from (9.3), but the above form is more effective in
applications. Using(9.3), Good [33] proved

Iσ(T, F ) =





2κA0T log T +O(T ) (σ = κ
2 )(∑∞

n=1 a
2(n)n−2σ

)
T +O

(
T κ+1−2σ

)
(κ

2 < σ < κ+1
2 )(∑∞

n=1 a
2(n)n−2σ

)
T +O(log2 T ) (σ = κ+1

2 ).
(9.4)

The formula (9.3) and its relatives are fundamental in Good’s theory. In [34], Good proved a
formula of the same type for ζ(s), and from which he [34] [35] deduced several new facts on E(T )
mentioned in Sections 1 and 7. A discrete mean square of ϕ(s, F ) was studied by Good [36], as an
application of (9.3). As for Iσ(T, F ), the next step of Good’s research is [37], in which he proved

Iκ/2(T, F ) = 2κA0T log T +A1T +E(T, F ) (9.5)

where A1 is a constant, with

E(T, F ) = O
(
T

5
6 (log T )

13
6

)
. (9.6)

Moreover he showed that a certain non-vanishing assumption would lead to

E(T, F ) = Ω
(
T

1
2

)
. (9.7)

To prove these results, Good applied (9.3) to the integral

JF (T,U) =

∫ ∞

−∞

∣∣∣∣ϕ
(
κ

2
+ it, F

)∣∣∣∣
2

ΨU

(
t

T

)
dt
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with a certain weight function ΨU , and obtained an explicit formula for JF (T,U), in which a
sum involving the factor a(l)a(l + n)(l + n/2)−κ appears. To analyze this sum, Good studied the
behaviour of the Dirichlet series

∞∑

l=1

a(l)a(l + n)

(
l +

n

2

)−s

(9.8)

by using the spectral theory. He found an explicit expression of JF (T,U) written in terms of non-
analytic Poincaré series and Fourier coefficients of Maass wave forms, from which he derived the
above results (9.5)-(9.7).

In [38], Good developed his theory further, and improved (9.6) to

E(T, F ) = O
(
T

2
3 (log T )C

)
(9.9)

with C = 2/3. The bound

ϕ

(
κ

2
+ it, F

)
= O

(
|t| 13 (log |t|) 5

6

)
(|t| ≥ 2) (9.10)

is an immediate consequence of (9.9).
Recently, Kamiya [96] generalized (9.3) to the case of

ϕ(s, F, χ) =
∞∑

n=1

χ(n)a(n)

ns
(9.11)

with a Dirichlet character χ mod q, and used it to obtain

∑

χmodq

∗
∫ T

−T

∣∣∣ϕ(σ + it, F, χ)
∣∣∣
2
dt� φ(q)T log(qT ) (9.12)

if q � T , uniformly for κ/2 − 1/ log(qT ) ≤ σ ≤ κ/2 + 1/ log(qT ) and q. Here,
∑∗ denotes the

summation running over primitive characters. This is the result corresponding to Montgomery’s
estimate [144] for the fourth power moment of L(s, χ).

Another type of mean square of ϕ(s, F, χ) (including the non-holomorphic case) was discussed
in Stefanicki [185] by a different method. See also Kamiya [97].

Jutila’s consistent principle is to develop the theory which may treat the both cases ζ 2(s) and
ϕ(s, F ) simultaneously. In Chapter 4 of his lecture note [87], Jutila gave a proof of ϕ(κ/2+ it, F ) =
O(|t|1/3+ε), slightly weaker than Good’s (9.10), in such a unified way. The estimate

∫ T

0

∣∣∣∣ϕ
(
κ

2
+ it, F

)∣∣∣∣
6

dt = O(T 2+ε), (9.13)

an analogue of (3.5), was also proved in the same chapter. Jutila proved those results by means
of his transformation method, hence the arguments are of elementary nature. At the end of [87]
Jutila proposed the problem of showing (7.5) and the corresponding estimate

∫ T+T
2
3

T

∣∣∣∣ϕ
(
κ

2
+ it, F

)∣∣∣∣
2

dt = O
(
T

2
3
+ε
)
, (9.14)
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an obvious corollary of (9.9), in a unified way. This problem was solved by Jutila himself in [88I],
mentioned in Section 7. Hence [88I] includes a proof of (9.14) by classical means. An alternative
proof of (9.13) is given in [88II].

We sometimes mentioned the recent spectral-theoretic approach to the fourth power moment of
ζ(s). In view of the analogy between ζ2(s) and ϕ(s, F ), one may expect, suggested by (9.9), that
(1.20) could be improved to

E2(T ) = O
(
T

2
3
+ε
)
. (9.15)

This was first achieved by Zavorotnyi [201] by using Kuznetsov’s convolution formula [124]. Ivić-
Motohashi [77] gave an alternative proof, with replacing T ε by a log-power. In the latter proof,
Motohashi’s explicit formula [151] for the weighted fourth power mean of |ζ(1/2+ it)| is essentially
used. It is worth while noting that the basic idea of [151] is an extension of Atkinson’s dissection
argument to the fourth power situation.

We already discussed the close connection between E(T ) and the Dirichlet divisor problem.
Similarly, E2(T ) is closely related to the additive divisor problem, as was first noticed by Atkinson
[2]. The additive divisor problem is the problem of evaluating the sum

∑
n≤x d(n)d(n+ r), and has

a long and rich history. The associated zeta-function is

∞∑

n=1

d(n)d(n+ r)n−s, (9.16)

whose explicit spectral-theoretic expression was obtained by A.I.Vinogradov-Takhtadzhyan [194].
One may notice the similarity between (9.8) and (9.16), both of which were handled by spectral
theory. Inspired by those works of Good and Vinogradov-Takhtadzhyan, and also inspired by the
classical works of Titchmarsh [187] and Atkinson [2] on the Laplace transform of |ζ(1/2 + it)|4,
Jutila [91] developed a new unified approach to E2(T ) and E(T, F ). He obtained spectral-theoretic
explicit formulas for both E2(T ) and E(T, F ), which, in the case of E2(T ), has the same flavour
as Motohashi’s explicit formula [151]. As a consequence, Jutila reproved (9.9) (with the factor T ε)
and (9.15).

Another approach was given by Motohashi [152]. He sketched the way how to modify the
argument in [151] to obtain an explicit formula for the weighted mean square of ϕ(s, F ), and to
deduce from which the estimate (9.9) as well as the mean square estimate

∫ T

0
E2(t, F )dt = O

(
T 2(log T )C

)
. (9.17)

The latter is the analogue of

∫ T

0
E2

2(t)dt = O
(
T 2(log T )C

)
(9.18)

due to Ivić-Motohashi [76]. Jutila [93] pursued his approach via Laplace transforms further, and
proved (9.17) and (9.18) in a unified way.

An important advantage of Jutila’s method is that it may also treat the non-holomorphic
case. The results corresponding to (9.9) and (9.17) (with replacing (log T )C by T ε) for L-functions
attached to Maass wave forms are proved in [91] [93]. The former is an improvement of Kuznetsov’s
result [123], which gives the exponent 6/7 + ε in the error term. See also Müller [157] for another
approach to the non-holomorphic case.
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10 Dirichlet L-functions

Now we return to the GL(1)-situation, and in this section we discuss various mean square for-
mulas for Dirichlet L-functions. Let χ be a Dirichlet character mod q, and L(s, χ) the corresponding
Dirichlet L-function. A natural extension of Iσ(T ) is the mean value

Iσ(T, q) =
1

φ(q)

∑

χmodq

∫ T

0

∣∣∣L(σ + it, χ)
∣∣∣
2
dt.

Serious research on this quantity was started by Ramachandra and his school in 1970s. It was
mentioned by Ramachandra [167] that he had obtained the asymptotic formula

I 1
2
(T, q) =

φ(q)

q
T log(qT ) +O(T (log(qT ))ε).

It is easy to see that

L(s, χ) = q−s
q∑

a=1

χ(a)ζ

(
s,
a

q

)
, (10.1)

where ζ(s, α) is the Hurwitz zeta-function defined by the analytic continuation of the Dirichlet
series

∑∞
n=0(n+ α)−s. Hence we can reduce the problem of evaluating Iσ(T, q) to the study of the

mean square of ζ(s, α). The approximate functional equation of ζ(s, α), corresponding to (1.4),
can be stated as

ζ(s, α) =
∑

0≤n≤ξ

(n+ α)−s +

(
2π

t

)σ− 1
2
+it

ei(
π
4
+t)

∑

1≤n≤η

e−2πinα

n1−s
+O

(
ξ−σ log t

)
, (10.2)

valid for 1 ≤ ξ ≤ η, 2πξη = t, and 0 < σ < 1. Rane [173] proved a more precise approximate
formula of the Riemann-Siegel type, and used it to prove

∫ T

0

∣∣∣∣ζ
(

1

2
+ it, α

)∣∣∣∣
2

dt = T log T + C(α)T − 1

α
+O

(
α−

1
2T

1
2 log T

)
, (10.3)

where C(α) is a constant depending on α. From (10.1) and (10.3) Rane [173] proved

I 1
2
(T, q) =

φ(q)

q
T

(
log

qT

2π
+ 2γ − 1 +

∑

p|q

log p

p− 1

)
+E(T, q) (10.4)

with

E(T, q) � φ(q)

q

(
T

1
2 log T + log q

)
. (10.5)

Balasubramanian-Ramachandra [8] gave a simpler proof of (10.4) and (10.5). A key lemma in their
argument is a short interval mean square estimate of ζ(1/2 + it, α), which is proved by the idea of
Ramachandra [166].

The next step was due to Narlikar [160], who improved (10.5) to

E(T, q) � φ(q)

q
T 5/12(log T )2.
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This is based on her refinement [159] of (10.3). Unfortunately Narlikar’s argument includes an
error which leads to the existence of extra terms of the order T 1/2 in her statements, which are
to be deleted. Zhan [202] mentioned that it is possible to correct this error and justify Narlikar’s
argument. Zhan [202] himself adopted a different way; he proved the approximate formula of the
type of Heath-Brown [53] for ζ(1/2+it, α), and using it he gave further improvements on the results
mentioned above. In particular he obtained E(T, q) = O(T α+ε) with a certain α < 1/3. Other
variants of approximate functional equation for ζ(s, α) were recently given by Rane [177] [178]. See
also Balasubramanian-Ramachandra [10].

Meurman [141] proved a generalization of Atkinson’s formula to E(T, q), and from which he
deduced

E(T, q) �




φ(q)−1

(
(qT )

1
3
+ε + q1+ε

)
(q � T )

φ(q)−1
(
(qT )

1
2
+ε + qT−1

)
(q � T ).

(10.6)

Laurinčikas [130] proved an analogue of Meurman’s formula near the critical line, while the analogue
for fixed σ, 1/2 < σ < 1, was obtained by Nakaya [158]. Meurman’s paper [141] includes the short
interval estimate

∑

χmodq

∫ T+H

T

∣∣∣∣L
(

1

2
+ it, χ

)∣∣∣∣
2

dt�
(
qH + (qT )

1
3

)(
q(T +H)

)ε
, (10.7)

for H � 1, as a corollary. An alternative proof of (10.7) was obtained by Balasubramanian-
Ramachandra [11], in which further improvements by using the theory of exponent pairs were also
discussed. It is to be noted that their argument includes, as a special case, a simple proof of the
estimate

∫ T+T 1/3

T

∣∣∣∣ζ
(

1

2
+ it

)∣∣∣∣
2

dt� T 1/3+ε.

The study of the mean square of individual L-functions

∫ T

0

∣∣∣L(σ + it, χ)
∣∣∣
2
dt

is more difficult. See the recent article [108] of Katsurada and the author, in which the history of
this problem is sketched.

Another version of mean square of L-functions is

U(s, q) =
1

φ(q)

∑

χmodq

∣∣∣L(s, χ)
∣∣∣
2
.

In the case of s = 1/2 + it, t ≥ 2, Gallagher [29] proved

U

(
1

2
+ it, q

)
� 1

φ(q)
(q + t) log(qt). (10.8)

Improved upper-bounds were obtained by Meurman [141] and Rane [176]. Balasubramanian [6]
gave an asymptotic formula with the main term q−1φ(q) log(qt), which was further refined by

29



W.Zhang [205] [214] and Yu [200]. In [214], it is shown that

U

(
1

2
+ it, q

)
=

φ(q)

q

{
log

(
qt

2π

)
+ 2γ +

∑

p|q

log p

p− 1

}

+O

(
1

φ(q)
qt−1 +

1

φ(q)
(qt)

1
2 exp

(
log(qt)

log log(qt)

))
. (10.9)

In most of the above works, the problem is reduced by (10.1) to the mean square of Hurwitz
zeta-functions. And for the latter problem, for example in [214], it is shown that

q∑

a=1

∣∣∣∣∣ζ
(

1

2
+ it,

a

q

)∣∣∣∣∣

2

= q

{
log

(
qt

2π

)
+ 2γ

}
+O

(
qt−1 + (qt)

1
2 log t

)
(10.10)

(a special case of Lemma 7 of [214]). W.Zhang’s papers [206] [215] are devoted to the study of∑
χmodq

∗|L(1/2 + it, χ)|2, while in [204] he obtained an asymptotic formula for

∑

q≤Q

q

φ(q)

∑

χmodq

∣∣∣∣L
(

1

2
+ it, χ

)∣∣∣∣
2

.

On the other hand, Motohashi [149I] applied Atkinson’s dissection argument (see Section 3) to
the study of U(s, q), and obtained an asymptotic formula for U(1/2 + it, p) for any prime p and
fixed t. Motohashi’s idea was further developed by Katsurada-Matsumoto [103], who proved the
following formula:

U

(
1

2
+ it, q

)
=

φ(q)

q

{
log

q

2π
+ 2γ +

∑

p|q

log p

p− 1
+ Re

Γ′

Γ

(
1

2
+ it

)}

+
2

q

∑

k|q
µ

(
q

k

)
T

(
1

2
+ it; k

)
, (10.11)

where µ(·) denotes the Möbius function and T (1/2 + it; k) satisfies the asymptotic formula

T

(
1

2
+ it; k

)
= Re

{
N−1∑

n=0

(
−1

2 + it

n

)
k

1
2
+it−nζ

(
1

2
+ it− n

)
ζ

(
1

2
− it+ n

)}

+O
(
k1−N t2N

)
(10.12)

for any positive integer N , where the O-constant depends only on N . The quantity T (1/2 + it; 1)
can be written down in a closed form, while (10.12) gives the asymptotic expansion of T (1/2+ it; k)
with respect to k if k > 1. Hence, if q = pm is a prime power, then from (10.11) we can deduce the
asymptotic expansion of U(1/2 + it, pm) with respect to p. The special case t = 0 of (10.11) was
first obtained by Heath-Brown [54] by a different method, but the coefficients of the expansion are
not explicitly given there. J.Zhang-Xing [203] gave an alternative proof of (10.11) by using Hurwitz
zeta-functions. Another different proof of (10.11) was recently obtained by Katsurada [101]. Rane
[175] also gave a similar expansion, but the coefficients are not explicit.

The mean square of (d/ds)L(s, χ) was considered by W.Zhang [211] [212] and Chen [17]. Kat-
surada [99III] generalized the method of [103] [99II] to study the case of (dk/dsk)L(s, χ) for any
positive integer k.
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In [103], the asymptotic expansion formula was proved not only for σ = 1/2, but for any σ
satisfying 0 < σ < N + 1, as was pointed out in Katsurada-Matsumoto [106]. The region was
further extended by Katsurada [99II] [101]. The formula (10.11) can be derived ¿from this general
formula as the limit case σ → 1/2. Another important limit case is σ = 1, and in this way we can
deduce a precise formula for

V (q) =
∑

χmodq
χ6=χ0

∣∣∣L(1, χ)
∣∣∣
2
,

where χ0 is the principal character mod q. Evaluation of V (q) is a classical problem, and in the
case that q = p is a prime, the formula

V (p) = ζ(2)p+O(log2 p)

goes back to Paley [162] and Selberg [181]. This was refined by Slavutskǐı [183] [184] and then
W.Zhang [209] [210]; the result given in [210] is that

V (p) = ζ(2)p− log2 p+ C +O

(
1

log p

)
.

Following the above mentioned method, Katsurada-Matsumoto [106] proved the asymptotic expan-
sion

V (p) = ζ(2)p− log2 p+
(
γ2 − 2γ1 − 3ζ(2)

)
−
(
γ2 − 2γ1 − 2ζ(2)

)1

p

+2

(
1− 1

p

){N−1∑

n=1

(−1)nζ(1− n)ζ(1 + n)p−n +O(p−N )

}
(10.13)

for any positive integer N , where γ1 is defined by the following Laurent expansion of ζ(s) at s = 1:

ζ(s) =
1

s− 1
+

∞∑

j=0

γj(s− 1)j , γ0 = γ. (10.14)

The formula (10.13) gives the satisfactory answer to the problem of evaluating V (p). Moreover,
in [106], a generalization of (10.13) to any composite q is proved. Some explicit expressions of
U(m, q), where m(6= 1) is an integer, are also obtained in [106].

11 Hurwitz zeta and other related zeta-functions

We already mentioned some mean value results on ζ(s, α) in the preceding section (see (10.3)
and (10.10)). In this final section we mainly discuss the approach by Atkinson’s method, due to
the recent papers of Katsurada and the author.

First, it is easily seen that a simple modification of the method developed in Katsurada-
Matsumoto [103] can be applied to the discrete mean square

∑q
a=1 |ζ(s, a/q)|2. The result is an

asymptotic expansion formula similar to (10.11) and (10.12), proved in Katsurada-Matsumoto [104].
This should be compared with (10.10).

A more interesting problem is to evaluate the integral

H(s) =

∫ 1

0

∣∣∣ζ1(s, α)
∣∣∣
2
dα,
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where ζ1(s, α) = ζ(s, α)−α−s. In the case of s = 1/2+it, t ≥ 2, this problem was first considered by
Koksma-Lekkerkerker [119], who showed H(1/2+it) = O(log t). This result was used in Gallagher’s
proof of (10.8). Balasubramanian [5] proved the asymptotic formula

H

(
1

2
+ it

)
= log t+O(log log t),

and further refinements were done by Rane [174], Sitaramachandrarao (unpublished), and W.Zhang
[207] [213], by using the approximate functional equation (10.2). Zhang [213] arrived at the result

H

(
1

2
+ it

)
= log

(
t

2π

)
+ γ +O

(
t−

7
36 (log t)

25
18

)
,

and conjectured that the error estimate could be improved to O(t−1/4). Ramachandra indepen-
dently expressed the same opinion. This conjecture was solved by Andersson [1] and Zhang himself
[217], independently of each other, in the following unexpected form:

H

(
1

2
+ it

)
= log

(
t

2π

)
+ γ − 2Re

ζ(1
2 + it)

1
2 + it

+O(t−1). (11.1)

Shortly after their works, Katsurada-Matsumoto [105] [107I] obtained the following asymptotic
expansion. For any integer K ≥ 0, it holds that

H

(
1

2
+ it

)
= Re

Γ′

Γ

(
1

2
+ it

)
+ γ − log 2π − 2Re

ζ(1
2 + it)− 1

1
2 + it

−2Re
K∑

k=1

(−1)k−1(k − 1)!

(3
2 − k + it)( 5

2 − k + it) . . . ( 1
2 + it)

∞∑

l=1

l−k(l + 1)−
3
2
+k−it

+O(t−K−1). (11.2)

The starting point of the proof is Atkinson’s dissection device (cf. Section 3). For Reu > 1,
Re v > 1, we have

ζ(u, α)ζ(v, α) = ζ(u+ v, α) + f(u, v;α) + f(v, u;α),

where

f(u, v;α) =
∞∑

m=0

(m+ α)−u
∞∑

n=1

(m+ n+ α)−v . (11.3)

By the argument similar to [149I] [103], we can prove a contour-integral expression of f(u, v;α),
which gives the analytic continuation. Analyzing this expression further, Katsurada-Matsumoto
[107I] obtained the following formula, which is fundamental in their theory. Let N be a positive
integer, (s)n = Γ(s+ n)/Γ(s) the Pochhammer symbol, and define

SN (u, v) =
N−1∑

n=0

(u)n
(1− v)n+1

(
ζ(u+ n)− 1

)

and

TN (u, v) =
(u)N

(1− v)N

∞∑

l=1

l1−u−v
∫ ∞

l
βu+v−2(1 + β)−u−Ndβ.
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Then it holds that
∫ 1

0
ζ1(u, α)ζ1(v, α)dα =

1

u+ v − 1
+ Γ(u+ v − 1)ζ(u+ v − 1)

(
Γ(1− v)

Γ(u)
+

Γ(1− u)

Γ(v)

)

−SN(u, v) − SN (v, u) − TN (u, v)− TN (v, u) (11.4)

for −N + 1 < Reu < N + 1, −N + 1 < Re v < N + 1 and (u, v) /∈ E, where E is the set of
(u, v) at which some factor in (11.4) has a singularity. We can derive a formula for (u, v) ∈ E as a
limit case. For instance, (11.2) follows easily from the case N = 1 of (11.4), by integrating T1(u, v)
and T1(v, u) by parts K-times and taking u → 1/2 + it and v → 1/2 − it. Explicit expressions of
H(1 + it), and of H(m) for any integer m(6= 1), can also be deduced from (11.4) (see [107I] and
[107II], respectively). Letting N →∞, and then u→ 1/2+ it and v → 1/2− it in (11.4), we obtain

H

(
1

2
+ it

)
= Re

Γ′

Γ

(
1

2
+ it

)
+ γ − log 2π − 2Re

∞∑

n=0

ζ(1
2 + n+ it)− 1

1
2 + n+ it

, (11.5)

due originally to Andersson [1]. (The special case t = 0 is included also in W.Zhang [217].)
Katsurada [100] presented an alternative proof of (11.4). His proof uses the Mellin-Barnes type

of integrals and properties of hypergeometric functions, hence it is under the same principle as his
[101]. Actually Katsurada’s paper [100] treats a more general situation, that is the mean square of
Lerch zeta-functions defined by the analytic continuation of

∑∞
n=0 e

2πiλn(n+α)−s, where α > 0 and
λ is real. He obtained various asymptotic expansions, which includes a refinement of W.Zhang’s
former result [216] [218].

Next we consider the derivative case

Hk(s) =

∫ 1

0

∣∣∣∣
dk

dsk
ζ1(s, α)

∣∣∣∣
2

dα.

The case k = 1 was studied by W.Zhang [208] and Guo [40] [41], and it is shown that

H1

(
1

2
+ it

)
=

1

3
log3

(
t

2π

)
+ γ log2

(
t

2π

)
+ 2γ1 log

(
t

2π

)
+ 2γ2 +O(t−1 log2 t) (11.6)

in [40] [41]. On the other hand, as was first noticed by Katsurada [99III], the method based on
Atkinson’s dissection device is suitable to study the mean square of higher derivatives. The idea
is, roughly speaking, to differentiate (11.4) k-times with respect to both u and v and analyze the
resulting expression carefully. The result is that

Hk

(
1

2
+ it

)
=

1

2k + 1
log2k+1

(
t

2π

)
+

2k∑

j=0

(2k)!

(2k − j)!
γj log2k−j

(
t

2π

)

−2Re

(
k!ζ(k)(1

2 + it)

(1
2 + it)k+1

)
+O

(
t−2(log t)2k

)
(11.7)

for any k ≥ 1, where γj is defined by (10.14). The case k = 1 gives a refinement of (11.6). The
formula (11.7) was announced in [107II], and the detailed proof is described in [107III].

Finally we mention the author’s work [139] (already announced in [138]) on the double zeta-
function

ζ2(s;α,w) =
∞∑

m=0

∞∑

n=0

(α+m+ nw)−s (11.8)
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of Barnes, where α > 0, w > 0 be parameters. Inspired by the similarity of (11.3) and (11.8), the
author introduced the generalized double zeta-function

ζ̃2(u, v;α,w) =
∞∑

m=0

(α+m)−u
∞∑

n=1

(α+m+ nw)−v,

and applied the method similar to that in [107I] to ζ̃2(u, v;α,w). Then we put u = 0, v = s to
obtain the asymptotic expansion of ζ2(s;α,w) with respect to w. Certain asymptotic expansions
for double gamma-functions, and for the value at s = 1 of Hecke L-functions of real quadratic
fields, were also obtained in [139]. Recently, Katsurada [102] introduced another generalization

∞∑

m=0

(m+ α)−u
∞∑

n=0

(m+ n+ α+ β)−v,

where α, β are positive, and studied its properties by using the Mellin-Barnes type of integrals. He
actually considered a more general series involving exponential factors.

The results mentioned in the last two sections show that Atkinson’s method is indeed useful in
a much wider area than was expected before.

The readers probably find that the recent developments in the mean square theory are really
impressive. However, the mean square theory has been by no means exhausted; there remain many
unsolved problems and uncultivated areas. It will still be one of the main streams in zeta-function
theory, and fascinating new methods and results will surely appear in the coming century.
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[137] , On the bounded term in the mean square formula for the approximate functional equation of
ζ2(s), Arch. Math. 64 (1995) 323-332.

[138] , Asymptotic series for double zeta and double gamma functions of Barnes, Sûrikaiseki
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