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ON THE SPEED OF CONVERGENCE TO

LIMIT DISTRIBUTIONS FOR DEDEKIND

ZETA-FUNCTIONS OF NON-GALOIS

NUMBER FIELDS

Kohji Matsumoto

Abstract.

We evaluate the speed of convergence in the Bohr-Jessen type of
limit theorem on the value-distribution of Dedekind zeta-functions of
number fields. When K is a Galois number field, the Euler product
of the corresponding Dedekind zeta-function ζK(s) is convex, hence
the evaluation can be done similarly to the case of the Riemann zeta-
function. However, when K is non-Galois, some new ideas (based
on the Artin-Chebotarev density theorem etc) are necessary, because
the corresponding ζK(s) is not always convex.

§1. Introduction and statement of the result

We begin with recalling the classical result of Bohr and Jessen [1] [2]
on the value-distribution of the Riemann zeta-function. Let s = σ + it
be a complex variable, ζ(s) the Riemann zeta-function. In the half-
plane σ > 1, there is no difficulty in defining log ζ(s). But in the strip
1/2 < σ ≤ 1, there is the possibility of the existence of zeros of ζ(s),
because we do not assume the Riemann hypothesis. Therefore, we let

G = {s = σ + it | σ > 1/2}−
⋃

sj=σj+itj

{s = σ + itj | 1/2 < σ ≤ σj},

where the numbers sj denote the zeros and the pole of ζ(s) in the region
σ > 1/2. For s ∈ G we can define log ζ(s) by analytic continuation along
the horizontal line segment from 2 + it.

Let R be any fixed closed rectangle on the complex plane C with
the edges parallel to the axes. Throughout this paper we write µn(·) for
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n-dimensional Lebesgue measure. For any fixed σ > 1/2, let

V (T ; R) = µ1({t ∈ [1, T ] | σ + it ∈ G, log ζ(σ + it) ∈ R}).

Bohr and Jessen [1] [2] proved the existence of the limit

W (R) = lim
T→∞

1

T
V (T ; R),(1.1)

which may be regarded as the probability of how many values of log ζ(s)
on the line <s = σ belong to the rectangle R.

The speed of convergence on the right-hand side of (1.1) was esti-
mated by the author. In [7] [8] the author proved

1

T
V (T ; R)−W (R)(1.2)

= O
(

µ2(R)(log log T )−A(σ)+ε + (log log T )−B(σ)+ε
)

,

where (and throughout this paper) ε denotes an arbitrarily small positive
number, not necessarily the same at each occurrence,

A(σ) =

{

(σ − 1)/7 (σ > 1),

(2σ − 1)/15 (1 ≥ σ > 1/2),

and

B(σ) =

{

(σ − 1)/2 (σ > 1),

(2σ − 1)/5 (1 ≥ σ > 1/2).
(1.3)

The implied constant on the right-hand side of (1.2) depends only on σ
and ε. In [11], the value of A(σ) was improved to

A(σ) = 2σ − 1(1.4)

for any σ > 1/2. Finally, in a joint paper of Harman and the author
[3], it has been shown that the log log T factor in the error term can be
replaced by the log T factor, that is

1

T
V (T ; R)−W (R) = O

(

(µ2(R) + 1)(log T )−C(σ)+ε
)

,(1.5)

where

C(σ) =

{

(σ − 1)/(3 + 2σ) (σ > 1),

2(2σ − 1)/(21 + 8σ) (1 ≥ σ > 1/2).
(1.6)
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So far this error estimate is the sharpest.
Let pn be the nth prime number. Then, from the Euler product

expression of ζ(s), we have

log ζ(σ + it) = −
∞
∑

n=1

log
(

1− p−σ
n e−it log pn

)

(1.7)

for σ > 1. In the proof of (1.1) by Bohr and Jessen, it is important to
study the behaviour of each term

− log
(

1− p−σ
n e−it log pn

)

.

This can be written as zn({−(t/2π) log pn}), where

zn(θn) = − log
(

1− p−σ
n e2πiθn

)

(1.8)

and {x} = x− [x] is the fractional part of x. When θn moves from 0 to
1, zn(θn) describes a closed convex curve on C, and this fact has been
essentially used in the proof of Bohr and Jessen.

However, for more general zeta-functions which have Euler products,
the corresponding curve is not always convex. (If the curve is convex,
we call the Euler product convex; see [10].) Therefore, if one wants to
generalize the result of Bohr and Jessen to some wider class of zeta-
functions, it is necessary to find a proof which is free from convexity.

The author discovered two such proofs. One of them, based on
Prokhorov’s theorem, was first published in [9], in which an analogue
of (1.1) for certain automorphic L-functions has been proved. Then in
[10], the same (actually simplified) method has been applied to a more
general class of zeta-functions. Another proof was dicussed in [11] in
the case of Dedekind zeta-functions of algebraic number fields, but this
method can also be applied to a more general situation, as was pointed
out in [12]. Limit theorems in a more probabilistic framework for general
zeta-functions introduced in [10] have been studied by Laurinčikas and
Kačinskaitė; see, for example, [5] [6]. Some history of this topic and
related results are surveyed in [13].

Therefore, now, limit theorems of type (1.1) have been shown for a
rather wide class of zeta-functions. Hence it is natural to ask how to
generalize quantitative results such as (1.2), (1.5) to the case of such a
wide class. However, for those quantitative results, no proof free from
convexity has been discovered. Hence the only published result in this
direction deals with Dedekind zeta-functions of Galois number fields,
because in this case the corresponding curve is convex.
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Let K be an algebraic number field, ` = [K : Q], L = max{`, 2},
and ζK(s) the Dedekind zeta-function of K. Define

VK(T ; R) = µ1({t ∈ [1, T ] | σ + it ∈ GK , log ζK(σ + it) ∈ R}),

where GK is the set defined for ζK(s) analogously to G. The results in
[10] [11] imply that, for any number field K, the limit

WK(R) = lim
T→∞

1

T
VK(T ; R)(1.9)

exists for σ > 1− L−1.
Denote by Np the norm of an ideal p of K. By p

(1)
n , . . . , p

(g(n))
n we

mean the prime divisors of pn, with norm Np
(j)
n = p

f(j,n)
n (1 ≤ j ≤ g(n)).

Then for σ > 1 we have

ζK(s) =
∏

p

(

1− (Np)−s
)−1

=

∞
∏

n=1

g(n)
∏

j=1

(

1− p−f(j,n)s
n

)−1

,(1.10)

hence

log ζK(σ + it) =

∞
∑

n=1

zn,K

({

− t

2π
log pn

})

,(1.11)

where

zn,K(θn) = −
g(n)
∑

j=1

log
(

1− p−f(j,n)σ
n e2πif(j,n)θn

)

.(1.12)

If K is a Galois extension of Q, then f(1, n) = · · · = f(g(n), n) (= f(n),
say), hence

zn,K(θn) = −g(n) log
(

1− p−f(n)σ
n e2πif(n)θn

)

(1.13)

which is clearly convex as in the case of zn(θn). In [11], we have used
this convexity to obtain

1

T
VK(T ; R)−WK(R)(1.14)

= O
(

µ2(R)(log log T )−A(σ)+ε + (log log T )−B(σ)+ε
)

with the values (1.4) for A(σ) and (1.3) for B(σ). In [3] it is noted that
for ζK(s) of a Galois extension K, an improvement similar to (1.5) (with
(1.6)) is possible.
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It is the purpose of the present paper to consider the speed of con-
vergence of (1.9) for non-Galois number fields. In this case, the corre-
sponding curve

Γn,K = {zn,K(θn) | 0 ≤ θn < 1}(1.15)

is not always convex. Nevertheless, we can prove the following result.

Theorem. Let K be an arbitrary (Galois or non-Galois) algebraic

number field. For any σ > 1− L−1,

1

T
VK(T ; R)−WK(R) = O

(

(µ2(R) + 1)(log T )−C(σ)+ε
)

(1.16)

with the value (1.6) for C(σ).

As mentioned above, when K is Galois, this theorem can be shown
by a direct generalization of the method in [3]. In the non-Galois case,
however, some new ideas are necessary. A key fact for the proof is that,
for any fixed K, there are only finitely many patterns of the decompo-
sition of primes into prime ideals in K. This is the reason why we can
apply Lévy’s inversion formula successfully. Another important tool is
the Artin-Chebotarev density theorem, by which we can reduce some
part of the proof to the convex case.

§2. The structure of the proof

Let N be a positive integer. It is fundamental in our argument to
approximate the Euler product expression (1.10) of ζK(s) by its finite
truncation

ζN,K(s) =

N
∏

n=1

g(n)
∏

j=1

(

1− p−f(j,n)s
n

)−1

.(2.1)

Then

log ζN,K(σ + it) =

N
∑

n=1

zn,K

({

− t

2π
log pn

})

(2.2)

and, analogously to VK(T ; R), we define

VN,K(T ; R) = µ1{t ∈ [1, T ] | log ζN,K(σ + it) ∈ R}.(2.3)

Let
QN = {θ = (θ1, . . . , θN) | 0 ≤ θn < 1}
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be the N -dimensional unit cube in RN , and define the mapping SN,K

from QN to C by

SN,K(θ) =
N
∑

n=1

zn,K(θn).(2.4)

For any subset A ⊂ C, we put

ΩN,K(A) = {θ ∈ QN | SN,K(θ) ∈ A},

x(t) =

({

− t

2π
log p1

}

, . . . ,

{

− t

2π
log pN

})

.

Then log ζN,K(σ + it) = SN,K(x(t)) ∈ R if and only if x(t) ∈ ΩN,K(R).
Noting this fact, and using the Kronecker-Weyl theorem, we can prove
(see Section 2 of [11]) that the limit

WN,K(R) = lim
T→∞

1

T
VN,K(T ; R)(2.5)

exists, and is equal to µN (ΩN,K(R)). Hence WN,K is a probability
measure on C. Moreover we can show (Sections 3 and 4 of [11]) that the
value WK(R) in (1.9) is given by

WK(R) = lim
N→∞

WN,K(R).(2.6)

Therefore, to prove our theorem, it is necessary to evaluate the speed of
convergence of both (2.5) and (2.6).

Concerning (2.5), let

EN,K(T ; R) = WN,K(R)− 1

T
VN,K(T ; R).

Then our result is

Proposition 1. Let N be sufficiently large, and let m and r be large

positive integers with 2rN ≤ m. Then we have

EN,K(T ; R) � N1/2

r
+

Nr

m
+

1

T
(6r log m)N exp(mN log N).(2.7)

This is a generalization of Proposition 2 in [3]. On the other hand,
as for (2.6), we have
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Proposition 2. For any sufficiently large N , we have

|WK(R)−WN,K(R)| � µ2(R)N1−2σ(log N)−2σ .(2.8)

When K is Galois, this is (6.4) in [11]. The basic structure of the
proof of Proposition 2 is the same as in [11], but some additional diffi-
culty arises because the pattern of the decomposition of primes is not so
simple in the non-Galois case.

In Section 3 we will prove Proposition 2. In the course of the proof
we will state and use a lemma on the evaluation of certain integrals,
which will be proved in Section 4. Section 5 will be devoted to the proof
of Proposition 1, and finally in the last section we will combine these
two propositions to complete the proof of the theorem.

At the end of this section we show a preparatory lemma, which will
be used in Section 5. Let Θn = ∂SN,K(θ)/∂θn. Then we have

Lemma 1. There exists a positive constant C = C(σ, `) for which

the inequality

(

N
∑

n=1

(<Θn)2

)1/2

≤ C(2.9)

holds for any N .

In fact, by straightforward calculations we obtain

<Θn = −2π

g(n)
∑

j=1

p
−f(j,n)σ
n f(j, n) sin(2πf(j, n)θn)

1− 2p
−f(j,n)σ
n cos(2πf(j, n)θn) + p

−2f(j,n)σ
n

.(2.10)

Since

1− 2p−f(j,n)σ
n cos(2πf(j, n)θn) + p−2f(j,n)σ

n ≥ (1− p−f(j,n)σ
n )2,

we have

|<Θn| ≤ 2π

g(n)
∑

j=1

p
−f(j,n)σ
n f(j, n)

(1− p
−f(j,n)σ
n )2

≤ 2π
p−σ

n

(1− p−σ
n )2

g(n)
∑

j=1

f(j, n) ≤ 2π`
p−σ

n

(1− p−σ
n )2

.
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Hence

N
∑

n=1

(<Θn)2 ≤ (2π`)2
N
∑

n=1

p−2σ
n

(1− p−σ
n )4

≤ (2π`)2
∞
∑

n=1

p−2σ
n

(1− p−σ
n )4

,

from which the lemma immediately follows.
In the case of the Riemann zeta-function, (2.9) has been given in

Section 4 of a joint paper of Miyazaki and the author [14]. The above
proof is a direct generalization of the argument given there.

§3. Proof of Proposition 2

The fundamental tool for the proof of Proposition 2 is, similarly
to the proof of (6.4) in [11], Lévy’s inversion formula. Therefore it is
necessary to consider the Fourier transform

ΛN,K(w) =

∫

C

ei<z,w>dWN,K(z),(3.1)

where < z, w >= <(z)<(w) + =(z)=(w). Then

ΛN,K(w) =

∫

QN

exp(i < SN,K(θ), w >)dµN (θ) =

N
∏

n=1

Kn,K(w),(3.2)

where

Kn,K(w) =

∫ 1

0

exp(i < zn,K(θn), w >)dθn.(3.3)

Substituting definition (1.12) into the above, we have

Kn,K(w) =

∫ 1

0

exp
(

i < Fn(p−σ
n e2πiθn), w >

)

dθn,(3.4)

where

Fn(z) = −
g(n)
∑

j=1

log
(

1− zf(j,n)
)

.(3.5)

Since

g(n)
∑

j=1

e(j, n)f(j, n) = `,(3.6)
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where e(j, n) is the ramification index of p
(j)
n over pn, we see that 1 ≤

g(n) ≤ `. For any integer g satisfying 1 ≤ g ≤ `, let Fg be the set of
all integer vectors f = (f(1), . . . , f(g)) for which there exists an n such
that g = g(n) and f(j) = f(j, n) (1 ≤ j ≤ g). Then

F =
⋃

1≤g≤`

Fg(3.7)

is a finite set because of (3.6). For each f ∈ F , define

Ff (z) = −
g
∑

j=1

log
(

1− zf(j)
)

.(3.8)

Let N be the set of positive integers. For any n ∈ N, there exists a
unique f ∈ F for which Fn = Ff holds. Hence N can be decomposed
into

N =
⋃

f∈F

N (f),(3.9)

where

N (f) = {n ∈ N | Fn = Ff}.(3.10)

Let F1 be the set of all f ∈ F for which N (f) has infinitely many
elements, and F2 = F \F1. Then for any f ∈ F2, there exists the largest
positive integer belonging to N (f), which we denote by n2(f). In order
to study F1, we use the following lemma.

Lemma 2. Let ρ > 0, and assume that the series

F (z) =

∞
∑

n=h

anzn (an ∈ C, ah 6= 0)(3.11)

is convergent absolutely in |z| < ρ. Let Γ be the closed curve on the

complex plane defined by

Γ = Γ(r) = {F (re2πiθ) | 0 ≤ θ < 1} (0 < r < ρ).

Then we have

(i) There exists a ρ0 = ρ0(h, ρ, F ) with 0 < ρ0 < ρ such that Γ(r) is

a closed convex curve for any r satisfying 0 < r ≤ ρ0.
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(ii) There exists a ρ1 = ρ1(h, ρ, F ) with 0 < ρ1 < ρ for which

∫ 1

0

exp
(

i < F (re2πiθ), w >
)

dθ = O(r−h/2|w|−1/2)(3.12)

holds for any w ∈ C and for any r satisfying 0 < r ≤ ρ1, where the

implied constant depends on h, ρ and F .

The proof of this lemma will be given in the next section. Here we
apply the assertion (ii) of this lemma to F = Ff . Then ρ = 1, and we
obtain

∫ 1

0

exp
(

i < Ff (re
2πiθ), w >

)

dθ = O(r−h(f)/2|w|−1/2)(3.13)

for any w ∈ C and any positive r ≤ ρ1 = ρ1(f) < 1, where h(f) =
min{f(1), . . . , f(g)}.

When f ∈ F1, there are infinitely many elements in N (f), hence we
can find sufficiently large n1(f) ∈ N (f) such that p−σ

n ≤ ρ1(f) for any
n > n1(f). For those n, (3.13) is valid with r = p−σ

n . Hence, combining
with (3.4), we find that

|Kn,K(w)| ≤ β(f)pσh(f)/2
n |w|−1/2 (n ∈ N (f), n > n1(f))(3.14)

where β(f) is a constant depending on f .
Now define

n0 = max

{

max
f∈F1

n1(f), max
f∈F2

n2(f)

}

.(3.15)

Then any n > n0 is an element of some N (f), f ∈ F1, hence inequality
(3.14) is valid for those n. Therefore

|Kn,K(w)| ≤ βpσ`/2
n |w|−1/2(3.16)

for any n > n0, where β = max{β(f) | f ∈ F1}. This bound (3.16)
is a generalization of the inequality stated in line 4, p.206 of [11]. The
argument how to deduce the assertion of Proposition 2 from (3.16) is
the same as on p.204 and p.206 of [11], so we omit it.

Remark 1. It is to be noticed that n0 can be determined because
F is a finite set, that is, there are only finitely many patterns of the
decomposition of primes into prime ideals for any fixed field K. This
fact is essential in our proof.
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Remark 2. The first assertion of Lemma 2 is actually not necessary
for the purpose of the present paper. But it (with its proof) clarifies the
geometric meaning of the lemma, especially it implies that the second
assertion is essentially a property of convex curves.

§4. Proof of Lemma 2

The purpose of this section is to prove Lemma 2, stated in the
preceding section. The case h = 1 of this lemma is due to Jessen and
Wintner [4] (see Theorems 12 and 13 of their paper). The following
proof is a (simplified) generalization of their argument.

Let 0 < |z| = r ≤ ρ/2. Then series (3.11) is convergent uniformly
in z. Put z(θ) = F (re2πiθ), ξ(θ) = <z(θ), η(θ) = =z(θ). Writing
an = |an|e2πiωn we have

ξ(θ) =

∞
∑

n=h

|an|rn cos(2π(ωn + nθ)),(4.1)

η(θ) =

∞
∑

n=h

|an|rn sin(2π(ωn + nθ)).(4.2)

The gradient of the tangential line for Γ at z(θ) is η′(θ)/ξ′(θ) (where
the prime denotes the differentiation with respect to θ). Using (4.1) and
(4.2) we have

(

η′(θ)

ξ′(θ)

)′

=
|ah|2r2h(2πh)3 + O(r2h+1)

|ah|2r2h(2πh)2 sin2(2π(ωh + hθ)) + O(r2h+1)
(4.3)

where the implied constants depend on h, ρ and F . Let

I = {θ ∈ [0, 1) | | sin(2π(ωh + hθ))| ≥ 1/
√

2}.

Then, for any θ ∈ I , we have

(

η′(θ)

ξ′(θ)

)′

=
2πh

sin2(2π(ωh + hθ))
+ O(r),(4.4)

which is positive when r is sufficiently small. Hence the gradient con-
stantly increases when θ ∈ I .

When θ /∈ I , we have | cos(2π(ωh + hθ))| ≥ 1/
√

2. In this case
we change the role of the real axis and the imaginary axis. Then the
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gradient we should consider is −ξ′(θ)/η′(θ). we see that

(

− ξ′(θ)

η′(θ)

)′

=
2πh

cos2(2π(ωh + hθ))
+ O(r),(4.5)

which is again positive for any sufficiently small r. Therefore the first
assertion of Lemma 2 follows.

We proceed to the proof of the second assertion. Let τ = argw, so
w = |w|eiτ . Then

∫ 1

0

exp
(

i < F (re2πiθ), w >
)

dθ =

∫ 1

0

exp (igτ (θ)|w|) dθ,(4.6)

where gτ (θ) = ξ(θ) cos τ + η(θ) sin τ . Using (4.1) and (4.2) we have

gτ (θ) =

∞
∑

n=h

|an|rn cos(2π(ωh + hθ)− τ),(4.7)

and

g′τ (θ) = −rh {|ah|2πh sin(2π(ωh + hθ)− τ) + O(r)} ,(4.8)

g′′τ (θ) = −rh
{

|ah|(2πh)2 cos(2π(ωh + hθ)− τ) + O(r)
}

,(4.9)

g′′′τ (θ) = rh
{

|ah|(2πh)3 sin(2π(ωh + hθ)− τ) + O(r)
}

,(4.10)

with the implied constants depending on h, ρ and F . Let

Iτ = {θ ∈ [0, 1) | | sin(2π(ωh + hθ)− τ)| ≥ 1/
√

2}.

The set Iτ consists of 2h disjoint intervals of length 1/4h. (The interval
including 0 and the interval including the neighbourhood of 1 are to be
combined.) We denote each of those intervals by Iτ (k) (1 ≤ k ≤ 2h). If
r is sufficiently small, then from (4.8) we have

|g′τ (θ)| � rh (θ ∈ Iτ (k), 1 ≤ k ≤ 2h)(4.11)

with the implied constant depending on h, ρ, F . Moreover from (4.10)
we see that, for each k, the sign of g′′′τ (θ) does not change when θ moves
in the interval Iτ (k). Hence g′′τ (θ) is monotonic in Iτ (k), so there is at
most one point θ = θ0(k) ∈ Iτ (k) at which g′′τ (θ) = 0. This θ0(k), if
exists, divides Iτ (k) into two subintervals on which g′τ (θ) is monotonic.
If θ0(k) does not exist, g′τ (θ) is monotonic on Iτ (k).
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On the other hand, the set [0, 1) \ Iτ also consists of 2h disjoint
intervals, which we denote by Jτ (k) (1 ≤ k ≤ 2h). If θ ∈ Jτ (k) then

| cos(2π(ωh + hθ) − τ)| ≥ 1/
√

2. Hence, if r is sufficiently small, then
from (4.9) we obtain

|g′′τ (θ)| � rh (θ ∈ Jτ (k), 1 ≤ k ≤ 2h)(4.12)

with the implied constant depending on h, ρ, F .
Now we divide the right-hand side of (4.6) as

∫ 1

0

exp (igτ (θ)|w|) dθ =

2h
∑

k=1

∫

Iτ (k)

+

2h
∑

k=1

∫

Jτ (k)

.(4.13)

Because of (4.11) and the monotonicity mentioned above, we can apply
Lemma 4.2 of Titchmarsh [16] to the integrals on Iτ (k). The integrals
on Jτ (k) are estimated by (4.12) and Lemma 4.4 of [16]. The result is
that

∫ 1

0

exp (igτ (θ)|w|) dθ � 1

rh|w| +
1

(rh|w|)1/2
.(4.14)

When rh|w| ≥ 1, then the right-hand side of (4.14) is � (rh|w|)−1/2,
which implies (3.12). When rh|w| < 1, inequality (3.12) holds trivially
because the left-hand side is≤ 1. The proof of Lemma 2 is now complete.

§5. Proof of Proposition 1

In this section we describe how to prove Proposition 1. The basic
structure of the proof is similar to that developed in [3], hence we omit
the details except for some key points of the proof.

For a point n ∈ ZN we put

QN(n) = {θ ∈ QN | rθ ∈ n + QN},

where r is a large positive integer, and define

D1 =
⋃

QN (n)∩ΩN (R)6=∅

QN (n), D2 = QN \
⋃

QN (n)⊂ΩN (R)

QN (n).

First, similarly to the inequalities given in p.22 of [3], we can show

EN,K(T ; R) ≤ |µN (D1)−WN,K(R)|+ B1 + O

(

Nr

m

)

(5.1)
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and

EN,K(T ; R) ≥ −|µN (D2)− 1 + WN,K(R)| −B2 + O

(

Nr

m

)

+ O

(

1

T

)

,

(5.2)

where m is a large positive integer satisfying 2rN ≤ m, and Bj (j = 1, 2)
is the same as in [3] and satisfies the estimate

Bj �
1

T
(6r log m)N exp(mN log N).(5.3)

The proof of these results is exactly the same as the argument in Section
2 of [3], which is based on the ideas in [7] and a lemma of Vinogradov.

Proposition 1 will clearly follow from (5.1), (5.2) and (5.3), if we can
show the following lemma.

Lemma 3. For any sufficiently large N , we have

|µN (D1)−WN,K(R)| � N1/2r−1,(5.4)

|µN (D2)− 1 + WN,K(R)| � N1/2r−1.(5.5)

This lemma is a generalization of Lemma 2 of [3]. In [3], we studied
the case of the Riemann zeta-function, hence the associated curves are
convex. In order to use the convexity in the present general situation,
we rearrange the summation with respect to n as follows. Applying
the Artin-Chebotarev density theorem (see, e.g., Proposition 7.15 of
Narkiewicz [15]) we see that there exist infinitely many primes pn for
which g(n) = ` and f(j, n) = 1 (1 ≤ j ≤ `) hold. Denote the first
three of such primes by pn(1), pn(2), and pn(3). Define p∗n by p∗1 = pn(1),
p∗2 = pn(2), p∗3 = pn(3), and

p∗n =



















pn−3 (4 ≤ n ≤ n(1) + 2),

pn−2 (n(1) + 3 ≤ n ≤ n(2) + 1),

pn−1 (n(2) + 2 ≤ n ≤ n(3)),

pn (n(3) + 1 ≤ n).

Similarly we define θ∗n, z∗n,K , Γ∗n,K , and put θ
∗ = (θ∗1 , . . . , θ∗N ),

Ω∗N,K(A) = {θ∗ ∈ QN | SN,K(θ∗) ∈ A},
W ∗

N,K(A) = µN (Ω∗N,K(A)).
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Then W ∗
N,K(A) = WN,K(A) for all N ≥ n(3), so we may consider

W ∗
N,K(A) instead of WN,K(A).

The merit of this rearrangement is that the first three curves Γ∗ν,K

(ν = 1, 2, 3) are convex. In fact, we have

z∗ν,K(θ∗ν) = zn(ν),K(θn(ν)) = −` · log(1− p−σ
n(ν)e

2πiθn(ν))(5.6)

(ν = 1, 2, 3), which is just a constant multiple of zn(ν)(θn(ν)) (defined
by (1.8)). Therefore the analogue of Lemma 3 of [3] is valid for these
z∗ν,K(θ∗ν) (ν = 1, 2, 3), and hence the analogue of Lemma 4 of [3] holds
for W ∗

3,K .

We use the notation d(x, B) for the distance from a point x ∈ QN

to a subset B ⊂ QN , and ∂B for the boundary of B. Our next aim is
to show

µN ({θ ∈ QN | d(θ, ∂Ω∗N,K(R)) ≤ δ}) � δ(5.7)

for any δ > 0. In the case of the Riemann zeta-function, this inequality
has been proved as (21) of [3], by using Lemmas 3 and 4 of [3] and formula
(4.1) of [14]. We have already noted that the analogues of Lemmas 3
and 4 of [3] are valid in our present situation. Therefore, in order to
generalize the argument in [3] to obtain a proof of (5.7), the remaining
task is to establish the following analogue of (4.1) of [14]: For any k ∈ R

and any small ε > 0, there exists a positive constant C = C(σ, `) for
which

{θ ∈ QN | d(θ, ∂Ω∗N,K(k)) ≤ ε} ⊂
⋃

k−Cε≤t≤k+Cε

Ω∗N,K(t)(5.8)

holds, where
Ω∗N,K(t) = Ω∗N,K({z | <z = t}).

To prove (5.8) by the method explained in Section 4 of [14], it is enough
to show that

(

N
∑

n=1

(<Θ∗n)2

)1/2

≤ C(5.9)

for any N , where Θ∗
n = ∂SN,K(θ∗)/∂θ∗n and C is the same as in Lemma

1. We have already proved this inequality in Lemma 1. Lemma 1 is
stated for Θn, but the argument for Θ∗

n is the same. Therefore we
obtain (5.8), hence (5.7).

Lastly, since the length of the longest diagonal of QN(n) is N1/2r−1,
we choose δ = N1/2r−1 in (5.7) to obtain Lemma 3. This completes the
proof of Proposition 1.
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§6. Completion of the proof of the theorem

Now we are going to complete the proof of our theorem. First we
show one more lemma. Let us write the rectangle R as

R = {z | α1 ≤ <z ≤ α2, β1 ≤ =z ≤ β2},

and define

Ri = Ri(δ) = {z | α1 + δ ≤ <z ≤ α2 − δ, β1 + δ ≤ =z ≤ β2 − δ},
Ry = Ry(δ) = {z | α1 − δ ≤ <z ≤ α2 + δ, β1 − δ ≤ =z ≤ β2 + δ},

where δ is a small positive number. Then we have

Lemma 4. For any large N we have

|WN,K(R)−WN,K(Ri)| � δ1/2, |WN,K(R)−WN,K(Ry)| � δ1/2.

When K is Galois, this is Lemma 7 of [11], which has been proved
by using properties of convex curves. To prove the lemma in the non-
Galois case, we notice that it is enough to show this lemma for W ∗

N,K .

Then the first three curves are convex of the form (5.6), hence we can
apply the argument of proving Lemma 7 of [11] to the present case, the
details being omitted.

Let σ > 1. Formula (4.1) of [11] implies

| log ζK(σ + it)− log ζN,K(σ + it)|(6.1)

�
∞
∑

n=N+1

p−σ
n � N1−σ(log N)−σ ,

where the implied constants depend only on σ and `. Hence

VN,K(T ; Ri(δ)) ≤ VK(T ; R) ≤ VN,K(T ; Ry(δ))(6.2)

for δ = C1N
1−σ(log N)−σ with a positive constant C1 = C1(σ, `). Hence

∣

∣

∣

∣

WK(R)− 1

T
VK(T ; R)

∣

∣

∣

∣

(6.3)

≤ max

{∣

∣

∣

∣

WK(R)− 1

T
VN,K(T ; Ri)

∣

∣

∣

∣

,

∣

∣

∣

∣

WK(R)− 1

T
VN,K(T ; Ry)

∣

∣

∣

∣

}

.
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On the other hand, since
∣

∣

∣

∣

WK(R)− 1

T
VN,K(T ; Ri)

∣

∣

∣

∣

≤ |WK(R)−WN,K(R)|

+ |WN,K(R)−WN,K(Ri)|+
∣

∣

∣

∣

WN,K(Ri)−
1

T
VN,K(T ; Ri)

∣

∣

∣

∣

,

by using Proposition 1 (applied to Ri), Proposition 2 and Lemma 4, we
obtain

∣

∣

∣

∣

WK(R)− 1

T
VN,K(T ; Ri)

∣

∣

∣

∣

� µ2(R)N1−2σ(log N)−2σ(6.4)

+ δ1/2 +
N1/2

r
+

Nr

m
+

1

T
(6r log m)N exp(mN log N)

with the above choice of δ. We can estimate |WK(R)−T−1VN,K(T ; Ry)|
similarly. Substituting these estimates into the right-hand side of (6.3),
we obtain

∣

∣

∣

∣

WK(R)− 1

T
VK(T ; R)

∣

∣

∣

∣

� µ2(R)N1−2σ(log N)−2σ

(6.5)

+ N−(σ−1)/2(log N)−σ/2 +
N1/2

r
+

Nr

m
+

1

T
(6r log m)N exp(mN log N).

Put N = (log T )α, m = (log T )β and r = (log T )γ . How to find the
optimal choice of parameters is discussed in the first section of [3]. That
is, first assume α+β = 1−ε to show that the last term on the right-hand
side is small. Then require

1

2
α− γ = −1

2
α(σ − 1) + ε, α + γ − β = −1

2
α(σ − 1) + ε

to obtain α = 2/(3 + 2σ) + ε and

∣

∣

∣

∣

WK(R)− 1

T
VK(T ; R)

∣

∣

∣

∣

(6.6)

� µ2(R)(log T )−α(2σ−1)+ε + (log T )−α(σ−1)/2+ε,

which gives the assertion of the theorem for σ > 1.
Finally we consider the case 1 − L−1 < σ ≤ 1. let δ > 0, and by

kδ
N,K(T ) we mean the measure of the set

{t ∈ [1, T ] | σ + it ∈ G, | log ζK(σ + it)− log ζN,K(σ + it)| ≥ δ}.
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Then

VN,K(T ; Ri(δ)) − kδ
N,K(T ) ≤ VK(T ; R) ≤ VN,K(T ; Ry(δ)) + kδ

N,K(T )

(6.7)

(this is (4.3) of [11]). Using these inequalities instead of (6.2), this time
we have

∣

∣

∣

∣

WK(R)− 1

T
VK(T ; R)

∣

∣

∣

∣

� µ2(R)N1−2σ(log N)−2σ + δ1/2(6.8)

+
N1/2

r
+

Nr

m
+

1

T
(6r log m)N exp(mN log N) +

1

T
kδ

N,K(T ).

In Section 7 of [11] we have shown

1

T
kδ

N,K(T ) � δ−2 log(δ−1)
(

N−3+ε + T−1N−2+ε
)

(6.9)

+ δ−2
{

N1−2σ+ε + T−1+L(1−σ)+ε exp(C`N1/L)
}

+
1

T
.

This estimate has been deduced from Lemma 5 of [11]. Lemma 5 of [11]
has been proved under the assumption that K is Galois, but actually this
assumption is not used in the proof. Hence (6.9) holds for any number
field K.

We again put N = (log T )α, m = (log T )β, r = (log T )γ and assume
α < 1, α + β = 1− ε. Then, since −1 + L(1− σ) < 0, the factor

T−1+L(1−σ)+ε exp(C`N1/L)

is small. Hence, substituting (6.9) into the right-hand side of (6.8), we
have

∣

∣

∣

∣

WK(R)− 1

T
VK(T ; R)

∣

∣

∣

∣

� µ2(R)N1−2σ(log N)−2σ + δ1/2(6.10)

+
N1/2

r
+

Nr

m
+ δ−2 log(δ−1)N−3+ε + δ−2N1−2σ+ε.

Choose the value of δ by

δ1/2 = δ−2N1−2σ = δ−2(log T )α(1−2σ),

so δ = (log T )−2α(2σ−1)/5. Then we require

1

2
α− γ = −1

5
α(2σ − 1) + ε, α + γ − β = −1

5
α(2σ − 1) + ε
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to obtain α = 10/(21 + 8σ) + ε and

∣

∣

∣

∣

WK(R)− 1

T
VK(T ; R)

∣

∣

∣

∣

(6.11)

� µ2(R)(log T )−α(2σ−1)+ε + (log T )−α(2σ−1)/5+ε.

This implies the theorem for 1− L−1 < σ ≤ 1.

Remark. We have actually proved (6.6) and (6.11), which are
slightly sharper than the statement of the theorem.
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