rikkyo-rev04.tex July 26, 2011

EVALUATION FORMULAS OF CAUCHY-MELLIN TYPE FOR CERTAIN SERIES
INVOLVING HYPERBOLIC FUNCTIONS

YASUSHI KOMORI, KOHJI MATSUMOTO, AND HIROFUMI TSUMURA

ABSTRACT. We give evaluation formulas for certain Dirichlet series involving hyperbolic fac-
tors at some integer points in terms ofand the lemniscate constant, which have the same
flavour as the classical formulas due to Cauchy, Mellin and Ramanujan. We then prove analo-
gous formulas for double series involving hyperbolic functions. These formulas are shown via
the functional equation for Barnes multiple zeta-functions, proved in a previous paper of the
authors.

1. INTRODUCTION

LetN, Np, Z, Z*, Q, R andC be the sets of natural numbers, nonnegative integers, rational
integers, non-zero integers, rational numbers, real numbers and complex numbers, respectively.

Leti =+v—1.
For 1t € C with Ot > 0, we define

(1.2) S(s1)= i S G S (seC)
' ' &, sinh(mri /T)m® '

It is to be noted tha$(s; 7) is holomorphic for alk € C.
This series was first studied by Cauchy [5], who discovered the following fascinating for-
mulas:

N ()™ em* T Zi1Br(1/2) Ba2i(1/2)

(1.2) S(4k_1’l)_nglsinl‘(mn)m4k*1_ 2 J;(_”J ' (sz)! (4k—12j)! ’
e (D)™m 1
(1.3) S(—l,l)_n;lm_—ﬁ,
0 (_1)mm4k+1

(1.4) S(—4k-Li)=Y =0

WL, sinh(mm)

for k € N, whereBy(X) is then-th Bernoulli polynomial defined by
text d t"
1" r];)Bn(x)a.

In particular, (1.4) implies that= —4k— 1 (k € N) may be regarded as “trivial zeros” fs;i).
More generally, Mellin [13] proved

N - (71)m+1 N (_1)m+1
(L.5) “ gysinmaymert P2 Sk
—22N+1n2i BZJ 1/2 ?;wizzj(lz/j)annu—jﬁj,

whereN is any integera andf are positive numbers such tha8 = 1. Later these were
recovered by several mathematicians (for the details, see Berndt [3]).
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It is well-known that Ramanujan discovered

.m 1 1
nglez’?m—l_m 8’
® 1 /w\* 1
(16) Zeznm_l‘so(n> ~ 240
m=1
P 1

n; em_1 504
and so on (see Berndt [4, Chapter 14]), where
SRy S L
V31— x4 2v2m

is the lemniscate constant. The left-hand sides of formulas (1.6) can also be regarded as series
involving hyperbolic functions. From the results mentioned above we may expect that various
series involving hyperbolic functions are sometimes evaluated in termsnél w.

In this paper, we first evaluat®—4k + 1;i) (k € N) in terms of r and w (see Theorem
3.2 and Example 3.3), by using the functional equation of Barnes double zeta-functions given
in our previous paper [10]. Also we evalugge—6k+1;p) (k € N), wherep = /3 (see
Theorem 3.5 and Example 3.6). These are analogues of (1.6).

The reason why we only consider the cases i, p is mentioned at the end of Section 3
(Remark 3.7).

Our theory on the evaluation &s; 1) is closely related with the theory of some double
series (such as Barnes zeta-functions and Eisenstein series), as we will see in Section 3. There-
fore it is a natural problem to consider certain double analogu&éspf) itself. For example,
certain double series of Eisenstein type involving hyperbolic functions such as

(-1)"
ném%* sinh(mn)%er ni)k’ nmeEZ* sinh(mn)i(m+ ni)k

are studied in [16, 17] and [11]. Another direction of generalization can be found in [10],
where we study the series whose each term includes two (or more) hyperbolic factors in the
denominator, and prove, for example,

@ (1™ 1
mzlsinlf\(mm/p)sinh(mm/p At z smh(mm/p 2t 5670n4'

(1.7) = 2.622057--

In this paper we consider another type of double analog®&i) defined by

(_1)m+n

(1.8) 82(sii) = sinh(mr) sinh(n7r) (m+ n)s

meZ* neZ*
m+n>0

We evaluateS,(—4k;i) (see Theorem 4.1) argh(4k;i) (see Theorem 4.7) fdt € N. A key
fact for the proof is the existence of trivial zeros (1.4)50§;1) (see Remark 4.9).

(seC).

2. PRELIMINARY RESULTS ON EISENSTEIN SERIES
We begin with recalling several known results on Eisenstein series. Let

1
2, (miny

(mn)£(00)

(2.1) Gj(T) =
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be the Eisenstein series, whgre N andt € C with Ot > 0. Note that even if = 1, we define
G2(1) by (2.1) which converges not absolutely but conditionally. Denote the |&itie.T by
L(7) and define the WeierstraSsfunction by

1 1 1
2.2) D(z:L(r>>=Zz+Ag)((z 7 Az)

A#£0

Then we see that

(2.3) O(zL 12 §21+1 )G2j42(T)Z

(see, for example, [9, Chapter 1, §6]). Whes: i, we haveG,(i) = —m, and
(Zw)4k
(4k)! 7

whereé g € Q. The numberg€ 4 (k € N) are called Hurwitz numbers, because (2.4) is due to
Hurwitz [7]. For example, we see that

(2.4) Gak(i) = Eax Gai2(i) =0 (keN),

L1 1 4 2 12
(2.5) Gy(i) = 15w4, Gg(i) = o , Gio(i) = s3eo”
(see [12]). Analogously, Katayama [8, (6.8)] showed that
1 _ o0 (m*
(26) m%anZ (2m+1+(2n+1)i)% S (4k)! (ke N)

with 84k € Q (k € N), which Katayama called 2-division Hurwitz numbers. The values of
Egk Y are, for example,

4
(L1) wy ¥ can_ 37
el _—E,e =590 €5 =~

In the casa = p = €2/3, it holds thatGg(p) € Q- @® (k € N), where

~_ (/37 _
©= "5 = 24286506

(see [14, 18]). For example, we have

—0 —12 —18
2.7 _ _w _

3. BARNES ZETA-FUNCTIONS AND S(S; T)
Now we recall the Barnes multiple zeta-function [1, 2] defined by
l l 1
"'nhzzo(a+&>1ml+"'+w””h)s

(3.1) {n(sa ..., wh) =
m =0

fora, cy,...,wn € H(B) for somed € R, where
H(O)={z=réd® P cC|r>0-m/2< @< m/2}

is the open half plane whose boundary line is vertical with ThenZy(s,a; w, .. ., w,) con-
verges absolutely and uniformly on any compact subsetsie- n, and is continued meromor-
phically to the whole complex plane.

Recently we showed the following functional equation.
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Theorem 3.1([10], Theorem 2.1) Fory € [0,1),
2mi

r(s)(e?™ 1)
n N al2mmiw;/w)y

-1 € s—1.2mri
X - ) (2mmi 1S M

k;mezz*wk <JI;I& ezm"‘wJ/‘*’K—1> @
i

Zn(s,aly); @i, ..., @) = —

where
a(y) = wi(1-y)+--+un(l-y) €H(B),

and the argument dmrmiw,  is to be taken &g1/2) — argax. Note that the right-hand side
converges absolutely uniformly on the whole sp8de0 < y < 1, and on the regiots < O if
y=0.

This theorem connects the Barnes multiple zeta-function with Dirichlet series involving hy-
perbolic functions. In particular wheim,y, wi, ap) = (2,1/2,1,i), we can obtain

(2m)° (=1)Mme?

2r (s) (€15 + 1) (e7/2 + 1) mgz* sinh(mm)
for anyse C. Note that, by calculating the values at nonpositive integers on both sides of (3.2),
we can obtain Cauchy’s formula (1.2) (see [10, Corollary 6.2 and Corollary 6.3]).

On the other hand, whegis a positive integer, (3.2) gives the following consequence. We
can easily see that, ftre N,

(3.2) {(s,a(1/2);1,i) =

1 1
2m+1+ (2n+1)i) 24k Z nZ) (Mm+1/24 (n+1/2)i)%

= ﬁZ2(4k7a(l/2);1,i)

(divide the left-hand side into four parts according to the signsof2 and 21+ 1, and use the
fact(p—qi)* = (q+ pi)4). Hence, by combining (2.6), (3.2) and (3.3), we obtain the following
theorem.

> 5o
(3.3) mezZnez

Theorem 3.2. For k e N,

_ © (_\Mpk-1 k-2 4k
(3.4) S(_4k+l;l)zzl(sin)h(mn) =~ el <i> :

Example 3.3.

=3 = i ilnh(mn <Z>4’

. > (-)"m" 9 (w
=70 = Zsmh(mn 6<n>

o e (& 1)™mtt 189
S(_ll’l)_ng sinfmm) 8 (7‘[) ’

2 (-)™mS 130977/ @'
S(—15,|)—n;1 sinhmm) 32 (7‘[) ’

S e (-)™m® 16110171/ @)%
S(—19,|)_WZ1 sinhmm) ~ 8 (n)
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Next we consider the cage= p = €21/3. We first show

1 1 1
(3.5) mZZHZZ (2m+ 1+ (2n+1)p)k 3 (1_ 26k> Ge(p)  (kEN).

To show this, we divide the definition (2.1) @ex(p) asAoo+ Ao+ Ato+ A1, WhereA;
denotes the partial sum running oveandn with m= i andn = j (mod 2). Since® =1 and
p?=—p—1, we see that

(2m+ (2n+1)p)% = (—2mp — (2n+1)p?)%
= (=2mp+(2n+1)(p+1))% = (2n+1+ (2n—2m+1)p)%,

from which we findAg1 = Ay1. Similarly we see thatjg = Ag1. On the other hand it is obvious
that Ago = 2% Gg(p). SinceAs; is equal to the left-hand side of (3.5), collecting the above
results we obtain the conclusion.

From Theorem 3.1 we can deduce the following.

Lemma 3.4. For O0s > 2, we have

S - - 1 S 1
e (=p) WEOHZO(W l/2—|—(n+1/2)p)5+r;0n;(m+1/2+(n+ 1/2)(=p71))®
(3.6) (2m)e s/ (—)mms?

T 2r(s) (€5 + 1) iz sinh(mrti /p)’
where(—p)s= (e p)S.

Proof. Using Theorem 3.1 witln,y, wn, ) = (2,1/2,1, p) and(n,y, w1, ap) = (2,1/2,1, —-p b,
where—p~1 = /3, we find that the left-hand side of (3.6) is equal to
2mi

RCCaE
where
_ s (_1)memnip i\s—1 E s (_1)memni/p ; s—1
B=(=p)° 3 s —g G+ 5(=P)* 3 “gmarp g (2mi/p)
_pymgmife _1)mgmip .
s zmn)® o 5 LS i

meZ*
The first and the fourth sums &f cancel with each other, and the remaining part (the second
and the third sums) gives

meZx*

g_ —1t e s (—1)™(2mymi)s1
2 vy, Sinh(mrii/p)
which implies the lemma. d

)

Puttings = 6k (k € N) in equation (3.6) and noting

26k 1
(2m+1+ (2n+1)p)8k

=2
{n;m; (124 (2P 2oy (Mt 1727 <n+1/2><—p—1>>6k}
(which can be seen by dividing the left-hand side into four parts according to the signs of
2m+1 and 21+ 1, and using the fadtp— go)® = (q+ p(—p1))€), we have
3.7) (—1)Mmdk-1 2(—1)k(Bk—1)! 1
' 2 sinhkmri /p) Tk (2m+1+(2n+1)p)tk

mez* MEZNEL

MEeZNEZL
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for k € N. Hence, combining (3.5) and (3.7), we obtain the following.
Theorem 3.5. Fork € N,

(3.8) S(—6k+1;p) € Q- (‘I’)Gk.

T
Example 3.6. Substituting (2.7) into (3.5), and using (3.7), we obtain the following:
~ 6
e (=1 9 /w
S-5p)= Y =g ()

WL, sinh(mri /p)

©  (—1)mMmit _30375(&;)12

n

—11;p) = - . = —

X ) nZl sinh(mrii /p) 16 \m
S(—17:p) = i (-1)™mt? 658560375( &;) 18

’ &, sinh(mri /p) 8 n)

Remark 3.7. The principle of the proofs of theorems in this section is to express the special

values ofS(s; 7) in terms of Eisenstein series, and use known facts on Eisenstein series. Those

expressions are proved by using specific properties of nunila@ido. In generalS(s; 7) can

be written in terms of Barnes multiple zeta-functions by Theorem 3.1, but Eisenstein series is

usually a linear combination of (two or more) Barnes zeta-functions, so the above argument

cannot be applied to other values mf This is the reason why we only consider the cases

T =1, p in this section.

4. SOME RELATIONS AMONG 85(S;i) AND S(s;i)

In this section, we will give some relation formulas améngs; i) andS(s;i). First we prove
the following theorem concerning the values at negative integers.

Theorem 4.1.For pe N,

. 4p . 24p (1,1) w 4p
41 —_ : = —— — : = —— ) —
(4.1) Sa(—4p;i) 7TS( 4p+1;i) n84p = I
In order to prove this theorem, we prepare some notation and lemmas. Let
eit _ e—it 00 t4j+l
4.2 hit)=¢ —e '+ 4y
and

& (=D"h(nt) |t

(4.3) J(t) = n; SinhinmD +— (It| < m).

The right-hand side of (4.3) is absolutely convergent wiies 17, so is holomorphic. Substi-
tuting (4.2) into (4.3), and using (1.3) and (1.4), we have

J(t):4iS(—4j—1;i)t.4j+l+t

(4.4) = 4j+1)! m
:43(_1;i)t+%:0 (t| < m).

Let

(4.5) F(t) = (-1

2 sinh(mm) - ®).

mez*
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ThenF(t) is absolutely convergent whet] < . By (4.4), we haveF(t) = 0 for |t| < TT.
Substituting (4.2) and (4.3) into (4.5), we have

Fit) = o (_1)m+n{e(m+n)t _.e(mfn)t _'_-ifle(m+ni)t _ ifle(mfni)t}
mEEZ* n=1 sinh(mr) sinh(n)
t (_1)memt

(4.6)

In the numerator of the first part on the right-hand side of (4.6), replaemigy n in the second
and fourth terms in braces and using §iR) = —sinh(x), we can rewrite (4.6) as

1\ f q(mHn)t i —1a(menint m
(4.7) F)= > (Cymriemaite™ }+1 (e

vl np sinh(mr) sinh(n) 1, &, sinh(mm)
We further let
- —1)mng(mn)t
F(t)= .( ) -
vl & sinh(mr) sinh(nr)
(4.8) 070
1 (_1)m+ne(m+ni)t t ( )memt
+ = . . += Y Snnmm
| v 1. Sinl(mm) sinh(nmt) 11 &, sinh(mr) ©

ThenF (t) is absolutely convergent fdr| < 77, hence we can write

[ ~tJ
2."1]

~ 1

Lemma 4.2.

Do= Y —0—, 0(j>1
07 4. sintP(mm) ‘ e
Proof. Comparing (4.7) and (4.8), we have
~ 1
F(t)=F(t)— —_—.
H=F® meZZ* sink?(mr)
SinceF (t) = 0 for |t| < 1T, we complete the proof. O
We let
G (=p™m
Ta(k1) &, & sinh(mm) sinh(nrT) (m+ n)k
(4.9) H0

iy (-pm (kez)
i vy vl Sinh(mr) sinh(nr) (M ni ) '

Lemma 4.3. For j € Np, _
By = Ta(~§ii) + LS(1- ;).
Proof. Considering the Maclaurin expansioné)ﬁn (4.8) and using (4.9), we have
t]+1

Z)Tz JIJ, nzOS(—JI U
tl

[

Thus we complete the proof. O
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Proof of Theorem 4.1Whenk = —4p (p € N), the second sum on the right-hand side of (4.9)
is

L (=)™ (m-+ ni)*°
v n. sinh(m) sinh(nm) ©
But we see thalt = 0, because, replacing by —min I, we have
m+n( m+n|)4p
GEZ* n; smh(mr[ sinh(nm)
1)™"(mi+n)*P

=i %né smh(mr[ sinh(nm)

Therefore
(4.10) To(—4p;i) = S2(—4p;i).

Combining this withT,(—j;i) + lnS(1— j;i) =0 (for j € N), which follows from Lemmas 4.2
and 4.3, we obtain the first equation of Theorem 4.1. The second equation of Theorem 4.1
follows from Theorem 3.2. O

Next we evaluat&,(4p;i) (p € N). For this aim, we prepare the following three lemmas.
Note that the former two lemmas are quoted from the previous papers of the third-named author.

Lemma 4.4([16] Theorem 3.1) For k € N, let
(="
(411) 92k+l zz g* Slnk(mr[ m+n|)2k+1’

Wherez’ means that, when % 0, we first sum in the regiom| < N and then take the limit
N — o. Then

2(_1)k+1 k

zo (21—2k+2j _ 1) 2 (2k—2j)
=

x {(— 1)IGaj2(i )+2{(2j+2)},
where{(s) is the Riemann zeta-function.

(4.12) Gort1(i) =

Lemma 4.5([15] Lemma 8) Suppose€ R }k>0 and {Qk}k>0 are sequences which satisfy the
relations
(im?

k
Zo Hou+1)

for any ke Nyp. Then the relation

= Qk

k
R=-2% (21—2'<+2V - 1) Z(2k—2v)Qy

v=0
holds for any ke N.

Lemma 4.6. For p € Ny,
p

439 Lwal)= Y {%20-20) ¢

) (im?
’ )} 2i+ D

Proof. Let 8 € (—m, ), and let
(—1)™"sin((m+n)6)
sinh(m7r) sinh(n7T) (Mm+ n)2P-+1

4.14)  C(0) =i

nezZ* meZ*
mH-n#£0

/ (—1)™"sinh((m+ni)io)

- sinh(mr) sinh(n7t) (m+ ni)2P+1

neZ* mez*
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(2p+1)i (—1)™Msin(mo) L i0 (—1)Mcogme)
i 22 sinhmmm?P+2 1 & sinh(mm)mep+t’

Since|6| < m, all of the above sums are convergent absolutely. Hence, using the Maclaurin
expansions of sir, cosx and sinhkx and applying Lemma 4.3, we have

- .. o i0 2j+1
(4.15) C(6>=;O{72<zp_zj;.)+ ; )} ((2,-)+1)!
0\2j+1
—ZD{‘J'z 2p—2j;i) + 2= 2pS(2p+1—2j;i)}((|2?)+Jl)!
. (|9)21+1
i j:%HDzj_zpm

By Lemma 4.2, we hav§j_p =0 for ] > p+ 1. Therefore the right-hand side of (4.15) are
continuous for anyd € R. On the other hand, the first, the third, and the fourth sums on the
right-hand side of (4.14) are clearly convergent uniforml@ia R, hence continuous for any
0 € R. Next we claim that the second sum on the right-hand side of (4.14) is continuous for
0 € (—m, . (Note here that our original proof of this claim was erroneous. The following
proof of the claim is due to the referee.)

To show this claim, it is enough to consider the cpse 0. Then

sinh((m+ni)if) = %(eime—ne _ e—im9+n9)7

and the contribution o#™®—"9 (n > 0) and ofe ™#+"? (n < 0) to the second sum are obviously
absolutely convergent for ary € R. The contribution of the remaining part is (with replacing
n by —nwhenn < 0)

' N (_1)m+ne—im9+n9 N (_1)m+neim9+n9
A, &4 2sinl(mm) sinh(nm)(m-+ni) & £ 2sinh(mm) sinh(nt) (m— ni)
0 )m+ne im6+no N )m+ne|m9+n9
:_ZIJIIan{ Z z smh(m ) sinh(n7T) (M+ ni) + z z smh( mr1) sinh(n7T) (— m+ni)}
n=1m=1 n=1m=1
N o ( )m+ne|m9+n9 l)m+ne im6+n6

+nz zlsmh(mn)smh(nn m— ni) z z sinh(—mr) sinh(n7)(—m— ni)

=1m=1

o ® (—1)Mg Mo N (—1)ne® 2 (—1)mgmé N (—1)nen®

_r\IJILnoo{ngl sinh(mr) nleinh(nn)(erni)Jrn;1 sinh(mr) nleinh(nn)(m—ni)}
® (—1)™2mcogmd) N (—1)nen®

{3 ;

&, sinh(mm) & sinh(nm) (m? +n?)

N * (—1)m2sinmd) N (-1)"e  n
ngl sinh(mm) n; sinh(nm) (m?+n?) |-
We denote byl; andJ, the first and the second sums on the right-hand side, respectively. Then

we see thal; is convergent absolutely and uniformlyéhe (— 1, 71. Next we rewrite the inner
sum ofJ, as

(-pne® n X (—1)ne n 1 N o e® (—1n
n; sinh(nm) M2 4+-n2 nz sinh(nn) <rT12+n2 a n) +n; sinh(n)  n

( )nene mZ N en@ (_1)n

a Z , sinh(n7r) n(m? -+ n2) +n; sinhnm) n
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Hence we can rewrité to
2 (=1)m2mPsin(m@) N (—1)nen? 1
_ng sinh(mr) nZl sinh(n7t) n(m2 + n2)
2 (=1)M2sin(m6) N g (-1
+ (ng sinh(mr) ) (zl sinhinm) n )

n=

Let N tend to infinity. Then the first double sum and the sum in the former parentheses of
the second part are convergent absolutely and uniforméydn(—rt, 7. The sum in the latter
parentheses of the second part is not convergent absolutéy=far but convergent condition-
ally for 8 = rmand convergent absolutely fre C with |8| < . Therefore it is continuous for
0 € (—m, i1} by Abel’s theorem. Hence the claim follows.

Therefore the both expressions (4.14) and (4.1%)(df) are continuous whefl — m— 0.
Therefore, lettingd — m— 0 and using si(m+n)m) =0 and

sinh((m+ ni)im) = sinh(mir— nm) = —(—1)"sinh(nm),

we see that
. )" ) 1
' i - n2prt 1! > sinh(mrm)m2e+1
MEZ* nEZ* smh(mn)(m+ n') e Slnh(mrt)mZ
c L, 2i=2p ) (imEt
= > 7T2(2p—2ji) + 2p+1-2j;i : ,
5 {rem—ziine S Fsene1ain s
Note that the left-hand side is equaliyp1(i). Therefore, dividing the both sides by, we
obtain (4.13). 0

Theorem 4.7. For p € Np,

8$2(4p;i) = 4—758(4p+1;i)+2(1—g) S(4p—1i)

(4.16) 4P

—— Y {(4] +2)S(4p—4j ~ L;i).
=1

Remark 4.8. By (1.2) and (1.3), we see th&4k — 1;i) € Q- n*~1 (k € Np). Hence (4.16)
gives that
niSa(4p;i) —4pS4p+1;i) € Q]  (p € No).

However it is not known whethes(4p+ 1;i) can be written as a closed form in termspfw
and so on. In fact, from (1.5) in the cage= 3 = 11, we have no information abo&4p+ 1;i)
unlike the situation o§(4p— 1;i).

By (4.12) and the property dB,;j(i) (see Section 2), we see thafp.1(i) € Q [, @]
(p € No). Therefore, puttinge = 2p+ 1 in (4.17) below, we have®T,(4p+ 2;i) € Q [, @*]
(p € Np), while we cannot evaluat® (4p-+ 2;i) individually.

Proof of Theorem 4.7By Lemma 4.6 we find that the choice
2k . 1 .
R<:‘.Tz(2k;|)—FS(2k+1;|), Qk:7—192k+1(|) (k € Np)
satisfies the condition of Lemma 4.5. Therefore by Lemma 4.5 we obtain

oy 2K o2& g B ,
(4.17) Ta(2KkiT) — —S(2k+Lii) = "Zo (2 1)((2k 20)G2y41(1).

V=
Similarly to (4.10), we hav8>(4p;i) = S2(4p;i). Hence, by (4.17) witlkk = 2p and (4.12), we
have

S2(4p;i) — 4753(4p+ 1;i)
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2 2 i
-2 Z 21—4p+2v _ 1) {(4p—2v)Goy41(i)

4 25’ 1-4p+2v v
= ) (2 -1)2(p-2v)(-Y)

x i}(ZHHZ" —1)Z(2v -2)) {(-1)Gpjs2(i) +24 (2] +2)}
=

2p 2p _
= Z) { (214 —1) (4p—2v)(—1)¥ (2" —1) {(2v - 2 j)}
x {(=1)1Gpj2(i) +22(2j +2)} .

Dividing the right-hand side into two subsums according as2l (0<| <p)andj=2+1
(0< I < p—1), we find that the right-hand side is

(4.18) Z)% (2142 1) 2 (4p—2v)(~1)" (21—2V+4'—1)z(2v—4|)

X (Gar2(i) +24 (4 +2))
p-1 2p
+ ? Z Z (2174P+ZV _ 1) Z<4p_ ZV)(—J.)V (2372V+4| _ 1) Z(ZV 4 — 2)
I=0v=2+1
X (—Garyali) +27 (4 +4)).
The second member of (4.18) vanishes because, letting

2
A= Zp (21—4p+2v _ 1) Z(4p_ 2V)(—1)V (2372V+4| . 1) Z(ZV 4 — 2)
v=21+1

and puttingu = 2p—v + 2l + 1, we findA = —A, hence\ = 0. On the other hand, by using
-nym_ (2mi)?VByy(1/2)

1-2v — —
(2 1){(2v) n;l — 202v) (v eN)
and{(0) = —1/2 (see [6, Chapter 1]), we see that the first member of (4.18) is
4 P

= %(szz(i) +2{ (4 +2))

= _qyu Bap-a-24(1/2) Byu(1/2)

x (2mi)*P 4 ,Zo( ) 2(4p—4l —2p)! 2(2u)!

By (1.2), this coincides with
22 . .
72 (Gasali) + 2 (4 +2)) Stap— 4l — L),

By the property ofG;;(i) (see Section 2), we obtain (4.16). Thus we complete the proof of
Theorem 4.7. O

Remark 4.9. (i) In both the proofs of Theorem 4.1 and Theorem 4.7, a key role is played by
Lemma 4.2, which is based on the fa¢t) = 0. The latter fact is shown by using Cauchy’s
(1.3), (1.4), which are known far =i. This is the reason why we only consider the casei
in this section.

(i) The idea of Lemma 4.2 is to begin witl{t) = 0, which is a consequence of the existence
of trivial zeros (1.4) ofS(s;i), and multiply J(t) by another series to obtain a new identity
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F(t) = 0. This type of argument has been repeatedly used by the third-named author (see, e.g.,
[15] [16] [17]).

(iif) On the other hand, the method in [11] is quite different. We will develop this direction
of research further in a forthcoming paper.

Acknowledgements. The authors wish to express their sincere gratitude to the referee for
his/her careful reading of the manuscript and helpful advice, especially concerning the proof
of Lemma 4.6.
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