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EVALUATION FORMULAS OF CAUCHY-MELLIN TYPE FOR CERTAIN SERIES
INVOLVING HYPERBOLIC FUNCTIONS

YASUSHI KOMORI, KOHJI MATSUMOTO, AND HIROFUMI TSUMURA

ABSTRACT. We give evaluation formulas for certain Dirichlet series involving hyperbolic fac-
tors at some integer points in terms ofπ and the lemniscate constant, which have the same
flavour as the classical formulas due to Cauchy, Mellin and Ramanujan. We then prove analo-
gous formulas for double series involving hyperbolic functions. These formulas are shown via
the functional equation for Barnes multiple zeta-functions, proved in a previous paper of the
authors.

1. INTRODUCTION

Let N, N0, Z, Z∗, Q, R andC be the sets of natural numbers, nonnegative integers, rational
integers, non-zero integers, rational numbers, real numbers and complex numbers, respectively.
Let i =

√
−1.

For τ ∈ C with ℑτ > 0, we define

S(s;τ) =
∞

∑
m=1

(−1)m

sinh(mπ i/τ)ms (s∈ C).(1.1)

It is to be noted thatS(s;τ) is holomorphic for alls∈ C.
This series was first studied by Cauchy [5], who discovered the following fascinating for-

mulas:

S(4k−1;i) =
∞

∑
m=1

(−1)m

sinh(mπ)m4k−1 =
(2π)4k−1

2

2k

∑
j=0

(−1) j+1B2 j(1/2)
(2 j)!

B4k−2 j(1/2)
(4k−2 j)!

,(1.2)

S(−1;i) =
∞

∑
m=1

(−1)mm
sinh(mπ)

=− 1
4π

,(1.3)

S(−4k−1;i) =
∞

∑
m=1

(−1)mm4k+1

sinh(mπ)
= 0(1.4)

for k∈ N, whereBn(x) is then-th Bernoulli polynomial defined by

text

et −1
=

∞

∑
n=0

Bn(x)
tn

n!
.

In particular, (1.4) implies thats=−4k−1 (k∈N) may be regarded as “trivial zeros” ofS(s; i).
More generally, Mellin [13] proved

α−N
∞

∑
m=1

(−1)m+1

sinh(mα)m2N+1 − (−β )−N
∞

∑
m=1

(−1)m+1

sinh(mβ )m2N+1

= 22N+1π
N+1

∑
j=0

(−1) j B2 j(1/2)
(2 j)!

B2N+2−2 j(1/2)
(2N+2−2 j)!

αN+1− jβ j ,

(1.5)

whereN is any integer,α andβ are positive numbers such thatαβ = π2. Later these were
recovered by several mathematicians (for the details, see Berndt [3]).
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It is well-known that Ramanujan discovered

∞

∑
m=1

m
e2πm−1

=
1
24

− 1
8π

,

∞

∑
m=1

m3

e2πm−1
=

1
80

(
ϖ
π

)4

− 1
240

,

∞

∑
m=1

m5

e2πn−1
=

1
504

,

(1.6)

and so on (see Berndt [4, Chapter 14]), where

(1.7) ϖ = 2
∫ 1

0

dx√
1−x4

=
Γ(1/4)2

2
√

2π
= 2.622057· · ·

is the lemniscate constant. The left-hand sides of formulas (1.6) can also be regarded as series
involving hyperbolic functions. From the results mentioned above we may expect that various
series involving hyperbolic functions are sometimes evaluated in terms ofπ andϖ .

In this paper, we first evaluateS(−4k+ 1;i) (k ∈ N) in terms ofπ and ϖ (see Theorem
3.2 and Example 3.3), by using the functional equation of Barnes double zeta-functions given
in our previous paper [10]. Also we evaluateS(−6k+ 1;ρ) (k ∈ N), whereρ = e2π i/3 (see
Theorem 3.5 and Example 3.6). These are analogues of (1.6).

The reason why we only consider the casesτ = i,ρ is mentioned at the end of Section 3
(Remark 3.7).

Our theory on the evaluation ofS(s;τ) is closely related with the theory of some double
series (such as Barnes zeta-functions and Eisenstein series), as we will see in Section 3. There-
fore it is a natural problem to consider certain double analogues ofS(s;τ) itself. For example,
certain double series of Eisenstein type involving hyperbolic functions such as

∑
n∈Z

∑
m∈Z∗

(−1)n

sinh(mπ)(m+ni)k , ∑
n∈Z

∑
m∈Z∗

1
sinh(mπ)2(m+ni)k

are studied in [16, 17] and [11]. Another direction of generalization can be found in [10],
where we study the series whose each term includes two (or more) hyperbolic factors in the
denominator, and prove, for example,

∞

∑
m=1

(−1)m

sinh(mπ i/ρ)sinh(mπ i/ρ2)m4 =
∞

∑
m=1

1
sinh(mπ i/ρ)2m4 =− 1

5670
π4.

In this paper we consider another type of double analogue ofS(s; i) defined by

(1.8) S2(s; i) = ∑
m∈Z∗

∑
n∈Z∗

m+n>0

(−1)m+n

sinh(mπ)sinh(nπ)(m+n)s (s∈ C).

We evaluateS2(−4k; i) (see Theorem 4.1) andS2(4k; i) (see Theorem 4.7) fork ∈ N. A key
fact for the proof is the existence of trivial zeros (1.4) ofS(s; i) (see Remark 4.9).

2. PRELIMINARY RESULTS ON EISENSTEIN SERIES

We begin with recalling several known results on Eisenstein series. Let

(2.1) G2 j(τ) = ∑
m∈Z

∑
n∈Z

(m,n)̸=(0,0)

1
(m+nτ)2 j
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be the Eisenstein series, wherej ∈N andτ ∈C with ℑτ > 0. Note that even ifj = 1, we define
G2(τ) by (2.1) which converges not absolutely but conditionally. Denote the latticeZ+Zτ by
L(τ) and define the Weierstrass℘-function by

℘(z;L(τ)) =
1
z2 + ∑

λ∈L(τ)
λ ̸=0

(
1

(z−λ )2 −
1

λ 2

)
.(2.2)

Then we see that

(2.3) ℘(z;L(τ)) =
1
z2 +

∞

∑
j=1

(2 j +1)G2 j+2(τ)z2 j

(see, for example, [9, Chapter 1, §6]). Whenτ = i, we haveG2(i) =−π, and

(2.4) G4k(i) = E4k
(2ϖ)4k

(4k)!
, G4k+2(i) = 0 (k∈ N),

whereE4k ∈Q. The numbersE4k (k∈ N) are called Hurwitz numbers, because (2.4) is due to
Hurwitz [7]. For example, we see that

(2.5) G4(i) =
1
15

ϖ4, G8(i) =
1

525
ϖ8, G12(i) =

2
53625

ϖ12, . . .

(see [12]). Analogously, Katayama [8, (6.8)] showed that

(2.6) ∑
m∈Z

∑
n∈Z

1
(2m+1+(2n+1)i)4k = E

(1,1)
4k

(2ϖ)4k

(4k)!
(k∈ N)

with E
(1,1)
4k ∈ Q (k ∈ N), which Katayama called 2-division Hurwitz numbers. The values of

E
(1,1)
4k are, for example,

E
(1,1)
4 =− 1

25 , E
(1,1)
8 =

32

29 , E
(1,1)
12 =−34 ·7

213 , · · · .

In the caseτ = ρ = e2π i/3, it holds thatG6k(ρ) ∈Q · ϖ̃6k (k∈ N), where

ϖ̃ =
Γ(1/3)3

24/3π
= 2.4286506· · ·

(see [14, 18]). For example, we have

G6(ρ) =
ϖ̃6

35
, G12(ρ) =

ϖ̃12

7007
, G18(ρ) =

ϖ̃18

1440257
, . . .(2.7)

3. BARNES ZETA-FUNCTIONS AND S(s;τ)

Now we recall the Barnes multiple zeta-function [1, 2] defined by

(3.1) ζn(s,a;ω1, . . . ,ωn) =
∞

∑
m1=0

· · ·
∞

∑
mn=0

1
(a+ω1m1+ · · ·+ωnmn)s

for a,ω1, . . . ,ωn ∈ H(θ) for someθ ∈ R, where

H(θ) = {z= rei(θ+φ) ∈ C | r > 0,−π/2< φ < π/2}

is the open half plane whose boundary line is vertical witheiθ . Thenζn(s,a;ω1, . . . ,ωn) con-
verges absolutely and uniformly on any compact subset inℜs> n, and is continued meromor-
phically to the whole complex plane.

Recently we showed the following functional equation.
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Theorem 3.1([10], Theorem 2.1). For y∈ [0,1),

ζn(s,a(y);ω1, . . . ,ωn) =− 2π i
Γ(s)(e2π is−1)

×
n

∑
k=1

∑
m∈Z∗

ω−1
k

( n

∏
j=1
j ̸=k

e(2mπ iω j/ωk)y

e2mπ iω j/ωk −1

)
(2mπ iω−1

k )s−1e2mπ iy,

where
a(y) = ω1(1−y)+ · · ·+ωn(1−y) ∈ H(θ),

and the argument of2mπ iω−1
k is to be taken as(π/2)−argωk. Note that the right-hand side

converges absolutely uniformly on the whole spaceC if 0< y< 1, and on the regionℜs< 0 if
y= 0.

This theorem connects the Barnes multiple zeta-function with Dirichlet series involving hy-
perbolic functions. In particular when(n,y,ω1,ω2) = (2,1/2,1, i), we can obtain

(3.2) ζ2(s,a(1/2);1, i) =
(2π)s

2Γ(s)(eπ is+1)
(
eπ is/2+1

) ∑
m∈Z∗

(−1)mms−1

sinh(mπ)

for anys∈C. Note that, by calculating the values at nonpositive integers on both sides of (3.2),
we can obtain Cauchy’s formula (1.2) (see [10, Corollary 6.2 and Corollary 6.3]).

On the other hand, whens is a positive integer, (3.2) gives the following consequence. We
can easily see that, fork∈ N,

∑
m∈Z

∑
n∈Z

1
(2m+1+(2n+1)i)4k =

4
24k

∞

∑
m=0

∞

∑
n=0

1
(m+1/2+(n+1/2)i)4k

=
4

24k ζ2(4k,a(1/2);1, i)

(3.3)

(divide the left-hand side into four parts according to the signs of 2m+1 and 2n+1, and use the
fact(p−qi)4 = (q+ pi)4). Hence, by combining (2.6), (3.2) and (3.3), we obtain the following
theorem.

Theorem 3.2. For k∈ N,

(3.4) S(−4k+1;i) =
∞

∑
m=1

(−1)mm4k−1

sinh(mπ)
=

24k−2

k
E
(1,1)
4k

(
ϖ
π

)4k

.

Example 3.3.

S(−3;i) =
∞

∑
m=1

(−1)mm3

sinh(mπ)
=−1

8

(
ϖ
π

)4

,

S(−7;i) =
∞

∑
m=1

(−1)mm7

sinh(mπ)
=

9
16

(
ϖ
π

)8

,

S(−11;i) =
∞

∑
m=1

(−1)mm11

sinh(mπ)
=−189

8

(
ϖ
π

)12

,

S(−15;i) =
∞

∑
m=1

(−1)mm15

sinh(mπ)
=

130977
32

(
ϖ
π

)16

,

S(−19;i) =
∞

∑
m=1

(−1)mm19

sinh(mπ)
=−16110171

8

(
ϖ
π

)20

.



EVALUATION FORMULAS OF CAUCHY-MELLIN TYPE 5

Next we consider the caseτ = ρ = e2π i/3. We first show

(3.5) ∑
m∈Z

∑
n∈Z

1
(2m+1+(2n+1)ρ)6k =

1
3

(
1− 1

26k

)
G6k(ρ) (k∈ N).

To show this, we divide the definition (2.1) ofG6k(ρ) as A00+A01+A10+A11, whereAi j

denotes the partial sum running overm andn with m≡ i andn≡ j (mod 2). Sinceρ3 = 1 and
ρ2 =−ρ −1, we see that

(2m+(2n+1)ρ)6k = (−2mρ − (2n+1)ρ2)6k

= (−2mρ +(2n+1)(ρ +1))6k = (2n+1+(2n−2m+1)ρ)6k,

from which we findA01= A11. Similarly we see thatA10= A01. On the other hand it is obvious
thatA00 = 2−6kG6k(ρ). SinceA11 is equal to the left-hand side of (3.5), collecting the above
results we obtain the conclusion.

From Theorem 3.1 we can deduce the following.

Lemma 3.4. For ℜs> 2, we have

(−ρ)s
∞

∑
m=0

∞

∑
n=0

1
(m+1/2+(n+1/2)ρ)s +

∞

∑
m=0

∞

∑
n=0

1
(m+1/2+(n+1/2)(−ρ−1))s

=
(2π)se−π is/2

2Γ(s)(eπ is+1) ∑
m∈Z∗

(−1)mms−1

sinh(mπ i/ρ)
,

(3.6)

where(−ρ)s = (e−π iρ)s.

Proof. Using Theorem 3.1 with(n,y,ω1,ω2)= (2,1/2,1,ρ) and(n,y,ω1,ω2)= (2,1/2,1,−ρ−1),
where−ρ−1 = eπ i/3, we find that the left-hand side of (3.6) is equal to

− 2π i
Γ(s)(e2π is−1)

B,

where

B= (−ρ)s ∑
m∈Z∗

(−1)memπ iρ

e2mπ iρ −1
(2mπ i)s−1+

1
ρ
(−ρ)s ∑

m∈Z∗

(−1)memπ i/ρ

e2mπ i/ρ −1
(2mπ i/ρ)s−1

+ ∑
m∈Z∗

(−1)memπ i/ρ

1−e2mπ i/ρ (2mπ i)s−1−ρ ∑
m∈Z∗

(−1)memπ iρ

1−e2mπ iρ (2mπρ/i)s−1.

The first and the fourth sums ofB cancel with each other, and the remaining part (the second
and the third sums) gives

B=
−1+e−π is

2 ∑
m∈Z∗

(−1)m(2mπ i)s−1

sinh(mπ i/ρ)
,

which implies the lemma. □
Puttings= 6k (k∈ N) in equation (3.6) and noting

26k ∑
m∈Z

∑
n∈Z

1
(2m+1+(2n+1)ρ)6k

= 2

{
∞

∑
m=0

∞

∑
n=0

1
(m+1/2+(n+1/2)ρ)6k +

∞

∑
m=0

∞

∑
n=0

1
(m+1/2+(n+1/2)(−ρ−1))6k

}
(which can be seen by dividing the left-hand side into four parts according to the signs of
2m+1 and 2n+1, and using the fact(p−qρ)6 = (q+ p(−ρ−1))6), we have

(3.7) ∑
m∈Z∗

(−1)mm6k−1

sinh(mπ i/ρ)
=

2(−1)k(6k−1)!
π6k ∑

m∈Z
∑
n∈Z

1
(2m+1+(2n+1)ρ)6k
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for k∈ N. Hence, combining (3.5) and (3.7), we obtain the following.

Theorem 3.5. For k∈ N,

(3.8) S(−6k+1;ρ) ∈Q ·
(

ϖ̃
π

)6k

.

Example 3.6. Substituting (2.7) into (3.5), and using (3.7), we obtain the following:

S(−5;ρ) =
∞

∑
m=1

(−1)mm5

sinh(mπ i/ρ)
=−9

8

(
ϖ̃
π

)6

,

S(−11;ρ) =
∞

∑
m=1

(−1)mm11

sinh(mπ i/ρ)
=

30375
16

(
ϖ̃
π

)12

,

S(−17;ρ) =
∞

∑
m=1

(−1)mm17

sinh(mπ i/ρ)
=−658560375

8

(
ϖ̃
π

)18

.

Remark 3.7. The principle of the proofs of theorems in this section is to express the special
values ofS(s;τ) in terms of Eisenstein series, and use known facts on Eisenstein series. Those
expressions are proved by using specific properties of numbersi andρ . In general,S(s;τ) can
be written in terms of Barnes multiple zeta-functions by Theorem 3.1, but Eisenstein series is
usually a linear combination of (two or more) Barnes zeta-functions, so the above argument
cannot be applied to other values ofτ . This is the reason why we only consider the cases
τ = i,ρ in this section.

4. SOME RELATIONS AMONGS2(s; i) AND S(s; i)

In this section, we will give some relation formulas amongS2(s; i) andS(s; i). First we prove
the following theorem concerning the values at negative integers.

Theorem 4.1. For p∈ N,

S2(−4p; i) =−4p
π

S(−4p+1;i) =−24p

π
E
(1,1)
4p

(
ϖ
π

)4p

.(4.1)

In order to prove this theorem, we prepare some notation and lemmas. Let

h(t) = et −e−t +
eit −e−it

i
= 4

∞

∑
j=0

t4 j+1

(4 j +1)!
,(4.2)

and

(4.3) J(t) =
∞

∑
n=1

(−1)nh(nt)
sinh(nπ)

+
t
π

(|t|< π).

The right-hand side of (4.3) is absolutely convergent when|t|< π, so is holomorphic. Substi-
tuting (4.2) into (4.3), and using (1.3) and (1.4), we have

J(t) = 4
∞

∑
j=0

S(−4 j −1;i)
t4 j+1

(4 j +1)!
+

t
π

= 4S(−1;i)t +
t
π
= 0 (|t|< π).

(4.4)

Let

(4.5) F(t) = ∑
m∈Z∗

(−1)memt

sinh(mπ)
·J(t).
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Then F(t) is absolutely convergent when|t| < π. By (4.4), we haveF(t) ≡ 0 for |t| < π.
Substituting (4.2) and (4.3) into (4.5), we have

F(t) = ∑
m∈Z∗

∞

∑
n=1

(−1)m+n
{

e(m+n)t −e(m−n)t + i−1e(m+ni)t − i−1e(m−ni)t
}

sinh(mπ)sinh(nπ)

+
t
π ∑

m∈Z∗

(−1)memt

sinh(mπ)
.

(4.6)

In the numerator of the first part on the right-hand side of (4.6), replacing−n by n in the second
and fourth terms in braces and using sinh(−x) =−sinh(x), we can rewrite (4.6) as

F(t) = ∑
m∈Z∗

∑
n∈Z∗

(−1)m+n
{

e(m+n)t + i−1e(m+ni)t
}

sinh(mπ)sinh(nπ)
+

t
π ∑

m∈Z∗

(−1)memt

sinh(mπ)
.(4.7)

We further let

F̃(t) = ∑
m∈Z∗

∑
n∈Z∗

m+n̸=0

(−1)m+ne(m+n)t

sinh(mπ)sinh(nπ)

+
1
i ∑

m∈Z∗
∑

n∈Z∗

(−1)m+ne(m+ni)t

sinh(mπ)sinh(nπ)
+

t
π ∑

m∈Z∗

(−1)memt

sinh(mπ)
.

(4.8)

ThenF̃(t) is absolutely convergent for|t|< π, hence we can write

F̃(t) =
∞

∑
j=0

D̃ j
t j

j!
.

Lemma 4.2.

D̃0 = ∑
m∈Z∗

1

sinh2(mπ)
, D̃ j = 0 ( j ≥ 1).

Proof. Comparing (4.7) and (4.8), we have

F(t) = F̃(t)− ∑
m∈Z∗

1

sinh2(mπ)
.

SinceF(t)≡ 0 for |t|< π, we complete the proof. □

We let

T2(k; i) = ∑
m∈Z∗

∑
n∈Z∗

m+n̸=0

(−1)m+n

sinh(mπ)sinh(nπ)(m+n)k

+
1
i ∑

m∈Z∗
∑

n∈Z∗

(−1)m+n

sinh(mπ)sinh(nπ)(m+ni)k (k∈ Z).

(4.9)

Lemma 4.3. For j ∈ N0,

D̃ j = T2(− j; i)+
j
π

S(1− j; i).

Proof. Considering the Maclaurin expansion ofet in (4.8) and using (4.9), we have

F̃(t) =
∞

∑
j=0

T2(− j; i)
t j

j!
+

1
π

∞

∑
j=0

S(− j; i)
t j+1

j!

=
∞

∑
j=0

{
T2(− j; i)+

j
π

S(1− j; i)

}
t j

j!
.

Thus we complete the proof. □
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Proof of Theorem 4.1.Whenk=−4p (p∈ N), the second sum on the right-hand side of (4.9)
is

I := ∑
m∈Z∗

∑
n∈Z∗

(−1)m+n(m+ni)4p

sinh(mπ)sinh(nπ)
.

But we see thatI = 0, because, replacingm by−m in I , we have

I =− ∑
m∈Z∗

∑
n∈Z∗

(−1)m+n(−m+ni)4p

sinh(mπ)sinh(nπ)

=−i4p ∑
m∈Z∗

∑
n∈Z∗

(−1)m+n(mi+n)4p

sinh(mπ)sinh(nπ)
=−I .

Therefore

T2(−4p; i) = S2(−4p; i).(4.10)

Combining this withT2(− j; i)+ j
π S(1− j; i) = 0 (for j ∈ N), which follows from Lemmas 4.2

and 4.3, we obtain the first equation of Theorem 4.1. The second equation of Theorem 4.1
follows from Theorem 3.2. □

Next we evaluateS2(4p; i) (p∈ N). For this aim, we prepare the following three lemmas.
Note that the former two lemmas are quoted from the previous papers of the third-named author.

Lemma 4.4([16] Theorem 3.1). For k∈ N0, let

G2k+1(i) = ∑
n∈Z

′ ∑
m∈Z∗

(−1)n

sinh(mπ)(m+ni)2k+1 ,(4.11)

where∑′ means that, when k= 0, we first sum in the region|n| ≤ N and then take the limit
N → ∞. Then

G2k+1(i) =
2(−1)k+1

π

k

∑
j=0

(
21−2k+2 j −1

)
ζ (2k−2 j)(4.12)

×
{
(−1) jG2 j+2(i)+2ζ (2 j +2)

}
,

whereζ (s) is the Riemann zeta-function.

Lemma 4.5 ([15] Lemma 8). Suppose{Pk}k≥0 and{Qk}k≥0 are sequences which satisfy the
relations

k

∑
µ=0

Pk−µ
(iπ)2µ

(2µ +1)!
= Qk

for any k∈ N0. Then the relation

Pk =−2
k

∑
ν=0

(
21−2k+2ν −1

)
ζ (2k−2ν)Qν

holds for any k∈ N0.

Lemma 4.6. For p∈ N0,

1
π
G2p+1(i) =

p

∑
j=0

{
T2(2p−2 j; i)+

2 j −2p
π

S(2p+1−2 j; i)

}
(iπ)2 j

(2 j +1)!
.(4.13)

Proof. Let θ ∈ (−π,π), and let

C(θ) =i ∑
n∈Z∗

∑
m∈Z∗

m+n̸=0

(−1)m+nsin((m+n)θ)
sinh(mπ)sinh(nπ)(m+n)2p+1(4.14)

− i ∑
n∈Z∗

′ ∑
m∈Z∗

(−1)m+nsinh((m+ni)iθ)
sinh(mπ)sinh(nπ)(m+ni)2p+1
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− (2p+1)i
π ∑

m∈Z∗

(−1)msin(mθ)
sinh(mπ)m2p+2 +

iθ
π ∑

m∈Z∗

(−1)mcos(mθ)
sinh(mπ)m2p+1 .

Since|θ | < π, all of the above sums are convergent absolutely. Hence, using the Maclaurin
expansions of sinx, cosx and sinhx and applying Lemma 4.3, we have

C(θ) =
∞

∑
j=0

{
T2(2p−2 j; i)+

2 j −2p
π

S(2p+1−2 j; i)

}
(iθ)2 j+1

(2 j +1)!
(4.15)

=
p

∑
j=0

{
T2(2p−2 j; i)+

2 j −2p
π

S(2p+1−2 j; i)

}
(iθ)2 j+1

(2 j +1)!

+
∞

∑
j=p+1

D̃2 j−2p
(iθ)2 j+1

(2 j +1)!
.

By Lemma 4.2, we havẽD j−p = 0 for j ≥ p+1. Therefore the right-hand side of (4.15) are
continuous for anyθ ∈ R. On the other hand, the first, the third, and the fourth sums on the
right-hand side of (4.14) are clearly convergent uniformly inθ ∈ R, hence continuous for any
θ ∈ R. Next we claim that the second sum on the right-hand side of (4.14) is continuous for
θ ∈ (−π,π]. (Note here that our original proof of this claim was erroneous. The following
proof of the claim is due to the referee.)

To show this claim, it is enough to consider the casep= 0. Then

sinh((m+ni)iθ) =
1
2
(eimθ−nθ −e−imθ+nθ ),

and the contribution ofeimθ−nθ (n> 0) and ofe−imθ+nθ (n< 0) to the second sum are obviously
absolutely convergent for anyθ ∈ R. The contribution of the remaining part is (with replacing
n by−n whenn< 0)

lim
N→∞

{
−

N

∑
n=1

∑
m∈Z∗

(−1)m+ne−imθ+nθ

2sinh(mπ)sinh(nπ)(m+ni)
−

N

∑
n=1

∑
m∈Z∗

(−1)m+neimθ+nθ

2sinh(mπ)sinh(nπ)(m−ni)

}

=−1
2

lim
N→∞

{
N

∑
n=1

∞

∑
m=1

(−1)m+ne−imθ+nθ

sinh(mπ)sinh(nπ)(m+ni)
+

N

∑
n=1

∞

∑
m=1

(−1)m+neimθ+nθ

sinh(−mπ)sinh(nπ)(−m+ni)

}

+
N

∑
n=1

∞

∑
m=1

(−1)m+neimθ+nθ

sinh(mπ)sinh(nπ)(m−ni)
+

N

∑
n=1

∞

∑
m=1

(−1)m+ne−imθ+nθ

sinh(−mπ)sinh(nπ)(−m−ni)

=− lim
N→∞

{
∞

∑
m=1

(−1)me−imθ

sinh(mπ)

N

∑
n=1

(−1)nenθ

sinh(nπ)(m+ni)
+

∞

∑
m=1

(−1)meimθ

sinh(mπ)

N

∑
n=1

(−1)nenθ

sinh(nπ)(m−ni)

}

= lim
N→∞

{
−

∞

∑
m=1

(−1)m2mcos(mθ)
sinh(mπ)

N

∑
n=1

(−1)nenθ

sinh(nπ)(m2+n2)

+
∞

∑
m=1

(−1)m2sin(mθ)
sinh(mπ)

N

∑
n=1

(−1)nenθ

sinh(nπ)
n

(m2+n2)

}
.

We denote byJ1 andJ2 the first and the second sums on the right-hand side, respectively. Then
we see thatJ1 is convergent absolutely and uniformly inθ ∈ (−π,π]. Next we rewrite the inner
sum ofJ2 as

N

∑
n=1

(−1)nenθ

sinh(nπ)
n

m2+n2 =
N

∑
n=1

(−1)nenθ

sinh(nπ)

(
n

m2+n2 −
1
n

)
+

N

∑
n=1

enθ

sinh(nπ)
(−1)n

n

=−
N

∑
n=1

(−1)nenθ

sinh(nπ)
m2

n(m2+n2)
+

N

∑
n=1

enθ

sinh(nπ)
(−1)n

n
.
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Hence we can rewriteJ2 to

−
∞

∑
m=1

(−1)m2m2sin(mθ)
sinh(mπ)

N

∑
n=1

(−1)nenθ

sinh(nπ)
1

n(m2+n2)

+

(
∞

∑
m=1

(−1)m2sin(mθ)
sinh(mπ)

)(
N

∑
n=1

enθ

sinh(nπ)
(−1)n

n

)
.

Let N tend to infinity. Then the first double sum and the sum in the former parentheses of
the second part are convergent absolutely and uniformly inθ ∈ (−π,π]. The sum in the latter
parentheses of the second part is not convergent absolutely forθ = π but convergent condition-
ally for θ = π and convergent absolutely forθ ∈C with |θ |< π. Therefore it is continuous for
θ ∈ (−π,π] by Abel’s theorem. Hence the claim follows.

Therefore the both expressions (4.14) and (4.15) ofC(θ) are continuous whenθ → π −0.
Therefore, lettingθ → π −0 and using sin((m+n)π) = 0 and

sinh((m+ni)iπ) = sinh(miπ −nπ) =−(−1)msinh(nπ),
we see that

i ∑
m∈Z∗

∑
n∈Z∗

(−1)n

sinh(mπ)(m+ni)2p+1 + i ∑
m∈Z∗

1
sinh(mπ)m2p+1

=
p

∑
j=0

{
T2(2p−2 j; i)+

2 j −2p
π

S(2p+1−2 j; i)

}
(iπ)2 j+1

(2 j +1)!
.

Note that the left-hand side is equal toiG2p+1(i). Therefore, dividing the both sides byiπ, we
obtain (4.13). □
Theorem 4.7. For p∈ N0,

S2(4p; i) =
4p
π

S(4p+1;i)+2
(

1− π
3

)
S(4p−1;i)

− 4
π

p

∑
j=1

ζ (4 j +2)S(4p−4 j −1;i).
(4.16)

Remark 4.8. By (1.2) and (1.3), we see thatS(4k−1;i) ∈ Q ·π4k−1 (k ∈ N0). Hence (4.16)
gives that

π S2(4p; i)−4pS(4p+1;i) ∈Q[π] (p∈ N0).

However it is not known whetherS(4p+1;i) can be written as a closed form in terms ofπ, ϖ
and so on. In fact, from (1.5) in the caseα = β = π, we have no information aboutS(4p+1;i)
unlike the situation ofS(4p−1;i).

By (4.12) and the property ofG2 j(i) (see Section 2), we see thatπ G2p+1(i) ∈ Q
[
π,ϖ4

]
(p∈ N0). Therefore, puttingk= 2p+1 in (4.17) below, we haveπ2T2(4p+2;i) ∈Q

[
π,ϖ4

]
(p∈ N0), while we cannot evaluateS2(4p+2;i) individually.

Proof of Theorem 4.7.By Lemma 4.6 we find that the choice

Pk = T2(2k; i)− 2k
π

S(2k+1;i), Qk =
1
π
G2k+1(i) (k∈ N0)

satisfies the condition of Lemma 4.5. Therefore by Lemma 4.5 we obtain

(4.17) T2(2k; i)− 2k
π

S(2k+1;i) =− 2
π

k

∑
ν=0

(
21−2k+2ν −1

)
ζ (2k−2ν)G2ν+1(i).

Similarly to (4.10), we haveT2(4p; i) = S2(4p; i). Hence, by (4.17) withk= 2p and (4.12), we
have

S2(4p; i)− 4p
π

S(4p+1;i)
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=− 2
π

2p

∑
ν=0

(
21−4p+2ν −1

)
ζ (4p−2ν)G2ν+1(i)

=
4

π2

2p

∑
ν=0

(
21−4p+2ν −1

)
ζ (4p−2ν)(−1)ν

×
ν

∑
j=0

(
21−2ν+2 j −1

)
ζ (2ν −2 j)

{
(−1) jG2 j+2(i)+2ζ (2 j +2)

}
=

4
π2

2p

∑
j=0

2p

∑
ν= j

{(
21−4p+2ν −1

)
ζ (4p−2ν)(−1)ν (21−2ν+2 j −1

)
ζ (2ν −2 j)

}
×
{
(−1) jG2 j+2(i)+2ζ (2 j +2)

}
.

Dividing the right-hand side into two subsums according asj = 2l (0≤ l ≤ p) and j = 2l +1
(0≤ l ≤ p−1), we find that the right-hand side is

4
π2

p

∑
l=0

2p

∑
ν=2l

(
21−4p+2ν −1

)
ζ (4p−2ν)(−1)ν

(
21−2ν+4l −1

)
ζ (2ν −4l)(4.18)

× (G4l+2(i)+2ζ (4l +2))

+
4

π2

p−1

∑
l=0

2p

∑
ν=2l+1

(
21−4p+2ν −1

)
ζ (4p−2ν)(−1)ν

(
23−2ν+4l −1

)
ζ (2ν −4l −2)

× (−G4l+4(i)+2ζ (4l +4)) .

The second member of (4.18) vanishes because, letting

Λ =
2p

∑
ν=2l+1

(
21−4p+2ν −1

)
ζ (4p−2ν)(−1)ν

(
23−2ν+4l −1

)
ζ (2ν −4l −2)

and puttingµ = 2p−ν +2l +1, we findΛ =−Λ, henceΛ = 0. On the other hand, by using(
21−2ν −1

)
ζ (2ν) =

∞

∑
m=1

(−1)m

m2ν =−(2π i)2νB2ν(1/2)
2(2ν)!

(ν ∈ N)

andζ (0) =−1/2 (see [6, Chapter 1]), we see that the first member of (4.18) is

4
π2

p

∑
l=0

(G4l+2(i)+2ζ (4l +2))

× (2π i)4p−4l
2p−2l

∑
µ=0

(−1)µ B4p−4l−2µ(1/2)

2(4p−4l −2µ)!
B2µ(1/2)
2(2µ)!

.

By (1.2), this coincides with

− 2
π

p

∑
l=0

(G4l+2(i)+2ζ (4l +2))S(4p−4l −1;i).

By the property ofG2 j(i) (see Section 2), we obtain (4.16). Thus we complete the proof of
Theorem 4.7. □

Remark 4.9. (i) In both the proofs of Theorem 4.1 and Theorem 4.7, a key role is played by
Lemma 4.2, which is based on the factJ(t) ≡ 0. The latter fact is shown by using Cauchy’s
(1.3), (1.4), which are known forτ = i. This is the reason why we only consider the caseτ = i
in this section.

(ii) The idea of Lemma 4.2 is to begin withJ(t)≡ 0, which is a consequence of the existence
of trivial zeros (1.4) ofS(s; i), and multiplyJ(t) by another series to obtain a new identity
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F(t)≡ 0. This type of argument has been repeatedly used by the third-named author (see, e.g.,
[15] [16] [17]).

(iii) On the other hand, the method in [11] is quite different. We will develop this direction
of research further in a forthcoming paper.

Acknowledgements. The authors wish to express their sincere gratitude to the referee for
his/her careful reading of the manuscript and helpful advice, especially concerning the proof
of Lemma 4.6.
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