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1. Introduction and statement of results

Let s = σ + it be a complex variable, ζ(s) denote the Riemann zeta-function, and
A(s) = ∑

m≤M

a(m)m−s
be a Dirichlet polynomial, where M ≥ 1 and a(m) ∈ C. Let us assume

a(m) = O(mε) (1)
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ε > 0, where and in what follows ε always denotes a small positive number, not necessarily the same at each occurrence.The mean value
I(T , A) = ∫ T

0
∣∣∣∣ζ (12 + it

)
A
(12 + it

)∣∣∣∣2 dt, T ≥ 2,
is an interesting object in number theory in connection with power moments and the distribution of zeros of ζ(s). Theasymptotic formula for I(T , A) was first established by Balasubramanian, Conrey and Heath-Brown [2]. Denote by (k, l)the greatest common divisor of k and l, and by [k, l] = kl/(k, l) their least common multiple. Let

M(T , A) = ∑
k≤M

∑
l≤M

a(k)a(l)[k, l]
(log (k, l)2T2πkl + 2γ − 1)T ,

where a(l) is the complex conjugate of a(l) and γ is Euler’s constant. They proved
I(T , A) =M(T , A) + E(T , A)

under the condition logM � logT (the symbol f � g means f = O(g)), where E(T , A) is the error term. The errorestimate proved in [2] is
E(T , A)� M2T ε + T log−BT

for any B > 0.The second author [14] proved that if C0 log1/2T ≤ MµT ρ ≤ T/C 20 log1/2T holds where µ ≥ 0, 0 ≤ µ < 1, µ + ρ > 0, and
C0 is sufficiently large, then

E(T , A)� M2−µ/2 T 1/2−ρ/2+ε +Mµ T ρ+ε. (2)
The aim of this article is to study E(T , A) in more detail. For that we will prove an analogue of Atkinson’s formula for
E(T , A).Atkinson’s formula was originally obtained [1] for the mean square of ζ(s). It gives an explicit formula for E(T ) definedby ∫ T

0
∣∣∣∣ζ (12 + it

)∣∣∣∣2 dt = T logT + (2γ − 1− log 2π)T + E(T ).
It is known that Atkinson’s formula is very useful in the mean square theory of ζ(s) (see [7, 8, 13]). Therefore it is naturalto search for Atkinson-type formulas for other zeta and L-functions. In [16], Motohashi made a first attempt and appliedAtkinson’s idea [1] to the study of E(T , A). He did not obtain an explicit formula of Atkinson type. His idea was toconsider a certain exponential integral including E(T , A) to obtain a sharp estimate. His estimate is O (M4/3T 1/3+ε) for
M � T 1/2 log−3/4T (actually for the integral from −T to T ). Steuding made further use of Motohashi’s idea and foundan interesting result on the distribution of the zeros of ζ(s) in short intervals. The proof of (2) in [14] is also based on avariant of Atkinson’s idea (cf. Section 2.7 of Ivić [8]).In the case of ζ(s), it is clear that

∫ T

0
∣∣∣∣ζ (12 + it

)∣∣∣∣2 dt = 12
∫ T

−T

∣∣∣∣ζ (12 + it
)∣∣∣∣2 dt. (3)

This property was used by Atkinson in the proof of his explicit formula. However, since the a(m) are complex, I(T , A) isnot necessarily equal to 12
∫ T

−T

∣∣∣∣ζ (12 + it
)
A
(12 + it

)∣∣∣∣2 dt.
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This causes some trouble when one tries to prove an Atkinson-type formula for E(T , A). The same happens in the caseof Dirichlet L-function L(s, χ) associated with a complex character χ (see [12]). In [5], the first author introduced a newidea to prove an explicit formula of Atkinson type for
I(T , χ) = ∫ T

0
∣∣∣∣L(12 + it, χ

)∣∣∣∣2 dt,
and showed that if χ is a complex primitive character, then I(T , χ) and the integral of |L(1/2 + it, χ)|2 from −T to 0 donot coincide. (The difference of these two quantities is Ω(T 1/4).)The fundamental idea in [5], inspired by Hafner and Ivić [3], is to consider the integral over the interval [T , 2T ] insteadof [−T , T ] to avoid the trouble mentioned above. Then, in the course of the proof, there appear some integrals whichcannot be treated by Atkinson’s original argument. How to deal with those integrals is the most novel point of [5]. Inthe present paper we apply the idea from [5] to E(T , A) to obtain an analogue of Atkinson’s formula.Throughout the paper we will use the following notation:

κ = k(k, l) , λ = l(k, l) , arcsinh x = log(x +√x2 + 1) , ξ(T , u) = T2π + u2 −
√
u24 + uT2π ,

f(T , u) = 2T arcsinh√πu2T +√2πuT + π2u2 − π4 , g(T , u) = T log T2πu − T + 2πu+ π4 .
Let us define

Σ1(T , Y ) = ∑
k,l≤M

∑
n≤κλY

=
{
a(k)a(l)[k, l] (κλ)1/2 d(n)

n1/2 e2πinκ/λ (arcsinh√ πn2Tκλ
)−1

×
(1 + 2Tκλ

πn

)−1/4 exp(i(f (T , nκλ)− πn
κλ + π2 ))

}
,

where d(n) is the number of positive divisors of n, κ is defined by κκ ≡ 1 (mod λ), and
Σ2(T , Y ) = −2 ∑

k,l≤M

∑
n≤(λ/κ)Y <

{
a(k)a(l)[k, l] (κλ)1/2 d(n)

n1/2 e−2πinκ/λ (log Tλ2πnκ
)−1exp(i g(T , κnλ ))

}
.

The main results in this paper are the following three theorems.
Theorem 1.1.
Let T , Y be positive numbers satisfying C1T < Y < C2T and T ≥ C ∗ = max {e, C−11 } (where C1, C2 are fixed constants
with 0 < C1 < C2 and e = 2.71828...). Then we have

∫ 2T
T

∣∣∣∣ζ (12 + it
)
A
(12 + it

)∣∣∣∣2 dt =M(2T , A) + Σ1(2T , 2Y ) + Σ2(2T , ξ(2T , 2Y ))
−M(T , A)− Σ1(T , Y )− Σ2(T , ξ(T , Y ))+ R(T , 2T , A), (4)

where R(T , 2T , A) is the error term satisfying

R(T , 2T , A)� M1+ε log2T +M5/2+ε T−1/4.

From Theorem 1.1 it is easy to deduce:
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Theorem 1.2.
Under the same assumptions as in Theorem 1.1, we have

E(T , A) = Σ1(T , Y ) + Σ2(T , ξ(T , Y ))+ R(T , A) (5)
with

R(T , A)� M1+ε log3T +M2+ε log3/2−2δT · (log logT )2 +M5/2+ε log−3/4+δT
for any δ > 0.

When the coefficients a(m) are real, we do not encounter the problem mentioned above. Therefore in this case thetreatment is simpler, and we obtain the following sharper result:
Theorem 1.3.
When the coefficients a(m) are real, we have (5) with

R(T , A)� M1+ε log2T +M5/2+ε T−1/4.

Theorems 1.2 and 1.3 are analogues of Atkinson’s formula [1] for ζ(s). In fact, the case M = 1, a(1) = 1 of Theorem 1.3gives exactly Atkinson’s formula.Our results give an explicit formula for E(T , A), by which we can study the behavior of E(T , A), especially the oscillationproperty, quite accurately. In a forthcoming paper we will apply our formula to discuss the difference between I(T , A)and ∫ 0
−T

∣∣∣∣ζ (12 + it
)
A
(12 + it

)∣∣∣∣2 dt
(analogously to the work of the first author [6]), and also power moments of E(T , A).
2. The fundamental decomposition

In this and the next section, we follow Motohashi [16]. Only a brief sketch of the proof is given in [16]. In [17], Steudingexplained Motohashi’s method, including a treatment of derivatives of the zeta-function, for some special a(m). Here wewill supply more details of Motohashi’s method.Let u, v be two complex variables, and we first assume <u > 1, <v > 1. Since
ζ(u)A(u) = ∞∑

m=1
1
mu

∑
k≤M

a(k)
ku = ∞∑

q=1
 ∑
k≤M, k|q

a(k)q−u,

we have
ζ(u) ζ(v)A(u)A(v) = ∞∑

q=1
 ∑
k≤M, k|q

a(k)q−u
∞∑
r=1
 ∑
l≤M, l|r

a(l) r−v =∑
q=r +∑

q<r
+∑

q>r
= B0 + B(u, v) + B(v, u). (6)

The term B0 can be written as
B0 = ∑

k≤M

∑
l≤M

a(k)a(l)∑[k,l]|r r−u−v = ζ(u+ v)∑
k≤M

∑
l≤M

a(k)a(l)[k, l]u+v . (7)
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Let us now consider B(u, v). Set
b(m) = ∑

k≤M, k|m

a(k).
Then,

B(u, v) = ∞∑
m=1

∞∑
n=1 b(m)b(m+ n)m−u(m+ n)−v .

We show that B(u, v) can be extended meromorphically to the region <u > 0, <v > 1, <(u+ v) > 2, with the formula
B(u, v) = 1Γ(u) Γ(v) ∑

k≤M

∑
l≤M

a(k)a(l) l−1 l∑
f=1
∫ ∞

0
yv−1

ey−2πif/l − 1
∫ ∞

0
xu−1

ek(x+y)−2πifk/l − 1 dx dy. (8)
In fact, for y > 0, <u > 0, the inner integral on the right-hand side equals

∫ ∞
0

∞∑
h=1 e

−hky+2πifhk/le−hkxxu−1dx = k−uΓ(u) ∞∑
h=1 e

−hky+2πifhk/lh−u. (9)
Hence, assuming further <v > 1 and <(u+ v) > 2, we see that the double integral on the right-hand side of (8) equals

Γ(u)
ku

∞∑
h=1

e2πifhk/l
hu

∫ ∞
0

yv−1e−hky
ey−2πif/l − 1 dy,

as the summation and the integration can be interchanged in view of the absolute convergence. The integral on theright-hand side of the above can be expanded as
∞∑
n=1 e

2πifn/l ∫ ∞0 yv−1e−(hk+n)y dy = Γ(v) ∞∑
n=1 e

2πifn/l(hk + n)−v .
Therefore the right-hand side of (8) equals

∑
k≤M

∑
l≤M

a(k)a(l)
kul

∞∑
h=1

1
hu

∞∑
n=1

1(hk + n)v l∑
f=1 e

2πi(hk+n)f/l = ∑
k≤M

∑
l≤M

a(k)a(l)
ku

∑
h,n≥1
l|(hk+n)

1
hu(hk + n)v ,

which, letting hk = m, equals B(u, v). Thus (8) follows.Next, define
H(z; k, l, f) = 1

ekz−2πifk/l − 1 − δ(f)
kz ,where δ(f) = 1 or 0 depending on whether l divides kf or not. The function H(z; k, l, f) is holomorphic at z = 0 and is

O (min {z−1, 1}) for z ≥ 0. Dividing the inner integral on the right-hand side of (8) as
δ(f)
k

∫ ∞
0

xu−1
x + y dx + ∫ ∞0 xu−1H(x + y; k, l, f)dx

and noting that ∫ ∞
0

xu−1
x + y dx = yu−1 Γ(u) Γ(1− u), 0 < <u < 1,
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we find that the right-hand side of (8) equals
Γ(1− u)Γ(v) ∑

k≤M

∑
l≤M

a(k)a(l)
kl

l∑
f=1 δ(f)

∫ ∞
0

yu+v−2
ey−2πif/l − 1 dy+ g(u, v ;A) (10)

in the region 0 < <u < 1, <(u+ v) > 2, where
g(u, v ;A) = 1Γ(u) Γ(v) ∑

k≤M

∑
l≤M

a(k)a(l) l−1 l∑
f=1
∫ ∞

0
yv−1

ey−2πif/l − 1
∫ ∞

0 xu−1H(x + y; k, l, f)dx dy.
Similarly to (9), we see that the integral in the first term of (10) equals

Γ(u+ v − 1) ∞∑
m=1 e

2πimf/lm−u−v+1.

Therefore from (8) and (10) we obtain
B(u, v) = Γ(1− u)Γ(v) Γ(u+ v − 1)∑

k≤M

∑
l≤M

a(k)a(l)
kl

l∑
f=1 δ(f)φ

(
u+ v − 1, fl

)+ g(u, v ;A),
where φ(s, α) =∑m≥1 e2πimαm−s is the Lerch zeta-function. Since

l∑
f=1 δ(f)φ

(
u+ v − 1, fl

) = (k,l)∑
j=1 φ

(
u+ v − 1, j(k, l)

) = ζ(u+ v − 1)(k, l)u+v−2 ,

we obtain
B(u, v) = Γ(1− u)Γ(v) Γ(u+ v − 1) ζ(u+ v − 1)∑

k≤M

∑
l≤M

a(k)a(l)(k, l)u+v−1[k, l] + g(u, v ;A) (11)
in the region 0 < <u < 1, <(u+ v) > 2.
3. The contour integral expression

Let C be the contour which comes from +∞ along the positive real axis, rounds the origin counterclockwise, and goesback to +∞ again along the positive real axis. Then it is easy to see that, under the assumptions 0 < <u < 1,
<(u+ v) > 2, g(u, v ;A) can be rewritten as
g(u, v ;A) = 1Γ(u) Γ(v) (e2πiu − 1)(e2πiv − 1) ∑

k≤M

∑
l≤M

a(k)a(l) l−1 l∑
f=1
∫
C

yv−1
ey−2πif/l − 1

∫
C
xu−1H(x + y; k, l, f)dx dy. (12)

However, the right-hand side of (12) is convergent for <u < 1 and any v ∈ C. Hence (12) gives the meromorphicextension of g(u, v ;A) to that region, and therefore (11) is also valid in that region. Combining (6), (7) and (11), weobtain
ζ(u) ζ(v)A(u)A(v) = ζ(u+ v)∑

k≤M

∑
l≤M

a(k)a(l)[k, l]u+v + Γ(1− u)Γ(v) Γ(u+ v − 1) ζ(u+ v − 1)∑
k≤M

∑
l≤M

a(k)a(l)(k, l)u+v−1[k, l]
+ Γ(1− v)Γ(u) Γ(u+ v − 1) ζ(u+ v − 1)∑

k≤M

∑
l≤M

a(k)a(l)(k, l)u+v−1[k, l] + g(u, v ;A) + g(v, u;A)
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in the region <u < 1, <v < 1. Note that, changing k and l in the third double sum, we can combine the second and thethird term on the right-hand side as
(Γ(1− u)Γ(v) + Γ(1− v)Γ(u)

)Γ(u+ v − 1) ζ(u+ v − 1)∑
k≤M

∑
l≤M

a(k)a(l)(k, l)u+v−1[k, l] .
Now assume 0 < <u < 1, and take the limit v → 1− u. The singularities coming from ζ(u+ v) and Γ(u+ v − 1) cancelwith each other, and the result is

ζ(u) ζ(1− u)A(u)A(1− u) =∑
k≤M

∑
l≤M

a(k)a(l)[k, l]
{12

(Γ′Γ (u) + Γ′Γ (1− u))+ log (k, l)2
kl + 2γ − log 2π}

+ g(u, 1− u;A) + g(1− u, u;A) (13)
for 0 < <u < 1.Next we prove another expression of g(u, 1− u;A) in the region <u < 0. Let R be a large positive integer and

CR = CR (k, l, f) = {x = −y+ 2πif
l + 2π

k

(
R + 12

)
eiθ
∣∣∣ 0 ≤ θ < 2π} .

Then we can easily see that H(x + y; k, l, f)� 1 if x ∈ CR (k, l, f). Hence
∫
CR
H(x + y; k, l, f) xu−1 dx �

∫ 2π
0 R<u−1R dθ � R<u,

which tends to 0 as R →∞ if <u < 0. Hence∫
C
H(x + y; k, l, f) xu−1 dx = −2πi∑

n

∗ Resn (H(x + y; k, l, f) xu−1) (14)
if <u < 0, where Resn(·) denotes the residue of the function at x = −y+2πi(l−1f+k−1n) and∑n

∗ means the summationrunning over all integers n 6= −kf/l. Since
Resn (H(x + y; k, l, f) xu−1) = 1

k

(
−y+ 2πi( fl + n

k

))u−1
,

if we can interchange the summation and integration, from (12) and (14) we obtain
g(u, 1− u;A) = −2πiΓ(u) Γ(1− u) (e2πiu − 1)(e−2πiu − 1) ∑

k≤M

∑
l≤M

a(k)a(l)
kl

l∑
f=1
∑
n

∗
I(n; k, l, f), (15)

where
I(n; k, l, f) = ∫

C

y−u
ey−2πif/l − 1

(
−y+ 2πi( fl + n

k

))u−1
dy = (e−2πiu − 1) ∫ ∞0

y−u
ey−2πif/l − 1

(
−y+ 2πi( fl + n

k

))u−1
dy.

In case n > −kf/l, we can write
−y+ 2πi( fl + n

k

) = eπiy+ 2πeπi/2 ( fl + n
k

)
.
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Hence, setting
y = 2π( fl + n

k

)
e−πi/2η, arg η = π2 ,we obtain

I(n; k, l, f) = (eπiu − e−πiu) ∫ i∞

0
η−u(1 + η)u−1exp (−2πi (( fl + n

k
)
η+ f

l
))
− 1 dη

= (eπiu − e−πiu) ∞∑
m=1
∫ i∞

0 η−u(1 + η)u−1 exp(2πim(( fl + n
k

)
η+ f

l

))
dη,

(16)

where the second equality is valid if the summation and the integration can be interchanged. In case n < −kf/l, since
−y+ 2πi( fl + n

k

) = eπiy+ 2πe3πi/2 ∣∣∣∣ fl + n
k

∣∣∣∣ ,
setting

y = 2π ∣∣∣∣ fl + n
k

∣∣∣∣ eπi/2η, arg η = −π2 ,we find that I(n; k, l, f) has an expression similar to that in (16) with the integral over the interval [0,−i∞), instead of[0, i∞). Substituting these results into (15) and using the formula Γ(u) Γ(1− u) = π/ sin (πu), we obtain
g(u, 1− u;A) = ∑

k≤M

∑
l≤M

a(k)a(l)
kl (J+(k, l) + J−(k, l)), (17)

where
J±(k, l) = l∑

f=1
∑
n

∞∑
m=1
∫ ±i∞

0 η−u(1 + η)u−1 exp(2πim(( fl + n
k

)
η+ f

l

))
dη,

and the summation with respect to n runs over all n > −kf/l (resp. all n < −kf/l) for J+ (resp. J−).Using the notations κ and λ, we have
exp(2πim(( fl + n

k

)
η+ f

l

)) = exp(2πi mfl
) exp(2πi m(fκ + nλ)(k, l)κλ η

)
.

Put h = fκ + nλ. If n > −kf/l, then h > 0. On the other hand, for any positive integer h, we can find integers f and nsuch that 1 ≤ f ≤ l and h = fκ + nλ. In fact, since (κ, λ) = 1 we find integers x, y with xκ + yλ = 1. Then f = hx + νλand n = hy− νκ (for any integer ν) satisfy h = fκ + nλ. Choosing ν suitably we have 1 ≤ f ≤ l, as desired. Therefore
J+(k, l) = ∞∑

m=1
∞∑
h=1
∑
f

exp(2πi mfl
)∫ i∞

0 η−u(1 + η)u−1 exp(2πi mh(k, l)κλ η
)
dη,

where the innermost sum runs over all f satisfying 1 ≤ f ≤ l and there exists an integer n with h = fκ + nλ.Recall that κ is an integer satisfying κκ ≡ 1 (mod λ). Then h = fκ + nλ implies f ≡ hκ (mod λ). The number of fsatisfying this congruence condition and 1 ≤ f ≤ l is l/λ = (k, l). Hence
∑
f

exp(2πi mfl
) = (k,l)∑

j=1 exp(2πi ml (hκ + jλ)) = exp(2πi mhκl
) (k,l)∑

j=1 exp(2πi mj(k, l)
)
,
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and the inner sum equals (k, l) if (k, l) | m and 0 otherwise. Therefore, setting m = (k, l) µ, we obtain
J+(k, l) = (k, l) ∞∑

µ=1
∞∑
h=1 exp(2πi µhκλ

)∫ i∞

0 η−u(1 + η)u−1 exp(2πi µhκλ η
)
dη.

Setting further µh = n, we obtain
J+(k, l) = (k, l) ∞∑

n=1 d(n) e2πiκn/λ ∫ i∞

0 η−u(1 + η)u−1e2πinη/κλη dη. (18)
Similarly,

J−(k, l) = (k, l) ∞∑
n=1 d(n) e−2πiκn/λ ∫ −i∞0 η−u(1 + η)u−1e−2πinη/κλ dη. (19)

The integrals on the right-hand sides of (18) and (19) are estimated as O(n<u−1), so the infinite series includingthose integrals are absolutely convergent for <u < 0. Hence we can justify the above interchanges of summation andintegration. Lastly, we can rotate the paths of integration from [0,±i∞) to [0,∞). Substituting the resulting expressionsinto (17), we obtain
g(u, 1− u;A) = ∑

k≤M

∑
l≤M

a(k)a(l)[k, l] ∑
n 6=0 d(|n|) e2πiκn/λh(u, nκλ) (20)

for <u < 0, where
h(u, x) = ∫ ∞0 y−u(1 + y)u−1 exp(2πixy)dy. (21)

Formulas (11), (13), (20) are stated by Motohashi in [16, p. 400]. The method used above to deduce these formulas wasoriginally sketched in [16], and it is a variant of the idea presented by Motohashi in [15]. See also [11, Section 2 and 5].Formula (20) is a generalization of the formula stated by Atkinson in [1, p. 357]. It is also possible to deduce (20) alongthe same line as in Atkinson [1], using Euler–Maclaurin’s formula and (slightly modified) Poisson’s summation formula,though we will not give further details here.
4. The analytic continuation

In this section we discuss the analytic continuation of g(u, 1−u;A). Our method is a direct generalization of Atkinson’soriginal method [1]. In his argument, Atkinson used the asymptotic formula for ∑n≤x d(n). For our present purpose, weneed an asymptotic formula for
D
(
x, κλ

) =∑
n≤x

d(n) e2πiκn/λ,
or D∗(x, κ/λ), whose expression is similar to that of D(x, κ/λ) but if x is an integer then the last term of the sum is to behalved.These sums have been studied by Jutila [10]. Define the error term ∆(x, κ/λ) by the formula

D
(
x, κλ

) = 1
λ
(
x log x + (2γ − 1− 2 log λ)x)+ E

(0, κλ
)+ ∆(x, κλ

)
, (22)

where E(0, κ/λ) is the constant term (which is the value at s = 0 of the Estermann zeta-function). If D(x, κ/λ) is replacedby D∗(x, κ/λ) in (22), we denote the corresponding error term by ∆∗(x, κ/λ). Clearly ∆∗(x, κ/λ) = ∆(x, κ/λ) if x is not aninteger. Then we have (cf. [10, Theorem 1.6 and (1.5.20)])
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Lemma 4.1.
For any x > 0,

∆∗ (x, κλ
) = −x1/2 ∞∑

n=1 d(n)n−1/2{e−2πiκn/λ Y1
(4π√nx

λ

)+ 2
π e

2πiκn/λK1
(4π√nx

λ

)}
, (23)

where Y1, K1 are standard notation for Bessel functions and, moreover,

∆(x, κλ
) = O

(
λ2/3x1/3+ε) (24)

if x ≥ 1 and λ ≤ x.

Formula (23) is the Voronoï-type formula for ∆∗(x, κ/λ).Let X = X (κ, λ) ≥ 1, whose value we will specify later, and write
∑
n>X

d(n) e2πiκn/λh(u, nκλ) = ∫ ∞
X

h
(
u, xκλ

)
dD
(
x, κλ

)
. (25)

By rotating the path of integration of (21) to [0, i∞) we can easily see that
h(u, x) = O

(
x<u−1) (26)

for <u < 1. Hence, if <u < 0,
h
(
u, xκλ

)
D
(
x, κλ

)
→ 0

as x →∞. Therefore by integration by parts we have
∑
n>X

d(n) e2πiκn/λ h(u, nκλ) = −h(u, Xκλ
)
D
(
X, κλ

)
−
∫ ∞
X

∂h(u, x/κλ)
∂x D

(
x, κλ

)
dx. (27)

Substituting (22) into the integral on the right-hand side of (27), and applying integration by parts once more, we obtain
∞∑
n=1 d(n) e2πiκn/λ h(u, nκλ) = g1(u)− g2(u) + g3(u)− g4(u)

for <u < 0, where
g1(u) =∑

n≤X

d(n) e2πiκn/λh(u, nκλ) , (28)
g2(u) = h

(
u, Xκλ

)∆(X, κλ
)
, (29)

g3(u) = 1
λ

∫ ∞
X

h
(
u, xκλ

) ( log x + 2γ − 2 log λ)dx,
g4(u) = ∫ ∞

X

∂h(u, x/κλ)
∂x ∆(x, κλ

)
dx.
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Similarly, we have
∞∑
n=1 d(n) e−2πiκn/λ h(u, −nκλ ) = g1(u)− g2(u) + g3(u)− g4(u),

hence from (20) we have
g(u, 1− u;A) = ∑

k≤M

∑
l≤M

a(k)a(l)[k, l] (
g1(u)− g2(u) + g3(u)− g4(u) + g1(u)− g2(u) + g3(u)− g4(u)) (30)

for <u < 0.In view of (26), g1(u) and g2(u) are holomorphic in the region <u < 1. Also, by [1, p. 359] we have
∂h(u, x)
∂x = O

(
x<u−2) .

This estimate and (24) imply that g4(u) is holomorphic for <u < 2/3. As for g3(u), similarly to the argument in [1, pp.359–360], we obtain
g3(u) + g3(u) =− κ

π (logX + 2γ − 2 log λ) ∫ ∞0 y−u−1 (1 + y)u−1 sin(2πXyκλ
)
dy

+ κ
πu

∫ ∞
0 y−u−1(1 + y)u sin(2πXyκλ

)
dy.

(31)
The two integrals on the right-hand side are convergent uniformly in <u ≤ 1 − ε. Hence (30) with (31) gives anexpression of g(u, 1− u;A) valid for <u < 2/3.By the same argument we have

g(1− u, u;A) =∑
k≤M

∑
l≤M

a(k)a(l)[k, l] (
g1(1− u)− g2(1− u) + g3(1− u)− g4(1− u)

+ g1(1− u)− g2(1− u) + g3(1− u)− g4(1− u)) (32)
which is valid for <u > 1/3.
5. The decomposition of the mean square

Now we start to consider the mean square integral of ζ(1/2 + it)A(1/2 + it). The rest of the proof of Theorem 1.1is an analogue of the argument in [5]. Let C1, C2, and C ∗ be the same as in the statement of Theorem 1.1. Assume
C1T < Y < C2T , T ≥ C ∗, and let X = X (κ, λ) = κλY .Let u = 1/2 + it in (13), and integrate both sides on the interval [T , 2T ]. By Stirling’s formula we obtain
12
∫ 2T
T

(Γ′Γ
(12 + it

)+ Γ′Γ
(12 − it

))
dt = 12i

(log Γ(12 + it
)
− log Γ(12 − it

))∣∣∣∣t=2T
t=T = (t log t − t)∣∣t=2T

t=T +O(1).
Using this, (30), (32) and (49) below, we obtain

∫ 2T
T

∣∣∣∣ζ (12 + it
)
A
(12 + it

)∣∣∣∣2dt =M(2T , A)−M(T , A) + I1 − I2 + I3 − I4 +O (Mε) , (33)
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where
Iν = ∑

k≤M

∑
l≤M

2[k, l] <
{
a(k)a(l) ∫ 2T

T

(
gν
(12 + it

)+ gν
(12 − it

))
dt
} (34)

for 1 ≤ ν ≤ 4.Let
Cl(y) = y1/2(1 + y)l log 1 + y

y .

Substituting (28) and (29) with (21) into (34) for ν = 1, 2, and changing the order of integration, we get
I1 = ∑

k≤M

∑
l≤M

∑
n≤X

S1(t;n, k, l)∣∣∣∣2T
t=T , I2 = ∑

k≤M

∑
l≤M

S2(t; k, l)∣∣∣∣2T
t=T , (35)

where
S1(t;n, k, l) = 2={a(k)a(l)[k, l] d(n) e2πiκn/λ ∫ ∞0

e2πiny/κλ
C1/2(y) eit log((1+y)/y) dy

}
+ 2={a(k)a(l)[k, l] d(n) e−2πiκn/λ ∫ ∞0

e−2πiny/κλ
C1/2(y) eit log((1+y)/y) dy

}
= S11(t;n, k, l) + S12(t;n, k, l),

(36)

and
S2(t; k, l) = 2={a(k)a(l)[k, l] ∆(X, κλ

)∫ ∞
0

e2πiXy/κλ
C1/2(y) eit log((1+y)/y) dy

}
+ 2={a(k)a(l)[k, l] ∆(X, κλ

)∫ ∞
0

e−2πiXy/κλ
C1/2(y) eit log((1+y)/y) dy

}
.

(37)

Using (31) we have
I3 = ∑

k≤M

∑
l≤M

2[k, l] <{a(k)a(l)(− κ
iπ
( logX + 2γ − 2 log λ) I31(k, l) + κ

iπ I32(k, l))}, (38)
where

I31(k, l) = ∫ ∞0
sin (2πXy/κλ)
yC1/2(y) eit log ((1+y)/y)∣∣2T

t=T dy
and

I32(k, l) = ∫ ∞0
sin (2πXy/κλ)

y

∫ 1/2+2iT
1/2+iT

1
u

(1 + y
y

)u
dudy.

As for I4, similarly to [1, p. 361], we first carry out the integration with respect to t, then put xy = η, change the orderof differentiation and integration and differentiate with respect to x, and then again put η/x = y. Changing the variabletemporarily to η is necessary to ensure the interchange of differentiation and integration. The result is that
I4 = ∑

k≤M

∑
l≤M

S4(t; k, l)∣∣2Tt=T , (39)
where

S4(t; k, l) = S40 − S41 + S42 − S43
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with
S40 = 2<{a(k)a(l)[k, l]

∫ ∞
X

∆(x, κ/λ)
x

∫ ∞
0

e2πixy/κλ
C3/2(y) t eit log ((1+y)/y) dydx

}
,

S41 = 2={a(k)a(l)[k, l]
∫ ∞
X

∆(x, κ/λ)
x

∫ ∞
0

e2πixy/κλ
C3/2(y) eit log ((1+y)/y) (12 + 1log ((1 + y)/y)

)
dydx

}
,

and S42 (resp. S43) is similar to S40 (resp. S41) with ∆(x, κ/λ) and e2πixy/κλ replaced by their complex conjugates. Wedecompose
S40∣∣2Tt=T = J1(k, l) + J2(k, l)− J3(k, l),where

J1(k, l) = 2<{a(k)a(l)[k, l]
∫ ∞

2X
∆(x, κ/λ)

x

∫ ∞
0

e2πixy/κλ
C3/2(y) 2Te2iT log ((1+y)/y) dydx

}
,

J2(k, l) = 2<{a(k)a(l)[k, l]
∫ 2X
X

∆(x, κ/λ)
x

∫ ∞
0

e2πixy/κλ
C3/2(y) 2Te2iT log ((1+y)/y) dydx

}
,

and
J3(k, l) = 2<{a(k)a(l)[k, l]

∫ ∞
X

∆(x, κ/λ)
x

∫ ∞
0

e2πixy/κλ
C3/2(y) TeiT log ((1+y)/y) dydx

}
. (40)

Therefore
I4 = ∑

k≤M

∑
l≤M

(J1(k, l) + J2(k, l)− J3(k, l)) +∑
k≤M

∑
l≤M

(−S41 + S42 − S43)∣∣2Tt=T . (41)
In order to evaluate exponential integrals appearing in the above formulas, here we quote the following lemma, due tothe first author [5].
Lemma 5.1 ([5, Lemma 5 and Remark 5]).(i) Let α, β, γ, a, b, k, T be real numbers such that α, β, γ are positive and bounded, α 6= 1, 0 < a < 1/2, a < T/(8πk),
k > 0, T ≥ 1, and

b ≥ max{T , 1
k ,−

12 +√14 + T2πk
}
.

Then,

∫ b

a

exp (± i (T log ((1 + y)/y) + 2πky))
yα (1 + y)β logγ((1 + y)/y) dy = T 1/2 exp (± i (TV + 2πkU − πk + π/4))2kπ1/2 V γ U1/2 (U − 1/2)α (U + 1/2)β

+O
(
a1−α
T

)+O
(
bγ−α−β
k

)+ R(T , k) +O
(
e−CT

)
+O

(
e−C

√
kT (T γ−α−β+1 + T ))+O

(
k−1e−CkT (bγ−α−β + T γ−α−β))

(42)

uniformly for |α − 1| > ε, where C is an absolute constant,

U =√14 + T2πk , V = 2arcsinh√πk2T ,
R(T , k)� {

T (γ−α−β)/2−1/4 k−(γ−α−β)/2−5/4 if 0 < k ≤ T ,
T−1/2−α kα−1 if k ≥ T .
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The term O (e−CT ) is to be omitted if 1 < α or 0 < α < 1 with k ≥ T . When we replace k by −k on the left-hand side
of (42), then the explicit term and R(T , k) for k ≤ T on the right-hand side are to be omitted.(ii) If we replace the assumption k > 0 by k ≥ B, where B is an absolute constant satisfying 0 < B ≤ 1, then the last
three error terms on the right-hand side of (42) are absorbed into the other error terms. When k ≥ B and k on the
left-hand side of (42) is replaced by −k , then the explicit term and the last three error terms on the right-hand side of(42) are to be omitted.

This is a modified version of the saddle point lemma of Atkinson [1]. The important point of this modification is that itis available for small k .
6. Evaluation of I1, I2 and I3
In this section we apply Lemma 5.1 to I1, I2 and I3. From (35), we have

I1 = ∑
k≤M

∑
l≤M

∑
n≤2X S1(2T ;n, k, l)−∑

k≤M

∑
l≤M

∑
X<n≤2X S1(2T ;n, k, l)−∑

k≤M

∑
l≤M

∑
n≤X

S1(T ;n, k, l) = I11 − I12 − I13. (43)
Similarly to Section 8 of [5], we apply part (i) of Lemma 5.1 to I13 to obtain

I13 = Σ1(T , Y ) +O
(
T−1/4 ∑

k≤M

∑
l≤M

|a(k)a(l)|[k, l] (κλ)5/4) . (44)
The same type of formula, replacing Σ1(T , Y ) with Σ1(2T , 2Y ), holds for I11.Next, again similarly to [5, Section 8], applying (24) (note that T ≥ C ∗) and part (ii) of Lemma 5.1 to (37), we obtain

I2 �∑
k≤M

∑
l≤M

|a(k)a(l)|[k, l] κ1/3+ελ1+εT−1/6+ε. (45)
The quantity I3 can be treated similarly to the argument in [1, pp. 368–371]. In fact, we have

I31(k, l)� T−1/2. (46)
As for I32, we decompose the integral with respect to y at y = 1, and denote the contributions of the intervals [0, 1] and[1,∞) by I′32 and I′′32, respectively. Then

I′32 � T−1/2, I′′32 � T−1 logT . (47)
Note that in [1], the term corresponding to I′32 is shown to be equal to π2i+O(T−1/2). In [1] the integration with respectto u is from 1/2 − iT to 1/2 + iT , and the term π2i appears from the residue at u = 0 when the path of integration isdeformed. In the present situation, however, the integration with respect to u is from 1/2 + iT to 1/2 + 2iT , hence theresidue does not appear. Therefore the first estimate of (47) follows.From (38), (46) and (47), we obtain

I3 �∑
k≤M

∑
l≤M

|a(k)a(l)|[k, l] κ log (κλT )T−1/2. (48)
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Using the equality [k, l] = kl/(k, l) and putting (k, l) = h, k = k ′h, l = l′h, we have
∑
k≤M

∑
l≤M

1[k, l] ≤∑
h≤M

1
h

∑
k ′,l′≤M/h

1
k ′l′ � log3M. (49)

Applying this estimate and (1), we find that the error term on the right-hand side of (44) is O(M5/2+ε T−1/4). Similarly,from (45) and (48) we have
I2 � M4/3+ε T−1/6+ε, I3 � M1+ε T−1/2 logT .

Collecting all the results obtained in this section, we have
I1 − I2 + I3 = Σ1(2T , 2Y )− Σ1(T , Y )− I12 +O

(
M5/2+ε T−1/4 +M4/3+ε T−1/6+ε). (50)

7. Evaluation of I4
Now we proceed to the evaluation of I4. Applying part Lemma 5.1(ii) to the inner integral of S41, we have

S41 � |a(k)a(l)|[k, l]
∫ ∞
X

|∆(x, κ/λ)|
x

(
κλ
x

)1/2
dx = |a(k)a(l)|[k, l] (κλ)1/2 ∞∑

j=1
∫ 2jX

2j−1Xx
−3/2 ∣∣∣∣∆(x, κλ

)∣∣∣∣dx.
By the Cauchy–Schwarz inequality, each integral on the right-hand side is

�
(∫ 2jX

2j−1X x
−3dx

)1/2(∫ 2jX
2j−1X

∣∣∣∣∆(x, κλ
)∣∣∣∣2 dx

)1/2
.

The second factor of the above is estimated using
∫ 2U
U

∣∣∣∣∆(x, κλ
)∣∣∣∣2 dx � λU3/2 + λ2U1+ε, U ≥ 1,

which is implied by [10, Theorem 1.2]. Hence
S41 � |a(k)a(l)|[k, l] (κλ)1/2 ∞∑

j=1 (2jX )−1 {λ1/2(2jX )3/4 + λ(2jX )1/2+ε}
� |a(k)a(l)|[k, l] (

κ1/4λ3/4T−1/4 + κελ1+εT−1/2+ε) , (51)

and the same estimate holds also for S42, S43.Next consider J3(k, l). Here we use the formula
∆∗ (x, κλ

) = λ1/2
√2π x1/4 ∞∑

n=1
d(n)
n3/4 e−2πiκn/λ cos(4π√nx

λ − π4
)

− 3λ3/232√2π2 x−1/4 ∞∑
n=1

d(n)
n5/4 e−2πiκn/λ sin(4π√nx

λ − π4
)+O

(
λ5/2x−3/4) , (52)

which can be easily obtained from (23) by using asymptotic expansion formulas for Bessel functions.
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We proceed similarly to the argument in [5, pp. 58–59]. First applying Lemma 5.1(ii) to the inner integral on theright-hand side of (40), and estimating the error term by (the same argument as) (51). Then applying (52) to the explicitterm we obtain
J3(k, l) = J31(k, l)− J32(k, l) + J33(k, l) +O

(
|a(k)a(l)|[k, l] (

κ1/4λ3/4T−1/4 + κελ1+εT−1/2+ε)) , (53)
where

J31(k, l) = T
π <

{
a(k)a(l)[k, l] κ1/4λ3/4 ∫ ∞

√
X/κλ

∞∑
n=1

d(n)
n3/4 e−2πiκn/λ cos(4πx√κn

λ −
π4
)

× ψ3/2(T , x) exp(i(f(T , x2)− πx2 + π2 ))dx
}
,

(54)

J32(k, l) = 3T32π2 <
{
a(k)a(l)[k, l] κ−1/4λ5/4 ∫ ∞

√
X/κλ

∞∑
n=1

d(n)
n5/4 e−2πiκn/λ sin(4πx√κn

λ −
π4
)

× ψ5/2(T , x) exp(i(f(T , x2)− πx2 + π2 ))dx
}
,

(55)

and
J33(k, l) = O

(
|a(k)a(l)|[k, l] T

∫ ∞
X

λ5/2x−7/4 ∣∣∣ψ1(T ,√x/κλ)∣∣∣dx)
with

ψα (T , x) = x−α
(arcsinh x√ π2T

)−1(√ T2πx2 + 14 + 12
)−1 (

T2πx2 + 14
)−1/4

.

Since ψ1(T ,√x/κλ)� √κλ/x, we have
J33(k, l)� |a(k)a(l)|[k, l] κ−3/4λ7/4T−1/4. (56)

As for J31(k, l), we consider a finite truncation of the integral and apply [5, Lemma 6]. (Here we note that on the left-handside of (42) in [5], the factor g3/2(T , x) cos (· · · ) exp i(· · · )dx is to be on the numerator.) Similarly to (43) in [5], we obtain
J31(k, l) = W1(k, l) +W2(k, l) +W3(k, l) +W4(k, l), (57)

where
W1(k, l) = T2π <

{
a(k)a(l)[k, l] κ1/4λ3/4∑

n≤Z

d(n)
n3/4 e−2πiκn/λ (κn

λ

)1/4 4π exp (i(g(T , κn/λ)))
T log (λT /2πκn)

}
(here we put Z = (λ/κ) ξ(T , X/κλ) = (λ/κ) ξ(T , Y )),

W2(k, l)� |a(k)a(l)|[k, l] κ1/4λ3/4 T−1/2∑
n≤Z

d(n)
n3/4

(κn
λ

)1/4 1(T/2π − κn/λ)1/2 ,
W3(k, l)� |a(k)a(l)|[k, l] κ1/4λ3/4 T 1/4 ∞∑

n=1
d(n)
n3/4 min{1, 1

|2√κn/λ− 2√ξ(T , Y )|
}
, (58)

and
W4(k, l)� |a(k)a(l)|[k, l] κ1/4λ3/4 ∞∑

n=1
d(n)
n3/4 e−CT

(
λ
κn

)1/2
.
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In the case of J32(k, l), it is not necessary to consider the finite truncation of the integral, because the infinite series onthe right-hand side of (55) is absolutely convergent. Hence, we can apply [5, Lemma 6] to J32(k, l) to obtain
J32(k, l) = W5(k, l) +W6(k, l) +W7(k, l) +W8(k, l), (59)

where
W5(k, l) = 3T64π2 <

{
a(k)a(l)[k, l] κ−1/4λ5/4∑

n≤Z

d(n)
n5/4 e−2πiκn/λ (κn

λ

)3/4 4π exp (i(g(T , κn/λ)))
T log (λT /2πκn) (T/2π − κn/λ)

}
,

and W6(k, l), W7(k, l), W8(k, l) are similar to W2(k, l), W3(k, l), W4(k, l), respectively, just replacing the factor κ1/4λ3/4by κ−1/4λ5/4, the factor n3/4 by n5/4, (in the case of W6(k, l)) (T/2π − κn/λ)1/2 by (T/2π − κn/λ)3/2, and (in the case of
W7(k, l)) T 1/4 by T−1/4.It is immediate that

W4(k, l)� |a(k)a(l)|[k, l] κ−1/4λ5/4 e−CT , (60)
W8(k, l)� |a(k)a(l)|[k, l] κ−3/4λ7/4 e−CT . (61)

Also, replacing the factor min {· · · } by 1, we get
W7(k, l)� |a(k)ó, a(l)|[k, l] κ−1/4λ5/4 T−1/4. (62)

Next we note that, when n ≤ Z , the inequalities
(
T2π − κn

λ

)−1
� T−1, log−1 λT2πκn � 1

hold. Since T � ξ(T , X/κλ) < T , we have
∑
n≤Z

d(n)
n1/2 �

(
λT
κ

)1/2 log(2 + λT
κ

)
.

By using these facts, we can show
W2(k, l), W5(k, l)� |a(k)a(l)|[k, l] λT−1/2 log(2 + λT

κ

)
, (63)

W6(k, l)� |a(k)a(l)|[k, l] λT−3/2 log(2 + λT
κ

)
. (64)

Consider W3(k, l). Split the sum on the right-hand side of (58) as
∑
n≤Z/2 + ∑

Z/2<n≤Z−√Z + ∑
Z−
√
Z<n≤Z+√Z+

∑
Z+√Z<n≤2Z + ∑

n>2Z = S1 + S2 + S3 + S4 + S5.
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If Z ≥ 2, we can estimate these sums similarly to the argument on the last page in [1]. We have
S1, S5 �

(
λ
κ

)1/4
T−1/4 log(2 + λT

κ

)
, S2, S4 �

(
λ
κ

)1/4
T−1/4 log2(2 + λT

κ

)
,

and S3 � (κ
λ

)1/4
T−1/4 log(2 + λT

κ

)
.

Hence
W3(k, l)� |a(k)a(l)|[k, l]

{
λ log2(2 + λT

κ

)+ (κλ)1/2 T−1/4 log(2 + λT
κ

)} (65)
if Z ≥ 2. For Z < 2, we decompose the sum on the right-hand side of (58) as∑

n≤2Z + ∑
n>2Z .

The first sum is obviously O(1), and the second sum is easily estimated as O((λ/κ)1/2). Hence, in this case, we have
W3(k, l)� |a(k)a(l)|[k, l] κ1/4λ3/4 T 1/4(1 + ( λκ

)1/2)
� |a(k)a(l)|[k, l] (κλ)1/2, (66)

where the second inequality follows from
λ
κ �

λ
κ T �

λ
κ ξ(T , Y ) = Z < 2.

Combining (65) and (66), we obtain the conclusion that
W3(k, l)� |a(k)a(l)|[k, l]

{
λ log2(2 + λT

κ

)+ (κλ)1/2T−1/4 log(2 + λT
κ

)+ (κλ)1/2} . (67)
Now, from (53), (56), (57), (59), (60), (61), (62), (63), (64) and (67), we obtain

J3(k, l) = W1(k, l)
+O

(
|a(k)a(l)|[k, l]

{(κλ)1/2 T−1/4 log(2 + λT
κ

)+ λ log2(2 + λT
κ

)+ (κλ)1/2
+ κελ1+ε T−1/2+ε + (κ1/4λ3/4 + κ−1/4λ5/4 + κ−3/4λ7/4)T−1/4}).

(68)

The quantity J1(k, l) can be treated similarly. Note that the term κ−1/4 λ5/4 T−1/4 on the right-hand side can be omitted,because
κ−1/4λ5/4 � κ1/4λ3/4 + κ−3/4λ7/4.Since ∑

k≤M

∑
l≤M

W1(k, l) = −Σ2(T , ξ(T , Y )),
substituting the obtained results into (41) we get

I4 = −Σ2(2T , ξ(2T , 2Y ))+ Σ2(T , ξ(T , Y ))+∑
k≤M

∑
l≤M

J2(k, l) +O
(∑

k≤M

∑
l≤M

|a(k)a(l)|[k, l] {
· · ·
})

, (69)
where · · · means the same as in the curly parentheses on the right-hand side of (68). Using (1) and (49), we find thatthe above error term is O(M1+ε log2 T +M7/4+εT−1/4), and hence

I4 = −Σ2(2T , ξ(2T , 2Y ))+ Σ2(T , ξ(T , Y ))+∑
k≤M

∑
l≤M

J2(k, l) +O
(
M1+ε log2 T +M7/4+εT−1/4). (70)
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8. The cancellation

Substituting (50) and (70) into (33), we obtain
∫ 2T
T

∣∣∣∣ζ (12 + it
)
A
(12 + it

)∣∣∣∣2 dt =M(2T , A)−M(T , A)
+ Σ1(2T , 2Y )− Σ1(T , Y ) + Σ2(2T , ξ(2T , 2Y ))− Σ2(T , ξ(T , Y ))− I12
−
∑
k≤M

∑
l≤M

J2(k, l) +O
(
M5/2+ε T−1/4 +M4/3+ε T−1/6+ε +M1+ε log2T). (71)

Hence the remaining task is to consider I12 and ∑∑
J2(k, l). In this section we will show that there is a big cancellationbetween these two quantities and consequently

I12 = −∑
k≤M

∑
l≤M

J2(k, l) +O
(
M5/2+ε T−1/4 +M4/3+ε T−1/6+ε). (72)

This type of result was proved, in the case of Dirichlet L-functions, by the first author (in [5, Section 10]). Our proof of(72) follows an argument similar to that in [5].
Remark 8.1.In the case of Dirichlet L-functions, this cancellation argument is the most novel part of [5]. When Hafner and Ivić [3]studied the asymptotic behavior of the integral of E(T ), the same type of cancellation also happened, and they provedthis fact by applying Jutila’s transformation method [9]. However, their argument does not seem to be applicable in thegeneral L-function case (and also to our present case), so the first author developed an alternative method of provingthe cancellation process in [5], which we also use here.
Let

S13(t;n, k, l) = 2={a(k)a(l)[k, l] d(n) e2πiκn/λ ∫ ∞0
e2πiny/κλ
C1/2(y) e−it log ((1+y)/y) dy

}
and rewrite (36) (with t = 2T ) as

S1(2T ;n, k, l) = S11(2T ;n, k, l)− S13(2T ;n, k, l) + S13(2T ;n, k, l) + S12(2T ;n, k, l). (73)
Substitute this expression into the definition of I12. Denote by R1 the contribution of the last two terms on the right-handside of (73). As for the first two terms, we have
∫ ∞

0
e2πiny/κλ
C1/2(y) (e2iT log ((1+y)/y) − e−2iT log ((1+y)/y)) dy = ∫ ∞0

e2πiny/κλ1 + y

∫ 1/2+2iT
1/2−2iT

(1 + y
y

)u
dudy = ∫ 1/2+2iT

1/2−2iT h
(
u, nκλ

)
du

(here the second equality is justified because h(u, n/κλ) is uniformly convergent in <u < 1), so
I12 = 2∑

k≤M

∑
l≤M

=
{∫ 1/2+2iT

1/2−2iT
a(k)a(l)[k, l] ∑

X<n≤2X d(n) e2πiκn/λ h(u, nκλ) du
}+ R1. (74)

We express the inner sum as a Stieltjes integral, as in (25), and apply (22) to obtain
∑

X<n≤2X d(n) e2πiκn/λh(u, nκλ) = 1
λ

∫ 2X
X

h
(
u, xκλ

) ( log x + 2γ − 2 log λ)dx
+ h

(
u, xκλ

)∆(x, κλ
)∣∣∣∣2X

X
−
∫ 2X
X

∂h(u, x/κλ)
∂x ∆(x, κλ

)
dx.

(75)
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Substitute this expression into (74) and denote the contribution of the first (resp. second) term on the right-hand sideof (75) to (74) by R2 (resp. R3). We have
I12 = −2∑

k≤M

∑
l≤M

=
{∫ 1/2+2iT

1/2−2iT
a(k)a(l)[k, l]

∫ 2X
X

∂h(u, x/κλ)
∂x ∆(x, κλ

)
dx du

}+ R1 + R2 + R3. (76)
Change the order of integration on the right-hand side and use

∫ 1/2+2iT
1/2−2iT

∂h(u, x/κλ)
∂x du = 1

x

∫ ∞
0

e2πixy/κλ
y1/2(1 + y)3/2 log ((1 + y)/y) eit log ((1+y)/y) (it − 12 − 1log ((1 + y)/y)

) ∣∣∣∣2T
t=−2Tdy

(which is similar to the formula given in [1, p. 361]; cf. (39)). Let us decompose
eit log ((1+y)/y) (it − 12 − 1log ((1 + y)/y)

) ∣∣∣∣2T
t=−2T = 2iTe2iT log ((1+y)/y)

− (−2iT ) e−2iT log ((1+y)/y) + eit log ((1+y)/y) (−12 − 1log ((1 + y)/y)
) ∣∣∣∣2T

t=−2T ,
(77)

and denote the contribution of the second (resp. third) term on the right-hand side of (77) to (76) by R4 (resp. R5).Since the contribution of the first term on the right-hand side of (77) to (76) is −∑k≤M
∑

l≤M J2(k, l), we obtain
I12 = −∑

k≤M

∑
l≤M

J2(k, l) + 5∑
j=1 Rj . (78)

We estimate Rj , 1 ≤ j ≤ 5. By using Lemma 5.1(ii), (1) and (49), we have
R1 �∑

k≤M

∑
l≤M

∑
X<n≤2X

|a(k)a(l)|[k, l] d(n)T−1/4 (κλ
n

)5/4
� M5/2+ε T−1/4. (79)

Carrying out the integration with respect to u in the definition of R3, we find that the resulting expression can be treatedsimilarly to the case of I2. Hence, as in Section 6, we have
R3 � M4/3+ε T−1/6+ε. (80)

We can treat R4 similarly to S42, and treat R5 similarly to S41, S43. Hence the same estimate in (51) holds for R4 and
R5, which implies

R4, R5 � M1+ε T−1/4. (81)
Finally consider R2. Changing the order of integration and applying Lemma 5.1(ii) to the inner integral, we have
R2 = R21 + R22, where

R21 = 2∑
k≤M

∑
l≤M

=
{
a(k)a(l)[k, l] 1

λ

∫ 2X
X

G1(x; λ)G2(x; κ, λ) eiF (x;κ,λ) dx
} (82)
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with
F (x; κ, λ) = 2f(T , x/2κλ)− πx

κλ + 3π4 ,

G1(x; λ) = log x + 2γ − 2 log λ,
G2(x; κ, λ) = 12√2

(arcsinh√ πx4Tκλ
)−1 (2Tx

πκλ + x24κ2λ2
)−1/4

,

and
R22 = 2∑

k≤M

∑
l≤M

=
{
a(k)a(l)[k, l] 1

λ

∫ 2X
X

G1(x; λ)R(2T , x/κλ)dx} .
It is easy to see that

R22 �∑
k≤M

∑
l≤M

1
λ
|a(k)a(l)|[k, l] (Xκλ)1/2

T (logX + log λ)� M1+ε T−1/2 logT . (83)
To estimate R21, we quote the following
Lemma 8.2 (Heath-Brown [4]).
Let F (x), Gj (x), 1 ≤ j ≤ J, be continuous functions defined on an interval [a, b], which are monotone. Assume F ′(x) is
also monotone, |F ′(x)| ≥ M−10 and |Gj (x)| ≤ Mj , 1 ≤ j ≤ J, on [a, b]. Then

∣∣∣∣∫ b

a
G1(x) · · ·GJ (x) eiF (x) dx

∣∣∣∣ ≤ 2J+3 J∏
j=0 Mj .

In the present case, we see that
F ′(x; κ, λ) =√4πT

xκλ + ( πκλ)2
− π
κλ ,which is positive and decreasing. Therefore F (x; κ, λ) is also monotone and we can take M0 = F ′(2X ; κ, λ)−1. Hence byLemma 8.2, we find that the integral on the right-hand side of (82) is

� (logX + log λ)G2(X )
F ′(2X ; κ, λ) � κλT−1/2 log (κλT ).

This implies that R21 � M1+ε T−1/2 logT , and this with (83) gives
R2 � M1+ε T−1/2 logT . (84)

From (78), (79), (80), (81) and (84) we obtain the assertion of (72).Substituting (72) into (71), and noting that
M4/3+εT−1/6+ε = M1/2+ε/2 (M5/6+ε/2T−1/6+ε)

� M1+ε +M5/3+ε T−1/3+ε � M1+ε log2 T +M5/2+ε T−1/4,
we complete the proof of Theorem 1.1.
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9. Proof of Theorem 1.2

Let L be a positive integer satisfying
2−LT ≥ C ∗. (85)

Then replacing T (resp. Y ) by 2−jT (resp. 2−jY ) in (4) makes the formula valid for 1 ≤ j ≤ L. Adding up, we obtain
∫ T

0
∣∣∣∣ζ (12 + it

)
A
(12 + it

)∣∣∣∣2 dt =M(T , A) + Σ1(T , Y ) + Σ2(T , ξ(T , Y ))
−M

(2−LT , A)− Σ1(2−LT , 2−LY )− Σ2(2−LT , ξ(2−LT , 2−LY ))
+O

M1+ε L∑
j=1 log2(2−jT ) +M5/2+ε L∑

j=1 (2−jT )−1/4
+ ∫ 2−LT

0
∣∣∣∣ζ (12 + it

)
A
(12 + it

)∣∣∣∣2dt.
(86)

The condition (85) is equivalent to
L ≤

[ logT − logC ∗log 2
]
, (87)

where [x] is the integer part of x. Since T ≥ C ∗ ≥ e, we have log logT ≥ 0. Therefore the choice
L = [ logT − logC ∗ − α log logTlog 2

]
satisfies (87) for any positive α . This choice implies

T log−αT � 2L � T log−αT . (88)
Using (49) and (88), we have

M
(2−LT , A)� Mε T2L log T2L � Mε logαT · log logT . (89)

Next, since arcsinh x � x for small x, we have
Σ1(2−LT , 2−LY )� Mε

(
T2L
)1/2 ∑

k,l≤M

κλ[k, l] ∑
n≤κλY /2L

d(n)
n

� Mε logα/2T ∑
k,l≤M

κλ[k, l] log2(κλY /2L)� M2+ε logα/2T · (log logT )2 (90)

and Σ2(2−LT , 2−LY )� Mε
∑
k,l≤M

(κλ)1/2[k, l] ∑
n≤(λ/κ)Y /2L

d(n)
n1/2 � M1+ε logα/2T · log logT . (91)

Also,
M1+ε L∑

j=1 log2(2−jT)� M1+εL log2T � M1+ε log3T , (92)
M5/2+ε L∑

j=1
(2−jT)−1/4 � M5/2+ε T−1/4 2L/4 � M5/2+ε log−α/4T . (93)
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Finally, using the well-known mean square estimate for ζ(s) [18, Theorem 7.3], we obtain
∫ 2−LT

0
∣∣∣∣ζ (12 + it

)
A
(12 + it

)∣∣∣∣2dt � M1+ε T2L log T2L � M1+ε logαT · log logT . (94)
Substituting (89)–(94) into (86), we obtain

R(T , A)� M1+ε log3T +M1+ε logαT · log logT +M2+ε logα/2T · (log logT )2 +M5/2+ε log−α/4T .
This is the general form of the estimation of R(T , A) we have proved. Theorem 1.2 is the special case α = 3− 4δ.
10. Proof of Theorem 1.3

In this section, we discuss the case when a(m) ∈ R (for all m ≥ 1) briefly. In this case the analogue of (3) holds for
ζ(s)A(s). Therefore, as an analogue of (33), we can show

I(T , A) = 12
∫ T

−T

∣∣∣∣ζ (12 + it
)
A
(12 + it

)∣∣∣∣2dt =M(T , A) + 12 (I∗1 − I∗2 + I∗3 − I∗4 ) +O(1),
where I∗ν , 1 ≤ ν ≤ 4, are almost the same as Iν , just replacing the integral from T to 2T by that from −T to T . Theanalogues of (35), (38), (39) hold for I∗ν , replacing T (resp. 2T ) by −T (resp. T ).First consider I∗1 . We see that

I∗1 = I13 − I′13,where I13 is the same as in (43), and I′13 is almost the same as I13, just replacing T by −T . From (44) and the correspondingresult for I′13, we obtain
I∗1 = 2Σ1(T , Y ) +O

(
T−1/4 ∑

k≤M

∑
l≤M

|a(k)a(l)|[k, l] (κλ)5/4) .
Next, it is easy to see that exactly the same estimate (45) for I2 holds for I∗2 . As for I∗3 , define I∗31(k, l) as an analogueof I31(k, l) replacing T (resp. 2T ) by −T (resp. T ). Similarly, we define I∗32(k, l), and further define I′∗32(k, l) and I′′∗32 (k, l)splitting the integral at y = 1. Then, similarly to (46) and (47), the estimates

I∗31(k, l)� T−1/2, I′′∗32 (k, l)� T−1 logT
hold. Since the inner integral of I′∗32(k, l) is from 1/2 − iT to 1/2 + iT , this time a residue appears in the course of theargument, so

I′∗32(k, l) = π2i+O
(
T−1/2).

Hence, corresponding to (48), we obtain
I∗3 = 2π∑

k≤M

∑
l≤M

a(k)a(l) κ[k, l] +O
(∑
k≤M

∑
l≤M

|a(k)a(l)|[k, l] κ log (κλT )T−1/2) .
At last, we consider

I∗4 = ∑
k≤M

∑
l≤M

(
S4(T ; k, l)− S4(−T ; k, l)).
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As in Section 5, we decompose
S4(±T ; k, l) = S40(±T )− S41(±T ) + S42(±T )− S43(±T ).

The term S40(T ) is exactly the same as J3(k, l) defined by (40), hence (68) can be used for S40(T ). Therefore, the term
−Σ2(T , ξ(T , Y )) appears from this part. As for S41(T ), S42(T ), S43(T ), we use the estimate (51). We obtain

∑
k≤M

∑
l≤M

S4(T ; k, l) = −Σ2(T , ξ(T , Y ))+ E1(T ),
where E1(T ) is the error term satisfying the same estimate as the error term on the right-hand side of (69). Similarly,the term Σ2(T , ξ(T , Y )) again appears from the sum of S42(−T ), and so

∑
k≤M

∑
l≤M

S4(−T ; k, l) = Σ2(T , ξ(T , Y ))+ E2(T ),
where E2(T ) satisfies the same estimate as that of E1(T ). We thus obtain

I∗4 = −2Σ2(T , ξ(T , Y ))+ E1(T ) + E2(T ).
Collecting the above results, we obtain the conclusion of Theorem 1.3.
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