The analytic continuation and the asymptotic behaviour of multiple zeta-functions II

Kohji Matsumoto

Abstract

The meromorphic continuation of generalized multiple zeta-functions, which has been shown under certain restrictions in the author's former paper, is proved in a fairly general situation.

1 Introduction

The definition of generalized multiple zeta-functions is as follows:

$$\zeta_r((s_1, \dots, s_r); (\alpha_1, \dots, \alpha_r), (w_1, \dots, w_r)) = \sum_{m_1=0}^{\infty} \cdots \sum_{m_r=0}^{\infty} (\alpha_1 + m_1 w_1)^{-s_1} (\alpha_2 + m_1 w_1 + m_2 w_2)^{-s_2} \times \cdots \times (\alpha_r + m_1 w_1 + \dots + m_r w_r)^{-s_r},$$
(1.1)

where r be a positive integer, s_1, \ldots, s_r be complex variables, $\alpha_1, \ldots, \alpha_r, w_1, \ldots, w_r$ be complex parameters. Let ℓ be a fixed line on the complex plane **C** crossing the origin. Then ℓ divides **C** into two open half-planes and ℓ itself, and denote by $H(\ell)$ one of those half-planes. We can write

$$H(\ell) = \left\{ w \in \mathbf{C} \setminus \{0\} \ \left| \ \theta - \frac{\pi}{2} < \arg w < \theta + \frac{\pi}{2} \right\},\right.$$

with $-\pi < \theta \leq \pi$. To assure the convergence of (1.1), we assume

$$w_j \in H(\ell) \qquad (1 \le j \le r). \tag{1.2}$$

It might happen that $\alpha_j + m_1 w_1 + \cdots + m_j w_j = 0$ holds for some j and some (m_1, \ldots, m_j) , but only finitely many times under the assumption (1.2). We adopt the convention that the terms corresponding to such (m_1, \ldots, m_j) 's are removed from (1.1). For any j, $\alpha_j + m_1 w_1 + \cdots + m_j w_j \in H(\ell)$ except for finitely many (m_1, \ldots, m_j) 's. If $\alpha_j + m_1 w_1 + \cdots + m_j w_j \in H(\ell)$, then the branch of the logarithm in the factor

$$(\alpha_j + m_1 w_1 + \dots + m_j w_j)^{-s_j} = \exp(-s_j \log(\alpha_j + m_1 w_1 + \dots + m_j w_j))$$

is chosen as

$$\theta - \pi/2 < \arg(\alpha_j + m_1 w_1 + \dots + m_j w_j) < \theta + \pi/2$$

In [4] we have shown that, under the above convention and the assumption (1.2), the series (1.1) converges absolutely in the region

$$\mathcal{A}_{r} = \{ (s_{1}, \dots, s_{r}) \in \mathbf{C}^{r} \mid \Re(s_{r-k+1} + \dots + s_{r}) > k \quad (1 \le k \le r) \},\$$

uniformly in any compact subset of \mathcal{A}_r .

The purpose of the present paper is to complete the proof of the following

Theorem Under the above convention and the assumption (1.2), the function defined by (1.1) can be continued meromorphically to the whole \mathbf{C}^r space.

This result has been proved in [5] under the additional assumptions

$$\alpha_j \in H(\ell) \qquad (1 \le j \le r) \tag{1.3}$$

and

$$\alpha_{j+1} - \alpha_j \in H(\ell) \qquad (1 \le j \le r - 1). \tag{1.4}$$

Therefore, our remaining task is to remove these two assumptions. However, the proof given in the following sections does not depend on the results proved in [5], except two lemmas on Hurwitz zeta-functions given in Section 2 of [5].

The previous history on the analytic continuation of various special cases of (1.1) is mentioned in [4] [5].

2 The case r = 1

First we consider the case r = 1, that is

$$\zeta_1(s_1; \alpha_1, w_1) = \sum_{m_1=0}^{\infty} (\alpha_1 + m_1 w_1)^{-s_1}.$$
(2.1)

We prove that, if $w_1 \in H(\ell)$, then (2.1) can be continued meromorphically to the whole plane. Since $w_1 \in H(\ell)$, we find a positive integer μ_1 such that $\alpha_1 + m_1 w_1 \in H(\ell)$ for any $m_1 \geq \mu_1$. If we choose μ_1 sufficiently large, then $\arg(m_1 + \alpha_1 w_1^{-1})$ is small for $m_1 \geq \mu_1$, and so

$$\arg(\alpha_1 + m_1 w_1) = \arg w_1 + \arg(m_1 + \alpha_1 w_1^{-1}).$$

Hence we can write

$$\zeta_1(s_1;\alpha_1,w_1) = \sum_{m_1=0}^{\mu_1-1} (\alpha_1 + m_1 w_1)^{-s_1} + w_1^{-s_1} \sum_{m_1=\mu_1}^{\infty} \left(m_1 + \frac{\alpha_1}{w_1} \right)^{-s_1}.$$
 (2.2)

Under our convention we may assume that $\alpha_1 w_1^{-1} \notin \{0, -1, -2, \ldots\}$. Hence the second term on the right-hand side of (2.2) can be continued to **C** by Lemma 1 of [5]. The first term is clearly continuable. We have proved our claim, which implies that our theorem is true for r = 1.

Hence now we can apply the induction argument. In the following sections we assume the validity of the theorem for ζ_{r-1} , and prove the theorem for ζ_r .

3 Removing the condition (1.4)

Now we assume that the theorem is true for ζ_{r-1} under the conditions (1.2) and (1.3) (but without (1.4)), and prove the theorem for ζ_r under the same conditions.

First of all we note that, under the conditions (1.2) and (1.3), we may assume that ℓ is the imaginary axis, and $H(\ell)$ is the half-plane H_+ which consists of all complex numbers with positive real part. In fact, putting $\tilde{\alpha}_j = \alpha_j e^{-i\theta}$ and $\tilde{w}_j = w_j e^{-i\theta}$ $(1 \le j \le r)$, we find easily (as in Section 6 of [5])

$$\begin{aligned} \zeta_r((s_1,\ldots,s_r);(\alpha_1,\ldots,\alpha_r),(w_1,\ldots,w_r)) \\ &= \exp(-i\theta(s_1+\cdots+s_r)) \\ &\times \zeta_r((s_1,\ldots,s_r);(\tilde{\alpha}_1,\ldots,\tilde{\alpha}_r),(\tilde{w}_1,\ldots,\tilde{w}_r)), \end{aligned}$$

hence our problem is reduced to the continuation of

 $\zeta_r((s_1,\ldots,s_r);(\tilde{\alpha}_1,\ldots,\tilde{\alpha}_r),(\tilde{w}_1,\ldots,\tilde{w}_r)).$

Therefore in this section we assume $H(\ell) = H_+$, and replace the conditions (1.2) and (1.3) by

$$w_j \in H_+ \qquad (1 \le j \le r), \tag{3.1}$$

and

$$\alpha_j \in H_+ \qquad (1 \le j \le r), \tag{3.2}$$

respectively.

At first we assume $\Re s_j > 1$ $(1 \leq j \leq r)$. Since $w_r \in H_+$, we can find a positive integer μ_r for which $\alpha_r - \alpha_{r-1} + m_r w_r \in H_+$ holds for any $m_r \geq \mu_r$. We divide the definition (1.1) of ζ_r as

$$\zeta_{r}((s_{1},\ldots,s_{r});(\alpha_{1},\ldots,\alpha_{r}),(w_{1},\ldots,w_{r})) \\
= \sum_{m_{1}=0}^{\infty}\cdots\sum_{m_{r-1}=0}^{\infty}\sum_{m_{r}=0}^{\mu_{r}-1}(\alpha_{1}+m_{1}w_{1})^{-s_{1}} \\
\times\cdots\times(\alpha_{r}+m_{1}w_{1}+\cdots+m_{r}w_{r})^{-s_{r}} \\
+ \sum_{m_{1}=0}^{\infty}\cdots\sum_{m_{r-1}=0}^{\infty}\sum_{m_{r}=\mu_{r}}^{\infty}(\alpha_{1}+m_{1}w_{1})^{-s_{1}} \\
\times\cdots\times(\alpha_{r}+m_{1}w_{1}+\cdots+m_{r}w_{r})^{-s_{r}}.$$
(3.3)

Putting $\alpha'_r = \alpha_r + \mu_r w_r$, we can see that the second sum on the right-hand side is equal to

$$\zeta_r((s_1,\ldots,s_r);(\alpha_1,\ldots,\alpha_{r-1},\alpha'_r),(w_1,\ldots,w_r)).$$
(3.4)

On the other hand, the first sum can be written as

$$\sum_{m_r=0}^{\mu_r-1} \xi_{r-1}((s_1,\ldots,s_r);(\alpha_1,\ldots,\alpha_{r-1},\alpha_r+m_rw_r),(w_1,\ldots,w_{r-1}))$$

where

$$\xi_{r-1}((s_1, \dots, s_r); (\alpha_1, \dots, \alpha_{r-1}, \beta), (w_1, \dots, w_{r-1})) = \sum_{m_1=0}^{\infty} \cdots \sum_{m_{r-1}=0}^{\infty} (\alpha_1 + m_1 w_1)^{-s_1} \cdots (\alpha_{r-2} + m_1 w_1 + \dots + m_{r-2} w_{r-2})^{-s_{r-2}} \times (\alpha_{r-1} + m_1 w_1 + \dots + m_{r-1} w_{r-1})^{-s_{r-1}} \times (\beta + m_1 w_1 + \dots + m_{r-1} w_{r-1})^{-s_r}.$$
(3.5)

Therefore the problem is reduced to the continuation of (3.4) and (3.5).

We first treat (3.4) by using the formula

$$\Gamma(s)(1+\lambda)^{-s} = \frac{1}{2\pi i} \int_{(c)} \Gamma(s+z)\Gamma(-z)\lambda^z dz$$
(3.6)

where $\Re s > 0$, $|\arg \lambda| < \pi$, $\lambda \neq 0$, $-\Re s < c < 0$, and the path of integration is the vertical line $\Re z = c$. This is the classical Mellin-Barnes formula, and a simple proof is given in Section 4 of [4]. We apply (3.6) with $s = s_r$ and

$$\lambda = \frac{\alpha'_r - \alpha_{r-1} + m'_r w_r}{\alpha_{r-1} + m_1 w_1 + \dots + m_{r-1} w_{r-1}},$$

where $m'_r = m_r - \mu_r (\geq 0)$. Both the denominator and the numerator of λ are belonging to H_+ , because $\alpha_{r-1} \in H_+$ by (3.2) while $\alpha'_r - \alpha_{r-1} \in H_+$ is implied by the definition of α'_r . Hence $|\arg \lambda| < \pi$ and $\lambda \neq 0$. Moreover, since $\Re s_r > 1$, we can choose c satisfying $-\Re s_r < c < -1$. From (3.6) we have

$$(\alpha_{r-1} + m_1 w_1 + \dots + m_{r-1} w_{r-1})^{s_r} (\alpha'_r + m_1 w_1 + \dots + m_{r-1} w_{r-1} + m'_r w_r)^{-s_r} = \frac{1}{2\pi i} \int_{(c)} \frac{\Gamma(s_r + z)\Gamma(-z)}{\Gamma(s_r)} \left(\frac{\alpha'_r - \alpha_{r-1} + m'_r w_r}{\alpha_{r-1} + m_1 w_1 + \dots + m_{r-1} w_{r-1}}\right)^z dz.$$

Multiply the both sides by

$$(\alpha_1 + m_1 w_1)^{-s_1} \cdots (\alpha_{r-2} + m_1 w_1 + \dots + m_{r-2} w_{r-2})^{-s_{r-2}} \times (\alpha_{r-1} + m_1 w_1 + \dots + m_{r-1} w_{r-1})^{-s_{r-1} - s_r}$$

and summing up with respect to $m_1, \ldots, m_{r-1}, m'_r$, we obtain

$$\zeta_{r}((s_{1},\ldots,s_{r});(\alpha_{1},\ldots,\alpha_{r-1},\alpha_{r}'),(w_{1},\ldots,w_{r})) = \frac{1}{2\pi i} \int_{(c)} \frac{\Gamma(s_{r}+z)\Gamma(-z)}{\Gamma(s_{r})} \zeta_{r-1}((s_{1},\ldots,s_{r-2},s_{r-1}+s_{r}+z); \\ (\alpha_{1},\ldots,\alpha_{r-1}),(w_{1},\ldots,w_{r-1})) \sum_{m_{r}'=0}^{\infty} (\alpha_{r}'-\alpha_{r-1}+m_{r}'w_{r})^{z} dz.$$
(3.7)

If we choose μ_r sufficiently large, then

$$\arg\left(m_r' + \frac{\alpha_r' - \alpha_{r-1}}{w_r}\right)$$

is small for any $m'_r \ge 0$. Hence, as in Section 2, we can verify

$$\sum_{m'_r=0}^{\infty} (\alpha'_r - \alpha_{r-1} + m'_r w_r)^z = w_r^z \sum_{m'_r=0}^{\infty} \left(m'_r + \frac{\alpha'_r - \alpha_{r-1}}{w_r} \right)^z$$
$$= w_r^z \zeta \left(-z, \frac{\alpha'_r - \alpha_{r-1}}{w_r} \right).$$

The right-hand side is, by Lemma 2 of [5], estimated as

$$O\left((|y|+1)^{\max\{0,1+x\}+\varepsilon}\exp(|y|\rho)\right)$$
(3.8)

for any $\varepsilon > 0$, where $x = \Re z$, $y = \Im z$, and

$$\rho = \max\left\{ |\arg(\alpha'_r - \alpha_{r-1})|, |\arg w_r| \right\},\$$

hence $|\rho| < \pi/2$. The factor ζ_{r-1} in the integrand on the right-hand side of (3.7) is convergent absolutely if $\Re z \ge c$, hence this factor is estimated as $O(\exp(|y|\theta_0))$, where

$$\theta_0 = \sup_{m_1, \dots, m_{r-1}} |\arg(\alpha_{r-1} + m_1 w_1 + \dots + m_{r-1} w_{r-1})|$$

so $|\theta_0| < \pi/2$. (The implied constant depends on $\sigma_1, \ldots, \sigma_r, t_1, \ldots, t_r, x$ etc. but does not depend on y.) Combining this estimate, (3.8), and Stirling's formula, we find that the integrand on the right-hand side of (3.7) tends to 0 when $|y| \to \infty$ in the region $\Re z \ge c$. Therefore we can shift the path of integration to the line $\Re z = M - \varepsilon$, where M is a positive integer. The relevant poles are at $z = -1, 0, 1, 2, \ldots, M - 1$, and counting the residues of those poles we obtain

$$\zeta_r((s_1, \dots, s_r); (\alpha_1, \dots, \alpha_{r-1}, \alpha'_r), (w_1, \dots, w_r)) = \frac{1}{s_r - 1} \zeta_{r-1}((s_1, \dots, s_{r-2}, s_{r-1} + s_r - 1); (\alpha_1, \dots, \alpha_{r-1}), (w_1, \dots, w_{r-1})) w_r^{-1}$$

$$+\sum_{k=0}^{M-1} {\binom{-s_r}{k}} \zeta_{r-1}((s_1, \dots, s_{r-2}, s_{r-1} + s_r + k);$$

$$(\alpha_1, \dots, \alpha_{r-1}), (w_1, \dots, w_{r-1}))\zeta\left(-k, \frac{\alpha'_r - \alpha_{r-1}}{w_r}\right)w_r^k$$

$$+\frac{1}{2\pi i} \int_{(M-\varepsilon)} \frac{\Gamma(s_r + z)\Gamma(-z)}{\Gamma(s_r)} \zeta_{r-1}((s_1, \dots, s_{r-2}, s_{r-1} + s_r + z);$$

$$(\alpha_1, \dots, \alpha_{r-1}), (w_1, \dots, w_{r-1}))\zeta\left(-z, \frac{\alpha'_r - \alpha_{r-1}}{w_r}\right)w_r^z dz. \quad (3.9)$$

In the integrand of the above integral term, the factor $\Gamma(s_r + z)$ is holomorphic if $\Re(s_r + z) > 0$, and the factor ζ_{r-1} is convergent absolutely if

$$\Re(s_{r-j} + \dots + s_r + z) > j \qquad (1 \le j \le r-1).$$

Hence the integral term on the right-hand side of (3.9) is holomorphic in the region

$$\mathcal{F}_r(M;\varepsilon) = \left\{ (s_1, \dots, s_r) \in \mathbf{C}^r \mid \begin{array}{c} \Re(s_{r-j} + \dots + s_r) > j - M + \varepsilon \\ (0 \le j \le r - 1) \end{array} \right\},$$

while the other terms can be continued meromorphically by the induction assumption. Since M is arbitrary, this implies the meromorphic continuation of (3.4) to the whole \mathbf{C}^r space.

The idea of using the Mellin-Barnes formula (3.6) to this type of problems goes back to Katsurada's papers [1] [2]. Then, inspired by Katsurada's works, the author wrote [3] [4] [5]. The above treatment of (3.4) is similar to the argument in Sections 3 and 4 of [5], but we repeat the details for the convenience of readers. (The method of estimating the factor ζ_{r-1} is different from that in [5].)

Next we prove the analytic continuation of (3.5). Since either $\beta - \alpha_{r-1}$ or $\alpha_{r-1} - \beta$ clearly has the non-negative real part, we may assume $\Re(\beta - \alpha_{r-1}) \ge 0$ without loss of generality. Moreover, if $\beta = \alpha_{r-1}$ then

$$\xi_{r-1}((s_1,\ldots,s_r);(\alpha_1,\ldots,\alpha_{r-1},\beta),(w_1,\ldots,w_{r-1})) = \zeta_{r-1}((s_1,\ldots,s_{r-2},s_{r-1}+s_r);(\alpha_1,\ldots,\alpha_{r-1}),(w_1,\ldots,w_{r-1}))$$

which can be continued by the induction assumption. Hence we may assume $\beta \neq \alpha_{r-1}$. Now we apply (3.6) with $s = s_r$ and

$$\lambda = \frac{\beta - \alpha_{r-1}}{\alpha_{r-1} + m_1 w_1 + \dots + m_{r-1} w_{r-1}}.$$

The above assumptions imply $|\arg \lambda| < \pi$ and $\lambda \neq 0$, hence we can use (3.6). As before, we obtain

$$\xi_{r-1}((s_1,\ldots,s_r);(\alpha_1,\ldots,\alpha_{r-1},\beta),(w_1,\ldots,w_{r-1}))$$

$$= \frac{1}{2\pi i} \int_{(c)} \frac{\Gamma(s_r + z)\Gamma(-z)}{\Gamma(s_r)} \zeta_{r-1}((s_1, \dots, s_{r-2}, s_{r-1} + s_r + z); (\alpha_1, \dots, \alpha_{r-1}), (w_1, \dots, w_{r-1}))(\beta - \alpha_{r-1})^z dz,$$
(3.10)

and by shifting the path we find that the right-hand side is equal to

$$\sum_{k=0}^{M-1} {\binom{-s_r}{k}} \zeta_{r-1}((s_1, \dots, s_{r-2}, s_{r-1} + s_r + k); (\alpha_1, \dots, \alpha_{r-1}), (w_1, \dots, w_{r-1}))(\beta - \alpha_{r-1})^k + \frac{1}{2\pi i} \int_{(M-\varepsilon)} \frac{\Gamma(s_r + z)\Gamma(-z)}{\Gamma(s_r)} \zeta_{r-1}((s_1, \dots, s_{r-2}, s_{r-1} + s_r + z); (\alpha_1, \dots, \alpha_{r-1}), (w_1, \dots, w_{r-1}))(\beta - \alpha_{r-1})^z dz.$$
(3.11)

This last integral is holomorphic in $\mathcal{F}_r(M;\varepsilon)$, hence we obtain the meromorphic continuation of (3.5). Therefore we now obtain the proof of meromorphic continuation of ζ_r without the condition (1.4).

4 Removing the condition (1.3)

Finally we remove the condition (1.3). Assume that the theorem is true for ζ_{r-1} under the only condition (1.2). Write $\alpha_j = \alpha_j^{(1)} + \alpha_j^{(2)}$ with $\arg \alpha_j^{(1)} = \theta - \pi/2$ or $\theta + \pi/2$ (or $\alpha_j^{(1)} = 0$) and $\arg \alpha_j^{(2)} = \theta$ or $-\theta$ (or $\alpha_j^{(2)} = 0$). Consider the set of all $\alpha_j^{(2)}$ whose argument is not θ , and denote by $\tilde{\alpha}$ (one of) the element(s) of this set whose absolute value is the largest. Choose a positive integer μ such that $\tilde{\alpha} + m_1 w_1 \in H(\ell)$ for any $m_1 \geq \mu$. Divide the series (1.1) as

$$\zeta_r((s_1, \dots, s_r); (\alpha_1, \dots, \alpha_r), (w_1, \dots, w_r)) = \sum_{m_1=0}^{\mu-1} \sum_{m_2=0}^{\infty} \dots \sum_{m_r=0}^{\infty} + \sum_{m_1=\mu}^{\infty} \sum_{m_2=0}^{\infty} \dots \sum_{m_r=0}^{\infty} = T_1 + T_2, \quad (4.1)$$

say. This idea of dividing the series (1.1) as above has already appeared in Section 6 of [4], in the proof of absolute convergence of (1.1).

Putting $\alpha'_{j}(m_{1}) = \alpha_{j} + m_{1}w_{1}$ for $0 \leq m_{1} \leq \mu - 1$, we find that

$$T_1 = \sum_{m_1=0}^{\mu-1} \alpha'_1(m_1)^{-s_1} \times \zeta_{r-1}((s_2, \dots, s_r); (\alpha'_2(m_1), \dots, \alpha'_r(m_1)), (w_2, \dots, w_r)),$$

which can be continued by the induction assumption. As for T_2 , writing $m'_1 = m_1 - \mu$ and $\alpha'_j = \alpha_j + \mu w_1$ $(1 \le j \le r)$, we have

$$T_2 = \sum_{m_1'=0}^{\infty} \sum_{m_2=0}^{\infty} \cdots \sum_{m_r=0}^{\infty} (\alpha_1' + m_1' w_1)^{-s_1} (\alpha_2' + m_1' w_1 + m_2 w_2)^{-s_2}$$

 $\times \cdots \times (\alpha'_r + m'_1 w_1 + m_2 w_2 + \cdots + m_r w_r)^{-s_r}$ = $\zeta_r((s_1, \ldots, s_r); (\alpha'_1, \ldots, \alpha'_r), (w_1, \ldots, w_r)).$

Since $\alpha'_j \in H(\ell)$ $(1 \leq j \leq r)$, the right-hand side can be continued meromorphically by the fact already shown in Section 3. Therefore now (4.1) is continued to the whole \mathbf{C}^r space, and our theorem is proved completely.

References

- [1] M. Katsurada, An application of Mellin-Barnes' type integrals to the mean square of Lerch zeta-functions, Collect. Math. 48 (1997), 137-153.
- [2] M. Katsurada, An application of Mellin-Barnes type of integrals to the mean square of *L*-functions, Liet. Mat. Rink. **38** (1998), 98-112. = Lithuanian Math. J. **38** (1998), 77-88.
- [3] K. Matsumoto, Asymptotic expansions of double zeta-functions of Barnes, of Shintani, and Eisenstein series, preprint.
- [4] K. Matsumoto, On analytic continuation of various multiple zeta-functions, in "Number Theory for the Millenniam, the Millennial Conference on Number Theory", B. Berndt et al. (eds.), A K Peters, to appear.
- [5] K. Matsumoto, The analytic continuation and the asymptotic behaviour of multiple zeta-functions I, preprint.

Graduate Schoolof Mathematics Nagoya University Chikusa-ku, Nagoya 464-8602 Japan