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Abstract

In this article we describe the development of the problem of analytic

continuation of multiple zeta-functions. We begin with the work of E.

W. Barnes and H. Mellin, and then discuss the Euler sum and its multi-

variable generalization. Recently, M. Katsurada discovered that the clas-

sical Mellin-Barnes integral formula is useful to the study of analytic con-

tinuation of the Euler sum. We will explain Katsurada’s idea in Section

4. Then in the last two sections we will present new results of the author,

which are obtained by using the Mellin-Barnes formula to more general

multiple zeta-functions.

1 Barnes multiple zeta-functions

The problem of analytic continuation of multiple zeta-functions was first con-
sidered by Barnes [7][8] and Mellin [48][49]. Barnes [7] introduced the double
zeta-function of the form

ζ2(s;α, (w1, w2)) =
∞
∑

m1=0

∞
∑

m2=0

(α +m1w1 +m2w2)
−s, (1.1)

where α, w1, w2 are complex numbers with positive real parts, and s is the
complex variable. The series (1.1) is convergent absolutely in the half-plane
<s > 2. Actually Barnes first defined his function as the contour integral

ζ2(s;α, (w1, w2)) = −
Γ(1− s)

2πi

∫

C

e−αz(−z)s−1

(1− e−w1z)(1− e−w2z)
dz, (1.2)

where C is the contour which consists of the half-line on the positive real axis
from infinity to a small positive constant δ, a circle of radius δ counterclockwise
round the origin, and the other half-line on the positive real axis from δ to
infinity. It is easy to see that (1.2) coincides with (1.1) when <s > 2. The
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expression (1.2) gives the meromorphic continuation of ζ2(s;α, (w1, w2)) to the
whole s-plane. Moreover, Barnes [7] studied very carefully how to extend the
definition of ζ2(s;α, (w1, w2)) to the situation when the real parts of α, w1, w2

are not necessarily positive.
Barnes introduced his double zeta-function for the purpose of constructing the

theory of double gamma-functions. As for the theory of double gamma-functions,
there were several predecessors such as Kinkelin, Hölder, Méray, Pincherle, and
Alexeiewsky, but Barnes developed the theory most systematically. Then Barnes
[8] proceeded to the theory of more general multiple gamma-functions, and in
this research he introduced the multiple zeta-function defined by

ζr(s;α, (w1, . . . , wr)) =
∞
∑

m1=0

· · ·
∞
∑

mr=0

(α +m1w1 + · · ·+mrwr)
−s, (1.3)

where r is a positive integer, and α, w1, . . . , wr are complex numbers. Barnes
assumed the following condition to ensure the convergence of the series. Let `
be any line on the complex s-plane crossing the origin. Then ` divides the plane
into two half-planes. Let H(`) be one of those half-planes, not including ` itself.
The assumption of Barnes is that

wj ∈ H(`) (1 ≤ j ≤ r). (1.4)

Then excluding the finitely many possible (m1, . . . , mr) satisfying m1w1 + · · ·+
mrwr = −α from the sum, we see easily that (1.3) is convergent absolutely
when <s > r. Barnes [8] proved an integral expression similar to (1.2) for
ζr(s;α, (w1, . . . , wr)), which yields the meromorphic continuation.

On the other hand, Mellin [48][49] studied the meromorphic continuation of
the multiple series

∞
∑

m1=1

· · ·
∞
∑

mk=1

P (m1, . . . , mk)
−s, (1.5)

where P (X1, . . . , Xk) is a polynomial of k indeterminates and of complex coeffi-
cients with positive real parts. Mellin’s papers include a prototype of the method
in the present paper, though he treated the one variable case only. For example,
the formula (4.1) appears in p.21 of [48]. After Mellin’s works, many subsequent
researches on (1.5) and its generalizations were done; main contributors include
K. Mahler, P. Cassou-Nogués, P. Sargos, B. Lichtin, M. Eie and M. Peter. Most
of them concentrated on the one variable case, hence we do not discuss the details
of their works. However, Lichtin’s series of papers [36][37][38][39] and [40] should
be mentioned here. In [36] Lichtin proposed the problem of studying the analytic
continuation of Dirichlet series in several variables

∞
∑

m1=1

· · ·
∞
∑

mk=1

P0(m1, . . . , mk)

×P1(m1, . . . , mk)
−s1 · · ·Pr(m1, . . . , mk)

−sr , (1.6)
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where P0, P1, . . . , Pr are polynomials of k indeterminates, and he carried out
such investigations in [37][38][39][40]. In particular Lichtin proved that the series
(1.6) can be continued meromorphically to the whole space when the associated
polynomials are hypoelliptic (and also satisfy some other conditions).

2 The Euler sum

The two-variable double sum

ζ2(s1, s2) =
∞
∑

m=1

∞
∑

n=1

m−s1(m+ n)−s2 (2.1)

is convergent absolutely if <s2 > 1 and <(s1 + s2) > 2. The investigation of this
sum goes back to Euler. He was interested in the values of (2.1) when s1 and s2

are positive integers. Various properties of the values of (2.1) at positive integers
were given in Nielsen’s book [54]. Ramanujan also had an interest in such kind
of problems, and some of their formulas were rediscovered by later authors (see
the comments in pp.252-253 of Berndt [9]). Even in very recent years, the Euler
sum is an object of active researches; see, for instance, [10][17].

As far as the author knows, the first study on the analytic continuation of
ζ2(s1, s2) was done by Atkinson [6], in his research on the mean square of the
Riemann zeta-function ζ(s). When <s1 > 1 and <s2 > 1, it holds that

ζ(s1)ζ(s2) = ζ(s1 + s2) + ζ2(s1, s2) + ζ2(s2, s1). (2.2)

Atkinson’s aim was to integrate the left-hand side with respect to t, when s1 =
1
2

+ it and s2 = 1
2
− it. Hence he was forced to show the analytic continuation of

the right-hand side. Atkinson [6] used the Poisson summation formula to deduce
a certain integral expression, and by which he succeeded in showing the analytic
continuation.

On the other hand, Matsuoka [47] obtained the analytic continuation of

∞
∑

m=2

m−s
∑

n<m

n−1,

which is actually equal to ζ2(1, s). Apostol and Vu [4], independently of Matsuoka
[47], proved that ζ2(s1, s2) may be continued meromorphically with respect to s1

for each fixed s2, and also with respect to s2 for each fixed s1. Both of the proofs of
Matsuoka and Apostol-Vu are based on the Euler-Maclaurin summation formula.
The main aim of those papers is the investigation of special values of ζ2(s1, s2)
at (not necessarily positive) integer points, and they deduced various formulas.

Note that Apostol and Vu [4] also considered the series

T (s1, s2) =
∞
∑

m=1

∑

n<m

1

ms1ns2(m+ n)
, (2.3)
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and discussed its analytic continuation.
Let q be a positive integer (≥ 2), ϕ(q) the Euler function, χ a Dirichlet

character mod q, and L(s, χ) the corresponding Dirichlet L-function. Inspired
by Atkinson’s work [6], Meurman [50] and Motohashi [53] independently of each
other considered the sum

Q((s1, s2); q) = ϕ(q)−1
∑

χmodq

L(s1, χ)L(s2, χ̄).

Corresponding to (2.2), the decomposition

Q((s1, s2); q) = L(s1 + s2, χ0) + f((s1, s2); q) + f((s2, s1); q)

holds, where χ0 is the principal character mod q and

f((s1, s2); q) =
∑

1≤a≤q
(a,q)=1

∞
∑

m=0

∞
∑

n=1

(qm + a)−s1(q(m+ n) + a)−s2. (2.4)

This is a generalization of the Euler sum (2.1). Meurman [50] proved the analytic
continuation of (2.4) by generalizing the argument of Atkinson [6]. On the other
hand, Motohashi showed a double contour integral expression of (2.4), which
yields the analytic continuation. By refining Motohashi’s argument, Katsurada
and the author [32][33] proved the asymptotic expansions of

∑

χmodq

|L(s, χ)|2 (s 6= 1) and
∑

χmodq
χ6=χ0

|L(1, χ)|2 (2.5)

with respect to q. See also Katsurada [28], where a somewhat different argument
using confluent hypergeometric functions is given.

Let ζ(s, α) be the Hurwitz zeta-function defined by the analytic continuation
of the series

∑∞
n=0(α+ n)−s, where α > 0. Katsurada and the author [34] proved

the asymptotic expansion of the mean value

∫ 1

0
|ζ(s, α)− α−s|2dα (2.6)

with respect to =s. The starting point of the argument in [34] is the following
generalization of (2.2):

ζ(s1, α)ζ(s2, α) = ζ(s1 + s2, α) + ζ2((s1, s2);α) + ζ2((s2, s1);α), (2.7)

where

ζ2((s1, s2);α) =
∞
∑

m=0

∞
∑

n=1

(α +m)−s1(α +m+ n)−s2. (2.8)
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This is again a generalization of (2.1). In [34], the meromorphic continuation of
ζ2((s1, s2);α) was achieved by using the formula

ζ2((s1, s2);α) =
Γ(s1 + s2 − 1)Γ(1− s1)

Γ(s2)
ζ(s1 + s2 − 1)

+
1

Γ(s1)Γ(s2)(e2πis1 − 1)(e2πis2 − 1)

∫

C

ys2 − 1

ey − 1

×
∫

C
h(x + y;α)xs1−1dxdy, (2.9)

where

h(z;α) =
e(1−α)z

ez − 1
−

1

z
.

This formula is an analogue of Motohashi’s integral expression for (2.4).
The author [42] considered the more general series

ζ2((s1, s2);α,w) =
∞
∑

m1=0

∞
∑

m2=0

(α+m1)
−s1(α +m1 +m2w)−s2, (2.10)

where w > 0, and proved its analytic continuation in a way similar to the above.
This method also gives the asymptotic expansion of ζ2((s1, s2);α,w) with re-
spect to w when w → +∞. This especially implies the asymptotic expansion of
the Barnes double zeta-function ζ2(s;α, (1, w)) with respect to w, because this
function is nothing but ζ2((0, s);α,w). These results and also the asymptotic ex-
pansion of the double gamma-function are proved in [42]. Note that some claims
in [42] on the uniformity of the error terms are not true, which are corrected in
[43] (see also [45]).

3 Multi-variable Euler-Zagier sums

The r-variable generalization of the Euler sum (2.1), defined by

ζr(s1, . . . , sr)

=
∞
∑

m1=1

∞
∑

m2=1

· · ·
∞
∑

mr=1

m−s1

1 (m1 +m2)
−s2 · · · (m1 + · · ·+mr)

−sr , (3.1)

is absolutely convergent in the region

Ar = {(s1, . . . , sr) ∈ Cr | <(sr−k+1 + · · ·+ sr) > k (1 ≤ k ≤ r)}, (3.2)

as will be shown in Theorem 3 below (in Section 6). (The condition of absolute
convergence given by Proposition 1 of Zhao [66] is not sufficient.) In connection
with knot theory, quantum groups and mathematical physics, the properties of
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(3.1) has been investigated recently by Zagier [64][65], Goncharov [19] and others,
and is called the Euler-Zagier sum or the multiple harmonic series. The case r = 3
of (3.1) was actually already studied by Sitaramachandrarao and Subbarao [58].
The Euler-Zagier sum also appears in the works of Butzer, Markett and Schmidt
([15], [16], [41]).

There are various interesting relations among values of (3.1) at positive inte-
gers. Some of them (for small r) can be found in earlier references, but systematic
studies were begun by Hoffman [22] (see also [23]). He proved a class of relations,
including some previous results and conjectures, and stated the sum conjecture
and the duality conjecture. The sum conjecture, originally due to M. Schmidt
(see Markett [41]) and also to C. Moen, was proved by Granville [21] and Zagier
(unpublished). On the other hand, the duality conjecture has turned out to be
an immediate consequence of iterated integral representations of Drinfel’d and
Kontsevich (cf. Zagier [65]). Further generalizations were done by Ohno [55]
and Hoffman-Ohno [24]. Other families of relations, coming from the theory of
knot invariants, were discovered by Le-Murakami [35] and Takamuki [60]. Var-
ious relations were also discussed by Borwein et al. [11][12], Flajolet-Salvy [18]
and Minh-Petitot [51]. For instance, a conjecture mentioned in Zagier [65] was
proved in [12][13]. See also [14] and [56] for the latest developments. (Recent
developments in this direction are really enormous; it is impossible to mention
all of them here.)

The works mentioned above were mainly devoted to the study of the val-
ues of ζr(s1, . . . , sr) at positive integers. On the other hand, except for the case
r = 2 explained in the preceding section, the study of analytic continuation of
ζr(s1, . . . , sr) has begun very recently. First, Arakawa and Kaneko [5] proved
that if s1, . . . , sr−1 are fixed, then (3.1) can be continued meromorphically with
respect to sr to the whole complex plane. The analytic continuation of (3.1)
to the whole Cr-space as an r-variable function was established by Zhao [66],
and independently by Akiyama, Egami and Tanigawa [1]. Zhao’s proof is based
on properties of generalized functions in the sense of Gel’fand and Shilov. The
method in [1] is more elementary; an application of the Euler-Maclaurin sum-
mation formula. Akiyama, Egami and Tanigawa [1] further studied the values of
ζr(s1, . . . , sr) at non-positive integers (see also Akiyama and Tanigawa [3]). Note
that the statements about the trivial zeros of ζ2 in Zhao [66] are incorrect. T.
Arakawa pointed out that the method of Arakawa and Kaneko [5] can also be
refined to give an alternative proof of analytic continuation of ζr(s1, . . . , sr) as an
r-variable function.

Akiyama and Ishikawa [2] considered the multiple L-function

Lr((s1, . . . , sr); (χ1, . . . , χr))

=
∞
∑

m1=1

∞
∑

m2=1

· · ·
∞
∑

mr=1

χ1(m1)

ms1

1

χ2(m1 +m2)

(m1 +m2)s2
· · ·

χr(m1 + · · ·+mr)

(m1 + · · ·+mr)sr
, (3.3)

where χ1, . . . , χr are Dirichlet characters. This series itself was introduced earlier
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by Goncharov [20], but the purpose of Akiyama and Ishikawa [2] was to prove
the analytic continuation of (3.3). For this purpose, they first wrote (3.3) as a
linear combination of

ζr((s1, . . . , sr); (α1, . . . , αr)) =
∞
∑

m1=1

∞
∑

m2=1

· · ·
∞
∑

mr=1

(α1 +m1)
−s1

×(α2 +m1 +m2)
−s2 · · · (αr +m1 + · · ·+mr)

−sr , (3.4)

where α1, . . . , αr are positive, and considered the analytic continuation of the lat-
ter. They established this continuation by generalizing the argument in Akiyama,
Egami and Tanigawa [1]. Ishikawa [26] proved more refined properties of the spe-
cial case s1 = · · · = sr in (3.3), and he applied those results to the study of
certain multiple character sums (Ishikawa [27]).

4 Katsurada’s idea

In Section 2 we mentioned the works of Katsurada and the author on asymp-
totic expansions of (2.5) and (2.6). The essence of those works are the treatment
of the functions (2.4) and (2.8), and in [32][34] these functions are expressed by
certain double contour integrals.

Katsurada [29][30] reconsidered this problem, and discovered a simple elegant
alternative way of proving the expansions of (2.5) and (2.6). The key tool of
Katsurada’s method is the Mellin-Barnes integral formula

Γ(s)(1 + λ)−s =
1

2πi

∫

(c)
Γ(s+ z)Γ(−z)λzdz, (4.1)

where s and η are complex with <s > 0, | argλ| < π, λ 6= 0, and c is real
with −<s < c < 0. The path of integration is the vertical line from c − i∞
to c + i∞. This formula is classically known (e.g. Whittaker and Watson [62],
Section 14.51, p.289, Corollary), or can be easily proved as follows. First assume
|λ| < 1, and shift the path to the right. The relevant poles of the integrand are
located at z = n (n = 0, 1, 2, . . .) with the residue (−1)n+1Γ(s+ n)λn/n!. Hence
the right-hand side of (4.1) is equal to

Γ(s)
∞
∑

n=0

(

−s

n

)

λn = Γ(s)(1 + λ)−s,

which is the left-hand side. The case of larger |λ| now follows by analytic contin-
uation.

Katsurada [30] used (4.1) to obtain a simple argument of deducing the an-
alytic continuation and the asymptotic expansion of the function (2.4). Then,
Katsurada [29] (this article was published earlier, but written later than [30])
proved that the same idea can be applied to the function (2.8) to obtain its

7



analytic continuation. In [29], this idea is combined with some properties of hy-
pergeometric functions, hence the technical details are not so simple. Therefore,
to illustrate the essence of Katsurada’s idea clearly, we present here a simple
proof of the analytic continuation of the Euler sum (2.1) by his method.

Assume <s2 > 1 and <(s1 + s2) > 2. Putting s = s2 and λ = n/m in (4.1),
and dividing the both sides by Γ(s2)m

s1+s2, we obtain

m−s1(m + n)−s2 =
1

2πi

∫

(c)

Γ(s2 + z)Γ(−z)

Γ(s2)
m−s1−s2−znzdz. (4.2)

We may assume min{−<s2, 1−<(s1 + s2)} < c < −1. Then we can sum up the
both sides of (4.2) with respect to m and n to obtain

ζ2(s1, s2) =
1

2πi

∫

(c)

Γ(s2 + z)Γ(−z)

Γ(s2)
ζ(s1 + s2 + z)ζ(−z)dz. (4.3)

Now we shift the path to <z = M−ε, where M is a positive integer and ε is a small
positive number. The validity of this shifting is easily shown by using Stirling’s
formula. The relevant poles of the integrand are at z = −1, 0, 1, 2, . . . ,M − 1.
Counting the residues of those poles, we get

ζ2(s1, s2) =
1

s2 − 1
ζ(s1 + s2 − 1) +

M−1
∑

k=0

(

−s2

k

)

ζ(s1 + s2 + k)ζ(−k)

+
1

2πi

∫

(M−ε)

Γ(s2 + z)Γ(−z)

Γ(s2)
ζ(s1 + s2 + z)ζ(−z)dz. (4.4)

The last integral can be continued holomorphically to the region
{

(s1, s2) ∈ C2 | <s2 > −M + ε,<(s1 + s2) > 1−M + ε
}

,

because in this region the poles of the integrand are not on the path of integration.
Hence (4.4) gives the analytic continuation of ζ2(s1, s2) to this region. Since M
is arbitrary, the proof of the continuation to the whole C2-space is complete.
Moreover, from (4.4) we can see that the singularities of ζ2(s1, s2) are located
only on the subsets of C2 defined by one of the equations

s2 = 1, s1 + s2 = 2− ` (` ∈ N0), (4.5)

where N0 denotes the set of non-negative integers.
Katsurada applied (4.1) to various other types of problems. Here we mention

his short note [31], in which he introduced (inspired by [42]) the double zeta-
function of the form

∞
∑

m=0

∞
∑

n=0

e2πi(ms1+ns2)(α +m)−s1(α + β +m + n)−s2,
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expressed it as an integral similar to (4.3), and obtained some asymptotic results
in the domain of absolute convergence.

5 The Mordell-Tornheim zeta-function and the

Apostol-Vu zeta-function

Let <sj > 1 (j = 1, 2, 3) and define

ζMT (s1, s2, s3) =
∞
∑

m=1

∞
∑

n=1

m−s1n−s2(m+ n)−s3. (5.1)

This series was first considered by Tornheim [61], and the special case s1 = s2 = s3

was studied independently by Mordell [52]. We call (5.1) as the Mordell-Tornheim
zeta-function. Tornheim himself called it the harmonic double series. Zagier [65]
quoted Witten’s paper [63] and studied (5.1) under the name of the Witten zeta-
function.

The analytic continuation of ζMT (s1, s2, s3) was established by S. Akiyama and
also by S. Egami in 1999. Akiyama’s method is based on the Euler-Maclaurin
summation formula, while Egami’s proof is a modification of the method of
Arakawa and Kaneko [5]. Both of their proofs have been unpublished yet.

Here, by using the method explained in the preceding section, we give a simple
proof of

Theorem 1 The function ζMT (s1, s2, s3) can be meromorphically continued to
the whole C3-space, and its singularities are only on the subsets of C3 defined by
one of the equations s1 + s3 = 1− `, s2 + s3 = 1− ` (` ∈ N0) or s1 + s2 + s3 = 2.

Proof. Assume <s1 > 1, <s2 > 0 and <s3 > 1. Then the series (5.1) is
absolutely convergent. Putting s = s3 and λ = n/m in (4.1), and dividing the
both sides by Γ(s3)m

s1+s3ns2 , we obtain

m−s1−s3n−s2(1 +
n

m
)−s3 =

1

2πi

∫

(c)

Γ(s3 + z)Γ(−z)

Γ(s3)
m−s1−s3−zn−s2+zdz.

We may assume −<s3 < c < min{<s2 − 1, 0}. Summing up with respect to m
and n we get

ζMT (s1, s2, s3) =
1

2πi

∫

(c)

Γ(s3 + z)Γ(−z)

Γ(s3)
ζ(s1 + s3 + z)ζ(s2 − z)dz. (5.2)

Let M be a positive integer which is larger than <s2−1+ε, and shift the path to
<z = M − ε. First assume that s2 is not a positive integer. Then all the relevant
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poles are simple, and we obtain

ζMT (s1, s2, s3) =
Γ(s2 + s3 − 1)Γ(1− s2)

Γ(s3)
ζ(s1 + s2 + s3 − 1)

+
M−1
∑

k=0

(

−s3

k

)

ζ(s1 + s3 + k)ζ(s2 − k)

+
1

2πi

∫

(M−ε)

Γ(s3 + z)Γ(−z)

Γ(s3)
ζ(s1 + s3 + z)ζ(s2 − z)dz. (5.3)

When s2 = 1 + h (h ∈ N0, h ≤ M − 1), the right-hand side of (5.3) contains two
singular factors, but they cancel each other. In fact, we obtain

ζMT (s1, 1 + h, s3)

=

(

−s3

h

)

{(

1 +
1

2
+ · · ·+

1

h
− ψ(s3 + h)

)

ζ(s1 + s3 + h)− ζ ′(s1 + s3 + h)
}

+
M−1
∑

k=0
k 6=h

(

−s3

k

)

ζ(s1 + s3 + k)ζ(1 + h− k)

+
1

2πi

∫

(M−ε)

Γ(s3 + z)Γ(−z)

Γ(s3)
ζ(s1 + s3 + z)ζ(1 + h− z)dz, (5.4)

where ψ = Γ′/Γ. The empty sum is to be considered as zero. The desired
assertions of Theorem 1 now follow from (5.3) and (5.4), as in the argument
described in the preceding section.

After the papers of Tornheim [61] and Mordell [52], the values of ζMT (s1, s2, s3)
at positive integers have been investigated by many authors (Subbarao and Sitara-
machandrarao [59], Huard, Williams and Zhang [25], and Zagier [65]). It is now
an interesting problem to study the properties of the values of ζMT (s1, s2, s3) at
non-positive integers.

Next, recall the series (2.3) considered by Apostol and Vu [4]. They were
inspired by the work of Sitaramachandrarao and Sivaramasarma [57], and various
formulas on the special values of (2.3) were obtained in these papers.

Here we introduce the following three-variable Apostol-Vu zeta-function:

ζAV (s1, s2, s3) =
∞
∑

m=1

∑

n<m

m−s1n−s2(m + n)−s3 (<sj > 1). (5.5)

Note that there is the following simple relation between ζAV and ζMT :

ζMT (s1, s2, s3) = 2−s3ζ(s1 + s2 + s3) + ζAV (s1, s2, s3) + ζAV (s2, s1, s3). (5.6)

Also, there is a simple relation between ζAV (s1, s2, 1) and ζ2(s1, s2) (see (17) of
Apostol and Vu [4]).
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Now we prove the analytic continuation of the (three-variable) Apostol-Vu
zeta-function ζAV (s1, s2, s3). The principle of the proof is the same as in Theorem
1, but the details are somewhat more complicated.

Theorem 2 The function ζAV (s1, s2, s3) can be continued meromorphically to
the whole C3-space, and its singularities are only on the subsets of C3 defined by
one of the equations s1 + s3 = 1− `, or s1 + s2 + s3 = 2− ` (` ∈ N0).

Proof. Assume <sj > 1 (j = 1, 2, 3). Quite similarly to (5.2), this time we
obtain

ζAV (s1, s2, s3) =
1

2πi

∫

(c)

Γ(s3 + z)Γ(−z)

Γ(s3)

∞
∑

m=1

∑

n<m

m−s1−s3−zn−s2+zdz

=
1

2πi

∫

(c)

Γ(s3 + z)Γ(−z)

Γ(s3)
ζ2(s2 − z, s1 + s3 + z)dz, (5.7)

where −<s3 < c < 0. Now we shift the path of integration to <z = M − ε.
It is not difficult to show from (4.4) that ζ2(s1, s2) is of polynomial order with
respect to =s1 and =s2. Hence this shifting is possible. From (4.5) we see that
the only pole of ζ2(s2− z, s1 + s3 + z) (as a function in z), under the assumption
<sj > 1 (j = 1, 2, 3), is z = 1 − s1 − s3. This is located on the left-hand
side of <z = c, hence irrelevant now. Counting the residues of the poles at
z = 0, 1, . . . ,M − 1, we get

ζAV (s1, s2, s3) =
M−1
∑

k=0

(

−s3

k

)

ζ2(s2 − k, s1 + s3 + k)

+
1

2πi

∫

(M−ε)

Γ(s3 + z)Γ(−z)

Γ(s3)
ζ2(s2 − z, s1 + s3 + z)dz. (5.8)

This formula already implies the meromorphic continuation except for the case
s1 + s2 + s3 = 2− ` (` ∈ N0). However, ζ2(s2 − z, s1 + s3 + z) is singular when
s1 + s2 + s3 = 2− `. To clarify the behaviour of the above integral on this polar
set, we substitute the formula (4.4) into the integrand on the right-hand side of
(5.8). We obtain

ζAV (s1, s2, s3) =
M−1
∑

k=0

(

−s3

k

)

ζ2(s2 − k, s1 + s3 + k)

+ζ(s1 + s2 + s3 − 1)P (s1, s3) +
M−1
∑

j=0

ζ(s1 + s2 + s3 + j)ζ(−j)Qj(s1, s3)

+R(s1, s2, s3), (5.9)

where

P (s1, s3) =
1

2πi

∫

(M−ε)

Γ(s3 + z)Γ(−z)

Γ(s3)

dz

s1 + s3 + z − 1
,

11



Qj(s1, s3) =
1

2πi

∫

(M−ε)

Γ(s3 + z)Γ(−z)

Γ(s3)

(

−s1 − s3 − z

j

)

dz,

and

R(s1, s2, s3) =
1

(2πi)2

∫

(M−ε)

Γ(s3 + z)Γ(−z)

Γ(s3)

×
∫

(M−ε)

Γ(s1 + s3 + z + z′)Γ(−z′)

Γ(s1 + s3 + z)
ζ(s1 + s2 + s3 + z′)ζ(−z′)dz′dz.

It is easy to see that
(i) P (s1, s3) is holomorphic if <s3 > −M + ε and <(s1 + s3) > 1 −M + ε,

and
(ii) Qj(s1, s3) is holomorphic for 0 ≤ j ≤M − 1 if <s3 > −M + ε.
Also, since the inner integral of R(s1, s2, s3) is holomorphic if <(s1 +s3 +z) >

−M + ε and <(s1 + s2 + s3) > 1 − M + ε as a function of the four variables
(s1, s2, s3, z), we see that

(iii) R(s1, s2, s3) is holomorphic if <s3 > −M + ε, <(s1 + s3) > −2M + 2ε
and <(s1 + s2 + s3) > 1−M + ε.

From (i), (ii), (iii) and (5.9), we find that ζAV (s1, s2, s3) can be continued
meromorphically to the region











(s1, s2, s3) ∈ C3

∣

∣

∣

∣

∣

∣

∣

<s3 > −M + ε,
<(s1 + s3) > 1−M + ε,
<(s1 + s2 + s3) > 1−M + ε











.

Since M is arbitrary, we obtain the analytic continuation of ζAV (s1, s2, s3) to
the whole C3-space. The information on singularities can be deduced from the
expression (5.9). The proof of Theorem 2 is complete.

6 Generalized multiple zeta-functions

Let s1, . . . , sr be complex variables, α1, . . . , αr, w1, . . . , wr be complex param-
eters, and define the multiple series

ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr))

=
∞
∑

m1=0

· · ·
∞
∑

mr=0

(α1 +m1w1)
−s1(α2 +m1w1 +m2w2)

−s2

× · · · × (αr +m1w1 + · · ·+mrwr)
−sr . (6.1)

We will explain later (in the proof of Theorem 3) how to choose the branch of
logarithms.
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When s1 = · · · = sr−1 = 0, then the above series (6.1) reduces to the Barnes
multiple zeta-function (1.3). The Euler-Zagier sum (3.1) and its generalization
(3.4) are also special cases of (6.1). The multiple series of the form (6.1) was first
introduced in the author’s article [44], and the meromorphic continuation of the
special case 0 < α1 < α2 < · · · < αr and wj = 1 (1 ≤ j ≤ r) of (6.1) to the whole
Cr-space was proved in [44].

To ensure the convergence of (6.1), we assume the condition (1.4) on wjs,
which was first introduced by Barnes for his multiple series (1.3). But we do not
require any condition on αjs. If αj /∈ H(`) for some j, then there might exist
finitely many (m1, . . . , mj)’s for which

αj +m1w1 + · · ·+mjwj = 0 (6.2)

holds. We adopt the convention that the terms corresponding to such (m1, . . . , mj)’s
are removed from the sum (6.1). Under this convention, we now prove

Theorem 3 If the condition (1.4) holds, then the series (6.1) is absolutely con-
vergent in the region Ar, defined by (3.2), uniformly in any compact subset of
Ar.

Proof. We prove the theorem by induction. When r = 1, the assertion is
obvious. Assume that the theorem is true for ζr−1. In what follows, the empty
sum is to be considered as zero.

Let θ ∈ (−π, π] be the argument of the vector contained in H(`) and orthog-
onal to `. Then the line ` consists of the points whose arguments are θ ± π/2
(and the origin), and

H(`) =
{

w ∈ C \ {0}
∣

∣

∣

∣

θ −
π

2
< argw < θ +

π

2

}

.

We can write wj = w
(1)
j + w

(2)
j , with argw

(1)
j = θ − π/2 or θ + π/2 (or w

(1)
j = 0)

and argw
(2)
j = θ. Similarly we write αj = α

(1)
j + α

(2)
j with argα

(1)
j = θ − π/2 or

θ + π/2 (or α
(1)
j = 0) and argα

(2)
j = θ or −θ (or α

(2)
j = 0). If the set

E =
{

α
(2)
j

∣

∣

∣ argα
(2)
j = −θ or α

(2)
j = 0

}

is not empty, we denote by α̃ (one of) the element(s) of this set whose absolute

value is largest. Let µ be the smallest positive integer such that α̃+m1w
(2)
1 ∈ H(`)

for any m1 ≥ µ, and divide (6.1) as

ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr))

=
µ−1
∑

m1=0

∞
∑

m2=0

· · ·
∞
∑

mr=0

+
∞
∑

m1=µ

∞
∑

m2=0

· · ·
∞
∑

mr=0

= T1 + T2, (6.3)
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say. (If E = ∅, then we put µ = 0.) For any m1 ≤ µ − 1, we put α′j(m1) =
αj +m1w1. Then

T1 =
µ−1
∑

m1=0

α′1(m1)
−s1

∞
∑

m2=0

· · ·
∞
∑

mr=0

(α′2(m1) +m2w2)
−s2

× · · · × (α′r(m1) +m2w2 + · · ·+mrwr)
−sr

=
µ−1
∑

m1=0

α′1(m1)
−s1

×ζr−1((s2, . . . , sr); (α
′
2(m1), . . . , α

′
r(m1)), (w2, . . . , wr)). (6.4)

As for T2, we put α′j(µ) = αj + µw1 and m′
1 = m1 − µ. Then

T2 =
∞
∑

m′

1
=0

∞
∑

m2=0

· · ·
∞
∑

mr=0

(α′1(µ) +m′
1w1)

−s1(α′2(µ) +m′
1w1 +m2w2)

−s2

× · · · × (α′r(µ) +m′
1w1 +m2w2 + · · ·+mrwr)

−sr . (6.5)

Since α′j(µ) = (α
(1)
j + µw

(1)
1 ) + (α

(2)
j + µw

(2)
1 ), the definitions of α̃ and µ imply

that α′j(µ) ∈ H(`). The right-hand side of (6.4) is absolutely convergent by
induction assumption. Hence we have only to show the absolute convergence of
(6.5). In other words, our remaining task is to prove the absolute convergence of
(6.1) under the additional assumption that αj ∈ H(`) (1 ≤ j ≤ r). Then always
αj +m1w1 + · · ·+mrwr ∈ H(`). Each factor on the right-hand side of (6.1) is to
be understood as

(αj +m1w1 + · · ·+mjwj)
−sj = exp(−sj log(αj +m1w1 + · · ·+mjwj)),

where the branch of the logarithm is chosen by the condition

θ −
π

2
< arg(αj +m1w1 + · · ·+mjwj) < θ +

π

2
.

Let σj = <sj, tj = =sj, and define J+ = {j | σj ≥ 0} and J− = {j | σj < 0}.
Since

|αj +m1w1 + · · ·+mjwj|

≥ |α(2)
j +m1w

(2)
1 + · · ·+mjw

(2)
j |

= | |α
(2)
j |eiθ +m1|w

(2)
1 |eiθ + · · ·+mj|w

(2)
j |eiθ|

= |α
(2)
j |+m1|w

(2)
1 |+ · · ·+mj|w

(2)
j |,

we have

|αj +m1w1 + · · ·+mjwj|
−σj ≤ (|α

(2)
j |+m1|w

(2)
1 |+ · · ·+mj|w

(2)
j |)−σj
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for j ∈ J+. On the other hand, it is clear that

|αj +m1w1 + · · ·+mjwj|
−σj ≤ (|αj|+m1|w1|+ · · ·+mj|wj|)

−σj

for j ∈ J−. Therefore, denoting

α∗j =

{

|α
(2)
j | if j ∈ J+

|αj| if j ∈ J−

and

w∗
j =

{

|w
(2)
j | if j ∈ J+

|wj| if j ∈ J−,

we find that α∗j > 0, w∗
j > 0 for all j and that

|(αj +m1w1 + · · ·+mjwj)
−sj |

= |αj +m1w1 + · · ·+mjwj|
−σj exp(tj arg(αj +m1w1 + · · ·+mjwj))

≤ (α∗j +m1w
∗
1 + · · ·+mjw

∗
j )
−σj exp(2π|tj|).

Hence

|ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr))|

≤ exp(2π(|t1|+ · · ·+ |tr|)

×
∞
∑

m1=0

· · ·
∞
∑

mr=0

(α∗1 +m1w
∗
1)
−σ1(α∗2 +m1w

∗
1 +m2w

∗
2)
−σ2

× · · · × (α∗r +m1w
∗
1 + · · ·+mrw

∗
r)
−σr . (6.6)

We claim that for any positive integers k ≤ r, the series

S(k) =
∞
∑

mr−k+1=0

∞
∑

mr−k+2=0

· · ·
∞
∑

mr=0

(α∗r−k+1 +m1w
∗
1 + · · ·+mr−k+1w

∗
r−k+1)

−σr−k+1

×(α∗r−k+2 +m1w
∗
1 + · · ·+mr−k+2w

∗
r−k+2)

−σr−k+2

× · · · × (α∗r +m1w
∗
1 + · · ·+mrw

∗
r)
−σr

is convergent in the region σr > 1, σr−1 + σr > 2,..., σr−k+1 + · · ·+ σr > k, and
the estimate

S(k) � (β1(k) +m1w
∗
1 + · · ·+mr−kw

∗
r−k)

×(β2(k) +m1w
∗
1 + · · ·+mr−kw

∗
r−k)

c(k) (6.7)

holds, where β1(k) > β2(k) > 0,

c(k) = k − 1− (σr−k+1 + · · ·+ σr), (6.8)
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and the implied constant depends on σj, α
∗
j and w∗

j (r − k + 1 ≤ j ≤ r). Note
that c(k) < −1.

We prove this claim by induction. For any positive a, b and σ > 1, we have

∞
∑

m=0

(a + bm)−σ = a−σ +
∫ ∞

0
(a + bx)−σdx�

(

1 +
a

b

)

a−σ, (6.9)

where the implied constant depends only on σ. Using (6.9) with m = mr, σ = σr,
a = α∗r +m1w

∗
1 + · · ·+mr−1w

∗
r−1 and b = w∗

r , we can easily show the case k = 1 of
the claim with β1(1) = α∗r + w∗

r and β2(1) = α∗r. Now we assume that the claim
is true for S(k − 1). Then we have

S(k) �
∞
∑

mr−k+1=0

(α∗r−k+1 +m1w
∗
1 + · · ·+mr−k+1w

∗
r−k+1)

−σr−k+1

×(β1(k − 1) +m1w
∗
1 + · · ·+mr−k+1w

∗
r−k+1)

×(β2(k − 1) +m1w
∗
1 + · · ·+mr−k+1w

∗
r−k+1)

c(k−1).

If −σr−k+1 ≥ 0, then we replace α∗r−k+1 and β1(k−1) by max{α∗r−k+1, β1(k−1)}.
If −σr−k+1 < 0, then we replace α∗r−k+1 and β2(k− 1) by min{α∗r−k+1, β2(k− 1)}.
In any case, we get the estimate of the form

S(k) �
∞
∑

mr−k+1=0

(B1 +m1w
∗
1 + · · ·+mr−k+1w

∗
r−k+1)

C1

×(B2 +m1w
∗
1 + · · ·+mr−k+1w

∗
r−k+1)

C2 (6.10)

where B1 > B2 > 0, C1 ≥ 0, C2 < 0, and

C1 + C2 = −σr−k+1 + 1 + c(k − 1) = c(k). (6.11)

Since

(B1 +m1w
∗
1 + · · ·+mr−k+1w

∗
r−k+1)

C1

= (B2 +m1w
∗
1 + · · ·+mr−k+1w

∗
r−k+1)

C1

×

(

1 +
B1 −B2

B2 +m1w∗
1 + · · ·+mr−k+1w∗

r−k+1

)C1

≤
(

1 +
B1 − B2

B2

)C1

(B2 +m1w
∗
1 + · · ·+mr−k+1w

∗
r−k+1)

C1 ,

from (6.10) and (6.11) it follows that

S(k) �
∞
∑

mr−k+1=0

(B2 +m1w
∗
1 + · · ·+mr−k+1w

∗
r−k+1)

c(k). (6.12)
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The claim for S(k) now follows by applying (6.9) to the right-hand side of (6.12),
with β1(k) = B2 + w∗

r−k+1 and β2(k) = B2. Hence by induction we find that
the claim is true for 1 ≤ k ≤ r, and the claim for k = r implies the absolute
convergence of the right-hand side of (6.6). This completes the proof of Theorem
3.

Now we apply the method explained in Sections 4 and 5 to the generalized
multiple zeta-function (6.1). Besides (1.4), we assume

αj ∈ H(`) (1 ≤ j ≤ r) and αj+1 − αj ∈ H(`) (1 ≤ j ≤ r − 1). (6.13)

We use (4.1) with s = sr and

λ =
αr − αr−1 +mrwr

αr−1 +m1w1 + · · ·+mr−1wr−1
.

Under the assumption (6.13) both the numerator and the denominator of λ are
the elements of H(`), hence | argλ| < π. Similarly to (4.3), (5.2) or (5.7), we
obtain

ζr((s1, . . . , sr); (α1, . . . , αr), (w1, . . . , wr))

=
1

2πi

∫

(c)

Γ(sr + z)Γ(−z)

Γ(sr)
ζr−1((s1, . . . , sr−2, sr−1 + sr + z);

(α1, . . . , αr−1), (w1, . . . , wr−1))ζ
(

−z,
αr − αr−1

wr

)

wz
rdz. (6.14)

Hence, shifting the path of integration, we can prove

Theorem 4 Under the conditions (1.4) and (6.13), the multiple zeta-function
(6.1) can be continued meromorphically to the whole Cr-space.

In the present article we content ourselves with the above very brief outline
of the method. The details of the proof, which is induction on r, will be given in
[46].

Finally we mention the analytic continuation of Mordell multiple zeta-functions.
In Section 5 we quoted Mordell’s paper [52], in which he studied the special case
s1 = s2 = s3 of (5.1). In the same paper, Mordell also considered the multiple
series

∞
∑

m1=1

· · ·
∞
∑

mr=1

1

m1m2 · · ·mr(m1 +m2 + · · ·+mr + a)
(6.15)

where a > −r. By using Mordell’s result on (6.15), Hoffman [22] evaluated the
sum

∞
∑

m1=1

· · ·
∞
∑

mr=1

1

m1m2 · · ·mr(m1 +m2 + · · ·+mr)s
(6.16)
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when s is a positive integer.
Here we introduce the following multi-variable version of (6.16), which is at

the same time a generalization of the Mordell-Tornheim zeta-function (5.1):

ζMOR,r(s1, . . . , sr, sr+1)

=
∞
∑

m1=1

· · ·
∞
∑

mr=1

m−s1

1 · · ·m−sr

r (m1 + · · ·+mr)
−sr+1. (6.17)

Theorem 5 The series (6.17) can be continued meromorphically to the whole
Cr+1-space.

This and related results will be discussed in a forthcoming paper.
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