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Abstract

The meromorphic continuation of generalized multiple zeta-functions,

which has been shown under certain restrictions in the author’s former

paper, is proved in a fairly general situation.

1 Introduction

The definition of generalized multiple zeta-functions is as follows:

ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr))

=
∞
∑

m1=0

· · ·
∞
∑

mr=0

(α1 + m1w1)
−s1(α2 + m1w1 + m2w2)

−s2

× · · · × (αr + m1w1 + · · ·+ mrwr)
−sr , (1.1)

where r be a positive integer, s1, . . . , sr be complex variables, α1, . . . , αr, w1, . . . ,
wr be complex parameters. Let ` be a fixed line on the complex plane C crossing
the origin. Then ` divides C into two open half-planes and ` itself, and denote
by H(`) one of those half-planes. We can write

H(`) =
{

w ∈ C \ {0}
∣

∣

∣

∣

θ −
π

2
< arg w < θ +

π

2

}

,

with −π < θ ≤ π. To assure the convergence of (1.1), we assume

wj ∈ H(`) (1 ≤ j ≤ r). (1.2)

It might happen that αj + m1w1 + · · · + mjwj = 0 holds for some j and some
(m1, . . . , mj), but only finitely many times under the assumption (1.2). We adopt
the convention that the terms corresponding to such (m1, . . . , mj)’s are removed
from (1.1). For any j, αj + m1w1 + · · ·+ mjwj ∈ H(`) except for finitely many
(m1, . . . , mj)’s. If αj+m1w1+· · ·+mjwj ∈ H(`), then the branch of the logarithm
in the factor

(αj + m1w1 + · · ·+ mjwj)
−sj = exp(−sj log(αj + m1w1 + · · ·+ mjwj))
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is chosen as

θ − π/2 < arg(αj + m1w1 + · · ·+ mjwj) < θ + π/2.

In [4] we have shown that, under the above convention and the assumption (1.2),
the series (1.1) converges absolutely in the region

Ar = {(s1, . . . , sr) ∈ Cr | <(sr−k+1 + · · ·+ sr) > k (1 ≤ k ≤ r)},

uniformly in any compact subset of Ar.
The purpose of the present paper is to complete the proof of the following

Theorem Under the above convention and the assumption (1.2), the function

defined by (1.1) can be continued meromorphically to the whole Cr space.

This result has been proved in [5] under the additional assumptions

αj ∈ H(`) (1 ≤ j ≤ r) (1.3)

and

αj+1 − αj ∈ H(`) (1 ≤ j ≤ r − 1). (1.4)

Therefore, our remaining task is to remove these two assumptions. However, the
proof given in the following sections does not depend on the results proved in [5],
except two lemmas on Hurwitz zeta-functions given in Section 2 of [5].

The previous history on the analytic continuation of various special cases of
(1.1) is mentioned in [4] [5].

2 The case r = 1

First we consider the case r = 1, that is

ζ1(s1; α1, w1) =
∞
∑

m1=0

(α1 + m1w1)
−s1. (2.1)

We prove that, if w1 ∈ H(`), then (2.1) can be continued meromorphically to the
whole plane. Since w1 ∈ H(`), we find a positive integer µ1 such that α1+m1w1 ∈
H(`) for any m1 ≥ µ1. If we choose µ1 sufficiently large, then arg(m1 + α1w

−1
1 )

is small for m1 ≥ µ1, and so

arg(α1 + m1w1) = arg w1 + arg(m1 + α1w
−1
1 ).

Hence we can write

ζ1(s1; α1, w1) =
µ1−1
∑

m1=0

(α1 + m1w1)
−s1 + w−s1

1

∞
∑

m1=µ1

(

m1 +
α1

w1

)−s1

. (2.2)
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Under our convention we may assume that α1w
−1
1 /∈ {0,−1,−2, . . .}. Hence the

second term on the right-hand side of (2.2) can be continued to C by Lemma 1
of [5]. The first term is clearly continuable. We have proved our claim, which
implies that our theorem is true for r = 1.

Hence now we can apply the induction argument. In the following sections
we assume the validity of the theorem for ζr−1, and prove the theorem for ζr.

3 Removing the condition (1.4)

Now we assume that the theorem is true for ζr−1 under the conditions (1.2)
and (1.3) (but without (1.4)), and prove the theorem for ζr under the same
conditions.

First of all we note that, under the conditions (1.2) and (1.3), we may assume
that ` is the imaginary axis, and H(`) is the half-plane H+ which consists of
all complex numbers with positive real part. In fact, putting α̃j = αje

−iθ and
w̃j = wje

−iθ (1 ≤ j ≤ r), we find easily (as in Section 6 of [5])

ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr))

= exp(−iθ(s1 + · · ·+ sr))

×ζr((s1, . . . , sr); (α̃1, . . . , α̃r), (w̃1, . . . , w̃r)),

hence our problem is reduced to the continuation of

ζr((s1, . . . , sr); (α̃1, . . . , α̃r), (w̃1, . . . , w̃r)).

Therefore in this section we assume H(`) = H+, and replace the conditions (1.2)
and (1.3) by

wj ∈ H+ (1 ≤ j ≤ r), (3.1)

and
αj ∈ H+ (1 ≤ j ≤ r), (3.2)

respectively.
At first we assume <sj > 1 (1 ≤ j ≤ r). Since wr ∈ H+, we can find a

positive integer µr for which αr − αr−1 + mrwr ∈ H+ holds for any mr ≥ µr. We
divide the definition (1.1) of ζr as

ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr))

=
∞
∑

m1=0

· · ·
∞
∑

mr−1=0

µr−1
∑

mr=0

(α1 + m1w1)
−s1

× · · · × (αr + m1w1 + · · ·+ mrwr)
−sr

+
∞
∑

m1=0

· · ·
∞
∑

mr−1=0

∞
∑

mr=µr

(α1 + m1w1)
−s1

× · · · × (αr + m1w1 + · · ·+ mrwr)
−sr .

(3.3)
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Putting α′
r = αr + µrwr, we can see that the second sum on the right-hand side

is equal to
ζr((s1, . . . , sr); (α1, . . . , αr−1, α

′
r), (w1, . . . , wr)). (3.4)

On the other hand, the first sum can be written as

µr−1
∑

mr=0

ξr−1((s1, . . . , sr); (α1, . . . , αr−1, αr + mrwr), (w1, . . . , wr−1)),

where

ξr−1((s1, . . . , sr); (α1, . . . , αr−1, β), (w1, . . . , wr−1))

=
∞
∑

m1=0

· · ·
∞
∑

mr−1=0

(α1 + m1w1)
−s1 · · · (αr−2 + m1w1 + · · ·+ mr−2wr−2)

−sr−2

×(αr−1 + m1w1 + · · ·+ mr−1wr−1)
−sr−1

×(β + m1w1 + · · ·+ mr−1wr−1)
−sr . (3.5)

Therefore the problem is reduced to the continuation of (3.4) and (3.5).
We first treat (3.4) by using the formula

Γ(s)(1 + λ)−s =
1

2πi

∫

(c)
Γ(s + z)Γ(−z)λzdz (3.6)

where <s > 0, | argλ| < π, λ 6= 0, −<s < c < 0, and the path of integration is
the vertical line <z = c. This is the classical Mellin-Barnes formula, and a simple
proof is given in Section 4 of [4]. We apply (3.6) with s = sr and

λ =
α′

r − αr−1 + m′
rwr

αr−1 + m1w1 + · · ·+ mr−1wr−1
,

where m′
r = mr − µr(≥ 0). Both the denominator and the numerator of λ are

belonging to H+, because αr−1 ∈ H+ by (3.2) while α′
r − αr−1 ∈ H+ is implied

by the definition of α′
r. Hence | arg λ| < π and λ 6= 0. Moreover, since <sr > 1,

we can choose c satisfying −<sr < c < −1. From (3.6) we have

(αr−1 + m1w1 + · · ·+ mr−1wr−1)
sr(α′

r + m1w1 + · · ·+ mr−1wr−1 + m′
rwr)

−sr

=
1

2πi

∫

(c)

Γ(sr + z)Γ(−z)

Γ(sr)

(

α′
r − αr−1 + m′

rwr

αr−1 + m1w1 + · · ·+ mr−1wr−1

)z

dz.

Multiply the both sides by

(α1 + m1w1)
−s1 · · · (αr−2 + m1w1 + · · ·+ mr−2wr−2)

−sr−2

×(αr−1 + m1w1 + · · ·+ mr−1wr−1)
−sr−1−sr
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and summing up with respect to m1, . . . , mr−1, m
′
r, we obtain

ζr((s1, . . . , sr); (α1, . . . , αr−1, α
′
r), (w1, . . . , wr))

=
1

2πi

∫

(c)

Γ(sr + z)Γ(−z)

Γ(sr)
ζr−1((s1, . . . , sr−2, sr−1 + sr + z);

(α1, . . . , αr−1), (w1, . . . , wr−1))
∞
∑

m′

r=0

(α′
r − αr−1 + m′

rwr)
zdz. (3.7)

If we choose µr sufficiently large, then

arg

(

m′
r +

α′
r − αr−1

wr

)

is small for any m′
r ≥ 0. Hence, as in Section 2, we can verify

∞
∑

m′

r=0

(α′
r − αr−1 + m′

rwr)
z = wz

r

∞
∑

m′

r=0

(

m′
r +

α′
r − αr−1

wr

)z

= wz
rζ

(

−z,
α′

r − αr−1

wr

)

.

The right-hand side is, by Lemma 2 of [5], estimated as

O
(

(|y|+ 1)max{0,1+x}+ε exp(|y|ρ)
)

(3.8)

for any ε > 0, where x = <z, y = =z, and

ρ = max {| arg(α′
r − αr−1)|, | argwr|} ,

hence |ρ| < π/2. The factor ζr−1 in the integrand on the right-hand side of (3.7)
is convergent absolutely if <z ≥ c, hence this factor is estimated as O(exp(|y|θ0)),
where

θ0 = sup
m1,...,mr−1

|arg(αr−1 + m1w1 + · · ·+ mr−1wr−1)|

so |θ0| < π/2. (The implied constant depends on σ1, . . . , σr, t1, . . . , tr, x etc. but
does not depend on y.) Combining this estimate, (3.8), and Stirling’s formula, we
find that the integrand on the right-hand side of (3.7) tends to 0 when |y| → ∞
in the region <z ≥ c. Therefore we can shift the path of integration to the
line <z = M − ε, where M is a positive integer. The relevant poles are at
z = −1, 0, 1, 2, . . . , M − 1, and counting the residues of those poles we obtain

ζr((s1, . . . , sr); (α1, . . . , αr−1, α
′
r), (w1, . . . , wr))

=
1

sr − 1
ζr−1((s1, . . . , sr−2, sr−1 + sr − 1);

(α1, . . . , αr−1), (w1, . . . , wr−1))w
−1
r
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+
M−1
∑

k=0

(

−sr

k

)

ζr−1((s1, . . . , sr−2, sr−1 + sr + k);

(α1, . . . , αr−1), (w1, . . . , wr−1))ζ

(

−k,
α′

r − αr−1

wr

)

wk
r

+
1

2πi

∫

(M−ε)

Γ(sr + z)Γ(−z)

Γ(sr)
ζr−1((s1, . . . , sr−2, sr−1 + sr + z);

(α1, . . . , αr−1), (w1, . . . , wr−1))ζ

(

−z,
α′

r − αr−1

wr

)

wz
rdz. (3.9)

In the integrand of the above integral term, the factor Γ(sr + z) is holomorphic
if <(sr + z) > 0, and the factor ζr−1 is convergent absolutely if

<(sr−j + · · ·+ sr + z) > j (1 ≤ j ≤ r − 1).

Hence the integral term on the right-hand side of (3.9) is holomorphic in the
region

Fr(M ; ε) =

{

(s1, . . . , sr) ∈ Cr

∣

∣

∣

∣

∣

<(sr−j + · · ·+ sr) > j −M + ε
(0 ≤ j ≤ r − 1)

}

,

while the other terms can be continued meromorphically by the induction as-
sumption. Since M is arbitrary, this implies the meromorphic continuation of
(3.4) to the whole Cr space.

The idea of using the Mellin-Barnes formula (3.6) to this type of problems
goes back to Katsurada’s papers [1] [2]. Then, inspired by Katsurada’s works, the
author wrote [3] [4] [5]. The above treatment of (3.4) is similar to the argument
in Sections 3 and 4 of [5], but we repeat the details for the convenience of readers.
(The method of estimating the factor ζr−1 is different from that in [5].)

Next we prove the analytic continuation of (3.5). Since either β − αr−1 or
αr−1− β clearly has the non-negative real part, we may assume <(β −αr−1) ≥ 0
without loss of generality. Moreover, if β = αr−1 then

ξr−1((s1, . . . , sr); (α1, . . . , αr−1, β), (w1, . . . , wr−1))

= ζr−1((s1, . . . , sr−2, sr−1 + sr); (α1, . . . , αr−1), (w1, . . . , wr−1))

which can be continued by the induction assumption. Hence we may assume
β 6= αr−1. Now we apply (3.6) with s = sr and

λ =
β − αr−1

αr−1 + m1w1 + · · ·+ mr−1wr−1

.

The above assumptions imply | argλ| < π and λ 6= 0, hence we can use (3.6). As
before, we obtain

ξr−1((s1, . . . , sr); (α1, . . . , αr−1, β), (w1, . . . , wr−1))
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=
1

2πi

∫

(c)

Γ(sr + z)Γ(−z)

Γ(sr)
ζr−1((s1, . . . , sr−2, sr−1 + sr + z);

(α1, . . . , αr−1), (w1, . . . , wr−1))(β − αr−1)
zdz, (3.10)

and by shifting the path we find that the right-hand side is equal to

M−1
∑

k=0

(

−sr

k

)

ζr−1((s1, . . . , sr−2, sr−1 + sr + k);

(α1, . . . , αr−1), (w1, . . . , wr−1))(β − αr−1)
k

+
1

2πi

∫

(M−ε)

Γ(sr + z)Γ(−z)

Γ(sr)
ζr−1((s1, . . . , sr−2, sr−1 + sr + z);

(α1, . . . , αr−1), (w1, . . . , wr−1))(β − αr−1)
zdz. (3.11)

This last integral is holomorphic in Fr(M ; ε), hence we obtain the meromor-
phic continuation of (3.5). Therefore we now obtain the proof of meromorphic
continuation of ζr without the condition (1.4).

4 Removing the condition (1.3)

Finally we remove the condition (1.3). Assume that the theorem is true for

ζr−1 under the only condition (1.2). Write αj = α
(1)
j +α

(2)
j with arg α

(1)
j = θ−π/2

or θ + π/2 (or α
(1)
j = 0) and arg α

(2)
j = θ or −θ (or α

(2)
j = 0). Consider the set

of all α
(2)
j whose argument is not θ, and denote by α̃ (one of) the element(s) of

this set whose absolute value is the largest. Choose a positive integer µ such that
α̃ + m1w1 ∈ H(`) for any m1 ≥ µ. Divide the series (1.1) as

ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr))

=
µ−1
∑

m1=0

∞
∑

m2=0

· · ·
∞
∑

mr=0

+
∞
∑

m1=µ

∞
∑

m2=0

· · ·
∞
∑

mr=0

= T1 + T2, (4.1)

say. This idea of dividing the series (1.1) as above has already appeared in Section
6 of [4], in the proof of absolute convergence of (1.1).

Putting α′
j(m1) = αj + m1w1 for 0 ≤ m1 ≤ µ− 1, we find that

T1 =
µ−1
∑

m1=0

α′
1(m1)

−s1

×ζr−1((s2, . . . , sr); (α
′
2(m1), . . . , α

′
r(m1)), (w2, . . . , wr)),

which can be continued by the induction assumption. As for T2, writing m′
1 =

m1 − µ and α′
j = αj + µw1 (1 ≤ j ≤ r), we have

T2 =
∞
∑

m′

1
=0

∞
∑

m2=0

· · ·
∞
∑

mr=0

(α′
1 + m′

1w1)
−s1(α′

2 + m′
1w1 + m2w2)

−s2
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× · · · × (α′
r + m′

1w1 + m2w2 + · · ·+ mrwr)
−sr

= ζr((s1, . . . , sr); (α
′
1, . . . , α

′
r), (w1, . . . , wr)).

Since α′
j ∈ H(`) (1 ≤ j ≤ r), the right-hand side can be continued meromorphi-

cally by the fact already shown in Section 3. Therefore now (4.1) is continued to
the whole Cr space, and our theorem is proved completely.
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