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Abstract

Let Γ2(β, (w1, w2)) be the double gamma-function. We prove asymp-
totic expansions of log Γ2(β, (1, w)) with respect to w, both when |w| →
+∞ and when |w| → 0. Our proof is based on the results on Barnes’ dou-
ble zeta-functions given in the author’s former article [11]. We also prove
asymptotic expansions of log Γ2(2εn − 1, (εn − 1, εn)), ρ2(εn − 1, εn) and
ρ2(εn, ε2

n−εn), where εn is the fundamental unit of K = Q(
√

4n2 + 8n + 3).
Combining those results with Fujii’s formula [6][7], we obtain an expansion
formula for ζ ′(1; v1), where ζ(s; v1) is Hecke’s zeta-function associated with
K.

1 Introduction

This is a continuation of the author’s article [11]. We first recall Theorem 1
and its corollaries in [11].

Let β > 0, and w is a non-zero complex number with | argw| < π. The Barnes
double zeta-function is defined by

ζ2(v; β, (1, w)) =
∞
∑

m=0

∞
∑

n=0

(β +m + nw)−v. (1.1)

This series is convergent absolutely for <v > 2, and can be continued meromor-
phically to the whole v-plane, holomorphic except for the poles at v = 1 and
v = 2.

Let ζ(v), ζ(v, β) be the Riemann zeta and the Hurwitz zeta-function, respec-
tively, C the complex number field, θ0 a fixed number satisfying 0 < θ0 < π, and
put

W∞ = {w ∈ C | |w| ≥ 1, | argw| ≤ θ0}

and

W0 = {w ∈ C | |w| ≤ 1, w 6= 0, | argw| ≤ θ0}.
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Define
(

v

n

)

=

{

v(v − 1) · · · (v − n+ 1)/n! if n is a positive integer,
1 if n = 0.

Theorem 1 in [11] asserts that for any positive integer N we have

ζ2(v; β, (1, w)) = ζ(v, β) +
ζ(v − 1)

v − 1
w1−v

+
N−1
∑

k=0

(

−v
k

)

ζ(−k, β)ζ(v + k)w−v−k + O(|w|−<v−N) (1.2)

in the region <v > −N + 1 and w ∈ W∞, and also

ζ2(v; β, (1, w)) = ζ(v, β) +
ζ(v − 1, β)

v − 1
w−1

+
N−1
∑

k=0

(

−v
k

)

ζ(v + k, β)ζ(−k)wk +O(|w|N) (1.3)

in the region <v > −N +1 and w ∈ W0 The implied constants in (1.2) and (1.3)
depend only on N, v, β and θ0.

There are two corollaries of these results stated in [11]. Corollary 1 gives the
asymptotic expansions of Eisenstein series, which we omit here. The detailed
proof of Corollary 1 are described in [11]. On the other hand, Corollary 2 in [11]
is only stated without proof. Here we state it as the following Theorem 1.

Let Γ2(β, (1, w)) be the double gamma-function defined by

log

(

Γ2(β, (1, w))

ρ2(1, w)

)

= ζ ′2(0; β, (1, w)), (1.4)

where ’prime’ denotes the differentiation with respect to v and

− log ρ2(1, w) = lim
β→0

{ζ ′2(0; β, (1, w)) + log β}. (1.5)

Let ψ(v) = (Γ′/Γ)(v) and γ the Euler constant. Then we have

Theorem 1 For any positive integer N ≥ 2, we have

log Γ2(β, (1, w)) = −1

2
β logw + log Γ(β) +

1

2
β log 2π

+(ζ(−1, β)− ζ(−1))w−1 logw − (ζ(−1, β)− ζ(−1))γw−1

+
N−1
∑

k=2

(−1)k

k
(ζ(−k, β)− ζ(−k))ζ(k)w−k

+O(|w|−N) (1.6)
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for w ∈ W∞, where the implied constant depends only on N, β and θ0. Also we

have

log Γ2(β, (1, w))

= log Γ(βw−1 + 1) +
1

2
log Γ(β + 1)− log β + βw−1 logw

+

{

ζ(−1) + ζ ′(−1)− γ

12
− ζ1(−1, β)− ζ ′1(−1, β)− ψ(β + 1)

12

}

w−1

−
N−1
∑

k=2

(−1)k

k
(ζ(k)− ζ1(k, β))ζ(−k)wk +O(|w|N) (1.7)

for w ∈ W0, where ζ1(v, β) = ζ(v, β)−β−v and the implied constant depends only

on N and θ0.

Note that when w > 0, the formula (1.6) was already obtained in [10] by a
different method.

We will show the proof of Theorem 1 in Section 2, and will give additional
remarks in Section 3. In Section 4 we will prove Theorem 2, which will give a
uniform error estimate with respect to β. In Section 5 we will state Theorem
3, our second main result in the present paper, that is an asymptotic expansion
formula for ζ ′(1; v1), where ζ(s; v1) is Hecke’s zeta-function associated with the
real quadratic field Q(

√
4n2 + 8n+ 3). This can be proved by combining Fujii’s

result [6][7] with certain expansions of double gamma-functions, and the proof of
the latter will be described in Sections 6 to 8. Throughout this paper, the empty
sum is to be considered as zero.

2 Proof of Theorem 1

Double gamma-functions were first introduced and studied by Barnes [3] [4]
and others about one hundred years ago. In 1970s, Shintani [13][14] discovered
the importance of double gamma-functions in connection with Kronecker limit
formulas for real quadratic fields. Now the usefulness of double gama-functions in
number theory is a well-known fact. For instance, see Vignéras [17], Arakawa [1]
[2], Fujii [6][7]. Therefore it is desirable to study the asymptotic behaviour of dou-
ble gamma-functions. Various asymptotic formulas of double gamma-functions
are obtained by Billingham and King [5]. Also, when w > 0, the formula (1.6)
was already proved in the author’s article [10], by using a certain contour integral.
It should be noted that in [10], it is claimed that the error term on the right-hand
side of (1.6) is uniform in β (or α in the notation of [10]), but this is not true.
See [12], and also Section 4 of the present paper.
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Here we prove Theorem 1 by using the results given in [11]. The special case
u = 0, α = β of the formula (3.8) of [11] implies

ζ2(v; β, (1, w)) = ζ(v, β) +
ζ(v − 1)

v − 1
w1−v

+
N−1
∑

k=0

(

−v
k

)

ζ(−k, β)ζ(v + k)w−v−k

+ RN(v; β, w) (2.1)

for any positive integer N , where

RN(v; β, w) =
1

2πi

∫

(cN )

Γ(v + z)Γ(−z)
Γ(v)

ζ(v + z, β)ζ(−z)wzdz, (2.2)

cN = −<v − N + ε with an arbitrarily small positive ε, and the path of the
above integral is the vertical line <z = cN . In Section 5 of [11] it is shown that
(2.1) holds for <v > −N + 1 + ε, w ∈ W∞. The result (1.2) is an immediate
consequence of the above facts.

From (2.1) we have

ζ ′2(v; β, (1, w)) = ζ ′(v, β)− ζ(v − 1)

(v − 1)2
w1−v +

ζ ′(v − 1)

v − 1
w1−v

− ζ(v − 1)

v − 1
w1−v logw +

N−1
∑

k=0

Ak(v; β, w)

+ R′N (v; β, w), (2.3)

where

Ak(v; β, w) =

{(

−v
k

)′

ζ(v + k) +

(

−v
k

)

ζ ′(v + k)

−
(

−v
k

)

ζ(v + k) logw

}

ζ(−k, β)w−v−k.

Noting the facts

ζ(0) = −1

2
, ζ(−1) = − 1

12
, ζ ′(0) = −1

2
log 2π,

ζ(0, β) =
1

2
− β, ζ ′(0, β) = log Γ(β)− 1

2
log 2π, (2.4)

and
(

−v
k

)′∣
∣

∣

∣

∣

v=0

=

{

0 if k = 0,
(−1)kk−1 if k ≥ 1,
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we find

A0(0; β, w) =
1

2

(

β − 1

2

)

(log 2π − logw),

lim
v→0

A1(v; β, w) = ζ(−1, β)w−1(logw − γ),

Ak(0; β, w) =
(−1)k

k
ζ(−k, β)ζ(k)w−k (k ≥ 2),

and so

ζ ′2(0; β, (1, w))

= − 1

12
w logw +

(

1

12
− ζ ′(−1)

)

w +
1

2

(

1

2
− β

)

logw

+ log Γ(β) +
(

1

2
β − 3

4

)

log 2π

+ζ(−1, β)w−1 logw − ζ(−1, β)γw−1

+
N−1
∑

k=2

(−1)k

k
ζ(−k, β)ζ(k)w−k +R′N (0; β, w) (2.5)

for w ∈ W∞ and N ≥ 2. (The above calculations are actually the same as in
pp.395-396 of [10].)

Put z = −v − N + ε + iy in (2.2), and differentiate with respect to v. We
obtain

R′N(v; β, w) =
1

2π

∫ ∞

−∞
Γ(−N + ε+ iy)ζ(−N + ε+ iy, β)w−v−N+ε+iy

×
{

Γ′(v +N − ε− iy)

Γ(v)
ζ(v +N − ε− iy)

−Γ(v +N − ε− iy)
Γ′(v)

Γ(v)2
ζ(v +N − ε− iy)

+
Γ(v +N − ε− iy)

Γ(v)
ζ ′(v +N − ε− iy)

−Γ(v +N − ε− iy)

Γ(v)
ζ(v +N − ε− iy) logw

}

dy.

Noting

Γ′(v)

Γ(v)2
=

1

Γ(v)

(

ψ(v + 1)− 1

v

)

=
1

Γ(v + 1)
(vψ(v + 1)− 1) → −1

(as v → 0), we have

R′N (0; β, w) =
1

2π

∫ ∞

−∞
Γ(−N + ε+ iy)ζ(−N + ε+ iy, β)w−N+ε+iy

×Γ(N − ε− iy)ζ(N − ε− iy)dy. (2.6)

5



Hence, using Stirling’s formula and Lemma 2 of [11] we can show that

R′N (0; β, w) = O(|w|−N+ε), (2.7)

and this estimate is uniform in β if 0 < β ≤ 1.
Consider (2.5) with N + 1 instead of N , and compare it with the original

(2.5). Then we find

R′N (0; β, w) =
(−1)N

N
ζ(−N, β)ζ(N)w−N +R′N+1(0; β, w)

=
(−1)N

N
ζ(−N, β)ζ(N)w−N +O(|w|−N−1+ε),

hence

R′N (0; β, w) = O(|w|−N), (2.8)

which is again uniform in β if 0 < β ≤ 1. Noting this uniformity and the fact

log Γ(β) = log Γ(β + 1)− log β,

from (2.5) we obtain

− log ρ2(1, w) = − 1

12
w logw +

(

1

12
− ζ ′(−1)

)

w +
1

4
logw

− 3

4
log 2π + ζ(−1)w−1 logw − ζ(−1)γw−1

+
N−1
∑

k=2

(−1)k

k
ζ(−k)ζ(k)w−k +O(|w|−N) (2.9)

for w ∈ W∞. The first assertion (1.6) of Theorem 1 follows from (2.5), (2.8) and
(2.9).

Next we prove (1.7). Our starting point is the special case u = 0, α = β of
(6.7) of [11], that is

ζ2(v; β, (1, w))

= ζ(v, β) + ζ1(v, β/w)w−v +
1

v − 1
ζ1(v − 1, β)w−1

+
N−1
∑

k=0

(

−v
k

)

ζ1(v + k, β)ζ(−k)wk + S1,N (v; β, w), (2.10)

where

S1,N(v; β, w) =
1

2πi

∫

(N−ε)

Γ(v + z)Γ(−z)
Γ(v)

ζ1(v + z, β)ζ(−z)wzdz. (2.11)
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In Section 6 of [11] it is shown that (2.10) holds for <v > 1 − N + ε, w ∈ W0.
From (2.10) it follows that

ζ ′2(v; β, (1, w))

= ζ ′(v, β) + ζ ′1(v, β/w)w−v − ζ1(v, β/w)w−v logw

− 1

(v − 1)2
ζ1(v − 1, β)w−1 +

1

v − 1
ζ ′1(v − 1, β)w−1

+
N−1
∑

k=0

Bk(v; β)ζ(−k)wk + S ′1,N(v; β, w), (2.12)

where

Bk(v; β) =

(

−v
k

)′

ζ1(v + k, β) +

(

−v
k

)

ζ ′1(v + k, β).

It is clear that B0(0; β) = ζ ′1(0, β) and

Bk(0; β) =
(−1)k

k
ζ1(k, β) (k ≥ 2).

Also, since

lim
v→0

(

ζ1(v + 1, β)− 1

v

)

= −ψ(β)− β−1,

we see that

lim
v→0

B1(v; β) = ψ(β) + β−1.

Hence from (2.12) (with (2.4)) we get

ζ ′2(0; β, (1, w)) =
1

2
logw +

1

2
log Γ(β + 1)− log β

−3

4
log 2π + log Γ

(

β

w
+ 1

)

+ βw−1 logw

−
{

ζ1(−1, β) + ζ ′1(−1, β) +
1

12
ψ(β + 1)

}

w−1

+
N−1
∑

k=2

(−1)k

k
ζ1(k, β)ζ(−k)wk + S ′1,N (0; β, w) (2.13)

for N ≥ 2.
The estimate

S ′1,N(0; β, w) = O(|w|N) (2.14)
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can be shown similarly to (2.8); this time, instead of Lemma 2 of [11], we use
the fact that ζ1(v, β) and ζ ′1(v, β) are uniformly bounded with respect to β in the
domain of absolute convergence. Hence (2.14) is uniform for any β > 0. From
(2.13), (2.14) and this uniformity, we obtain

− log ρ2(1, w)

=
1

2
logw − 3

4
log 2π +

(

1

12
γ − ζ(−1)− ζ ′(−1)

)

w−1

+
N−1
∑

k=2

(−1)k

k
ζ(k)ζ(−k)wk +O(|w|N) (2.15)

for N ≥ 2, w ∈ W0. From (2.13), (2.14) and (2.15), the assertion (1.7) follows.

3 Additional remarks on Theorem 1

In this supplementary section we give two additional remarks.
First we mention an alternative proof of (1.6). Shintani [15] proved

Γ2(β, (1, w)) = (2π)β/2 exp

{(

β − β2

2w
− β

2

)

logw +
(β2 − β)γ

2w

}

×Γ(β)
∞
∏

n=1

Γ(β + nw)

Γ(1 + nw)
exp

{

β − β2

2nw
+ (1− β) log(nw)

}

(3.1)

(see also Katayama-Ohtsuki [9], p.179). Shintani assumed that w > 0, but (3.1)
holds for any complex w with | argw| < π by analytic continuation. We recall
Stirling’s formula of the form

log Γ(w + a) =
(

w + a− 1

2

)

logw − w +
1

2
log 2π

+
M
∑

m=1

(−1)m−1B′m+2(a)

m(m + 1)(m+ 2)wm
+O(|w|−M−1/2), (3.2)

given in p.278, Section 13.6 of Whittaker-Watson [18], where B ′m+2(a) is the
derivative of the (m + 2)th Bernoulli polynomial and M is any positive integer.
Noting

ζ(−m, a) = − B′m+2(a)

(m+ 1)(m + 2)
(3.3)

(p.267, Section 13.14 of [18]), we obtain

log

( ∞
∏

n=1

Γ(β + nw)

Γ(1 + nw)
exp

{

β − β2

2nw
+ (1− β) log(nw)

})

=
∞
∑

n=1

{

β − β2

2nw

−
M
∑

m=1

(−1)m−1

mnm
(ζ(−m, β)− ζ(−m))w−m +O

(

(n|w|)−M−1/2
)

}

. (3.4)
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From (3.3) and the fact B3(a) = a3 − (3/2)a2 + (1/2)a it follows that

ζ(−1, a) =
1

2
(a− a2)− 1

12
. (3.5)

Hence the coefficient of the term of order w−1 on the right-hand side of (3.4)
vanishes, and so the right-hand side of (3.4) is equal to

−
M
∑

m=2

(−1)m−1

m
(ζ(−m, β)− ζ(−m))ζ(m)w−m +O

(

|w|−M−1/2
)

.

Substituting this into the right-hand side of (3.1), and noting (3.5), we arrive at
the formula (1.6).

Next we discuss a connection with the Dedekind eta-function

η(w) = eπiw/12
∞
∏

n=1

(1− e2πinw). (3.6)

In the rest of this section we assume π/2 ≤ θ0 ≤ π, and define

W(θ0) = {w ∈ C | π − θ0 ≤ argw ≤ θ0}.

For w ∈ W(θ0) we have log(−w) = −πi + logw. Hence from (2.9) and the facts
ζ(−1) = −1/12 and ζ(−k) = 0 for even k it follows that

log ρ2(1, w) + log ρ2(1,−w)

=
1

12
πiw − 1

2
logw +

1

4
πi +

3

2
log 2π +

1

12
πiw−1 +O(|w|−N) (3.7)

for w ∈ W∞ ∩W(θ0) and N ≥ 2. Similarly, from (2.15) we get

log ρ2(1, w) + log ρ2(1,−w)

= − logw +
1

2
πi+

3

2
log 2π +O(|w|N) (3.8)

for w ∈ W0 ∩ W(θ0) and N ≥ 2. The reason why the terms of order w±k

(2 ≤ k ≤ N − 1) vanish in (3.7) and (3.8) can be explained by the modularity of
η(w), by using the formula

ρ2(1, w)ρ2(1,−w) = (2π)3/2w−1/2η(w) exp
(

πi
(

1

4
+

1

12w

))

(3.9)

due to Shintani [15]. In fact, in view of (3.9), we see that (3.7) is a direct
consequence of the definition (3.6) of η(w). Also (3.8) follows easily from (3.9)
and the modular relation of η(w).

9



4 The uniformity of the error terms

A difference between (1.6) and (1.7) is that the error estimate in (1.7) is
uniform in β, while that in (1.6) is not. From the proof it can be seen that the
implied constant in (1.6) does not depend on β if 0 < β ≤ 1. For general β,
it is possible to separate the parts depending on β from the error term on the
right-hand side of (1.6). An application can be found in [12].

We write β = A+ β̃, where A is a non-negative integer and 0 < β̃ ≤ 1. Then
we have

Theorem 2 For any positive integer N and <v > −N + 1, we have

RN(v; β, w) = −
∞
∑

k=N

(

−v
k

)

ζ(v + k)
A−1
∑

j=0

(β̃ + j)kw−v−k

+O(|w|−<v−N) (4.1)

if w ∈ W∞ and |w| > β − 1, where the implied constant depends only on v, N
and θ0.

In the case w > 0, this result has been proved in [12], but the proof presented
below is simpler.

Corollary Let N ≥ 2, w ∈ W∞ and |w| > β − 1. Then the error term on the

right-hand side of (1.6) can be replaced by

−
∞
∑

k=N

(−1)k

k
ζ(k)

A−1
∑

j=0

(β̃ + j)kw−k +O(|w|−N),

and the implied constant depends only on N and θ0.

Now we prove the theorem. Since

ζ(v + z, β) = ζ(v + z, β̃)−
A−1
∑

j=0

(β̃ + j)−v−z,

from (2.2) we have

RN (v; β, w) = −
A−1
∑

j=0

1

2πi

∫

(cN )

Γ(v + z)Γ(−z)
Γ(v)

(β̃ + j)−v−zζ(−z)wzdz

+RN (v; β̃, w)

= −
A−1
∑

j=0

TN (j) +RN(v; β̃, w), (4.2)
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say. Let L be a large positive integer (L > N), and shift the path of integration of
TN(j) to <z = cL. Counting the residues of the poles z = −v−k (N ≤ k ≤ L−1),
we obtain

TN(j) =
L−1
∑

k=N

(

−v
k

)

ζ(v + k)(β̃ + j)kw−v−k + TL(j).

Using Stirling’s formula we can see that TL(j) → 0 as L → +∞ if |w| > β̃ + j.
The resulting infinite series expression of−∑A−1

j=0 TN (j) coincides with the explicit

term on the right-hand side of (4.1). The remainder term RN (v; β̃, w) can be
estimated by (5.4) of [11]. Since 0 < β̃ ≤ 1, the estimate is uniform in β̃. Hence
the proof of Theorem 2 is complete.

5 An Asymptotic expansion of the derivative of

Hecke’s zeta-function at s = 1

Let D be a square-free positive integer, D ≡ 2 or 3 (mod 4). Hecke [8]
introduced and studied the zeta-function (following the notation of Hecke)

ζ(s; v1) =
∑

(µ)

sgn(µµ′)

|N(µ)|s (5.1)

associated with the real quadratic field Q(
√
D), where (µ) runs over all non-zero

principal integral ideals of Q(
√
D), N(µ) is the norm of (µ), µ′ is the conjugate

of µ, and sgn(µµ′) is the sign of µµ′. Hecke’s motivation is to study the Dirichlet
series

Z√D(s) =
∞
∑

n=1

{n
√
D} − 1/2

ns
,

where {x} is the fractional part of x. The coefficients G1(
√
D) and G2(

√
D) in

the Laurent expansion

Z√D(s) = G1(
√
D)s−1 +G2(

√
D) +G3(

√
D)s+ · · ·

are important in the study of the distribution of {n
√
D}−1/2, a famous classical

problem in number theory. Hecke’s paper [8] implicitly includes the evaluation
of G1(

√
D) and G2(

√
D) in terms of ζ(1; v1) and ζ ′(1; v1). In particular,

G2(
√
D) =

ζ(1; v1)
√
D

π2 log εD
(γ + log 2π)− ζ ′(1; v1)

√
D

2π2 log εD
− 1

12

√
D +

1

8
(5.2)

if N(εD) = 1, where εD is the fundamental unit of Q(
√
D).
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Fujii [6] proved different expressions for G1(
√
D) and G2(

√
D). Combining

them with Hecke’s results, Fujii obtained new expressions for ζ(1; v1) and ζ ′(1; v1).
An interesting feature of Fujii’s results is that double gamma-functions appear in
his expressions. This is similar to Shintani’s theorem [14]. Shintani [14] proved a
formula which expresses the value LF (1, χ) of a certain Hecke L-function (asso-
ciated with a real quadratic field F ) in terms of double gamma-functions. Com-
bining Shintani’s result with our expansion formula for double gamma-functions,
we have shown an expansion for LF (1, χ) in [12]. In a similar way, in this paper
we prove an expansion formula for ζ ′(1; v1).

Fujii [6] proved his results for any Q(
√
D), D is square-free, positive, ≡ 2 or

3 (mod 4). However, his general statement is very complicated. Therefore in this
paper we content ourselves with considering a typical example, given as Example
2 in Fujii [7].

To state Fujii’s results, we introduce more general form of double zeta and
double gamma-functions. Let α, w1, w2 be positive numbers, and define

ζ2(v;α, (w1, w2)) =
∞
∑

m=0

∞
∑

n=0

(α +mw1 + nw2)
−v, (5.3)

− log ρ2(w1, w2) = lim
α→0

{ζ ′2(0;α, (w1, w2)) + logα}, (5.4)

and

log
Γ2(α, (w1, w2))

ρ2(w1, w2)
= ζ ′2(0;α, (w1, w2)). (5.5)

Let n be a non-negative integer such that 4n2 +8n+3 is square-free. We consider
the case D = 4n2 + 8n + 3. Then εn =

√
D + 2n + 2 is the fundamental unit of

Q(
√
D). Example 2 of Fujii [7] asserts that

ζ(1; v1) =
π2

12

4n+ 1√
4n2 + 8n+ 3

(5.6)

and

ζ ′(1; v1) =
2π2

√
4n2 + 8n+ 3

{

− log
Γ2(ε

2
n, (εn, ε

2
n − εn))ρ2(εn − 1, εn)

ρ2(εn, ε2
n − εn)Γ2(2εn − 1, (εn − 1, εn))

+
4n+ 1

12

(

γ + log 2π − log(εn − ε−1
n )

)

− log εn

24

(√
4n2 + 8n+ 3

2n + 1
+ 8n+ 5

)}

. (5.7)

Let α, β be positive numbers with α < β, and define

ζ2((u, v); (α, β)) =
∞
∑

m=0

∞
∑

n=0

(α +m)−u(β +m+ n)−v. (5.8)

12



In [11] we have shown that ζ2((u, v); (α, β)) can be continued meromorphically to
the whole C2-space. In Section 7 we will see that ζ2((0, v); (α, β)) is holomorphic
at v = 0, while ζ2((−k, v + k); (α, β)) has a pole of order 1 at v = 0 for any
positive integer k. Denote the Laurent expansion at v = 0 by

ζ2((−k, v + k); (α, β))

= C−1(k; (α, β))
1

v
+ C0(k; (α, β)) + C1(k; (α, β))v + · · · (5.9)

for k ≥ 1. We shall prove

Theorem 3 Let D = 4n2 + 8n + 3, εn =
√
D + 2n + 2, and ξ = ξn = εn − 1.

Then, for any positive integer N ≥ 2, we have

log
Γ2(ε

2
n, (εn, ε

2
n − εn))ρ2(εn − 1, εn)

ρ2(εn, ε2
n − εn)Γ2(2εn − 1, (εn − 1, εn))

= − 1

12
ξ log ξ − 1

12
ξ log(1 + ξ) +

(

1

12
− ζ ′(−1)

)

ξ +
1

6
log ξ

−1

4
log(1 + ξ) +

1

4
log 2π − ζ ′2((0, 0); (1, 2))

− 1

12
ξ−1 log ξ − 1

12
ξ−1 log(1 + ξ) +

(

1

12
γ + C0(1; (1, 2))

)

ξ−1

+
N−1
∑

k=2

(−1)k

k

{

ζ(−k)ζ(k)− C0(k; (1, 2))

− k

12

(

1 +
1

2
+ · · ·+ 1

k − 1
− log ξ

)

}

ξ−k

+O
(

ξ−N log ξ
)

. (5.10)

From this theorem and (5.7), we obtain the asymptotic expansion of ζ ′(1; v1)
with respect to ξ = ξn (or with respect to εn) when n→ +∞. Moreover, combin-
ing with (5.2) and (5.6), we can deduce the asmptotic expansion of G2(

√
D) =

G2(
√

4n2 + 8n+ 3). It should be noted that, by expanding the factor log(1 + ξ)
on the right-hand side of (5.10), we can write down the asymptotic expansion
with respect to ξ in the most strict sense. This is an advantage of the above
theorem; the formula for LF (1, χ) proved in [12] is not the asymptotic expansion
in the strict sense.

The rest of this paper is devoted to the proof of Theorem 3. It is desirable to
extend our consideration to the case of Fujii’s general formula (Fujii [6], Theorem
6 and Corollary 2). It is also an interesting problem to evaluate the quantities
ζ ′2((0, 0); (1, 2)) and C0(k; (1, 2)) appearing on the right-hand side of (5.10).
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6 The behaviour of Γ2(ε
2
n, (εn, ε

2
n−εn)) and ρ2(εn, ε

2
n

− εn)

Let β = α/w1 and w = w2/w1. From (5.3) we have

ζ2(v;α, (w1, w2)) = w−v
1

∞
∑

m=0

∞
∑

n=0

(β +m + nw)−v

= w−v
1 ζ2(v; β, (1, w)) (6.1)

for <v > 2. This formula gives the analytic continuation of ζ2(v;α, (w1, w2)) to
the whole complex v-plane, and yields

ζ ′2(0;α, (w1, w2)) = −ζ2(0; β, (1, w)) logw1 + ζ ′2(0; β, (1, w)). (6.2)

From (5.4) and (6.2),we have

− log ρ2(w1, w2)

= lim
α→0

{1− ζ2(0; β, (1, w))} logw1 + lim
α→0

{ζ ′2(0; β, (1, w)) + log β}
= {1− ζ2(0; 0, (1, w))} logw1 − log ρ2(1, w), (6.3)

where the existence of the limit

ζ2(0; 0, (1, w)) = lim
β→0

ζ2(0; β, (1, w))

can be seen from the expression

ζ2(0; β, (1, w)) = −B1(β) +
2
∑

`=0

B`(0)B2−`(1− β)

`!(2− `)!
w`−1

=
1

12
w +

1

2

(

1

2
− β

)

+
1

2

(

β2 − β +
1

6

)

w−1, (6.4)

which is the special case m = 0 of Theorem 5 in [10]. From (6.4) it follows that

ζ2(0; 0, (1, w)) =
1

12
w +

1

4
+

1

12
w−1, (6.5)

ζ2(0; 1, (1, w)) =
1

12
w − 1

4
+

1

12
w−1. (6.6)

Now we consider the case (w1, w2) = (εn, ε
2
n − εn). Our aim in this section is

to prove the following

14



Proposition 1 We have

log ρ2(εn, ε
2
n − εn) =

(

1

12
ξ − 3

4
+

1

12
ξ−1

)

log(1 + ξ) +
1

12
ξ log ξ

−
(

1

12
− ζ ′(−1)

)

ξ − 1

4
log ξ +

3

4
log 2π +

1

12
ξ−1 log ξ − 1

12
γξ−1

−
N−1
∑

k=2

(−1)k

k
ζ(−k)ζ(k)ξ−k +O(ξ−N) (6.7)

for any N ≥ 2, and

log Γ2(ε
2
n, (εn, ε

2
n − εn)) = − log(1 + ξ)− 1

2
log ξ + log 2π. (6.8)

Proof. Putting (w1, w2) = (εn, ε
2
n − εn), the formula (6.3) gives

log ρ2(εn, ε
2
n − εn) = {ζ2(0; 0, (1, ξ))− 1} log(1 + ξ) + log ρ2(1, ξ) (6.9)

because w = (ε2
n − εn)/εn = εn − 1 = ξ. Substituting (2.9) and (6.5) into the

right-hand side of (6.9), we obtain (6.7).
Next, for <v > 2, we have

ζ2(v; ε
2
n, (εn, ε

2
n − εn))

= ε−v
n

∞
∑

m=0

∞
∑

n=0

(εn +m + n(εn − 1))−v

= (1 + ξ)−v
∞
∑

m=0

∞
∑

n=0

(1 +m + (1 + n)ξ)−v

= (1 + ξ)−v

{ ∞
∑

m=0

∞
∑

`=0

(1 +m+ `ξ)−v −
∞
∑

m=0

(1 +m)−v

}

= (1 + ξ)−v{ζ2(v; 1, (1, ξ))− ζ(v)}. (6.10)

This formula is valid for any v by analytic continuation. Hence from this formula
we obtain

ζ ′2(0; ε2
n, (εn, ε

2
n − εn)) = −

{

ζ2(0; 1, (1, ξ)) +
1

2

}

log(1 + ξ)

+ζ ′2(0; 1, (1, ξ)) +
1

2
log 2π, (6.11)

which with (6.9) and (1.4) yields

log Γ2(ε
2
n, (εn, ε

2
n − εn))

=
{

ζ2(0; 0, (1, ξ))− ζ2(0; 1, (1, ξ))− 3

2

}

log(1 + ξ)

+ log Γ2(1, (1, ξ)) +
1

2
log 2π. (6.12)
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From (3.1) we find that

Γ2(1, (1, ξ)) =

(

2π

ξ

)1/2

. (6.13)

Substituting (6.5), (6.6) and (6.13) into the right-hand side of (6.12), we obtain
(6.8). This completes the proof of Proposition 1.

7 An auxiliary integral

In this section we prove several properties of the integral

I(v; (α, β)) =
1

2πi

∫

(c)

Γ(v + z)Γ(−z)
Γ(v)

ζ2((v + z,−z); (α, β))ξzdz (7.1)

which are necessary in the next section. Here <v > 2, 1 − <v < c < −1, and
0 < α < β.

Let ε be an arbitrarily small positive number. From (9.2) of [11] we have

ζ2((v + z,−z); (α, β)) = − 1

1 + z
ζ(v − 1, α)

+
J−1
∑

j=0

(

z

j

)

ζ(v + j, α)ζ(−j, β − α) + S0,J((v + z,−z); (α, β)), (7.2)

where J is any positive integer and S0,J((v+ z,−z); (α, β)) is holomorphic in the
region <v > 1 − J + ε and <z < J − ε. Since J is arbitrary, (7.2) implies that
z = −1 is the only pole of ζ2((v + z,−z); (α, β)) as a function in z. This pole is
irrelevant when we shift the path of integration on the right-hand side of (7.1) to
<z = cN = −<v − N + ε, where N is a positive integer ≥ 2. It is not difficult
to see that ζ2((v + z,−z); (α, β)) is of polynomial order with respect to =z (for
example, by using (7.2)), hence this shifting is possible. Counting the residues of
the poles z = −v − k (0 ≤ k ≤ N − 1), we obtain

I(v; (α, β)) =
N−1
∑

k=0

(

−v
k

)

ζ2((−k, v + k); (α, β))ξ−v−k

+ IN(v; (α, β)), (7.3)

where

IN(v; (α, β)) =
1

2πi

∫

(cN )

Γ(v + z)Γ(−z)
Γ(v)

ζ2((v + z,−z); (α, β))ξzdz

=
1

2πi
ξ−v

∫

(−N+ε)

Γ(z)Γ(v − z)

Γ(v)
ζ2((z, v − z); (α, β))ξzdz. (7.4)
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Next, from (9.9) of [11] we have

ζ2((u, v); (α, β)) =
Γ(1− u)Γ(u+ v − 1)

Γ(v)
ζ(u+ v − 1, β − α)

+
J−1
∑

j=0

(

−v
j

)

ζ(u− j, α)ζ(v + j, β − α) +R0,J((u, v); (α, β)), (7.5)

where

R0,J((u, v); (α, β))

=
1

2πi

∫

(−J+ε)

Γ(z′)Γ(v − z′)

Γ(v)
ζ(u+ z′, α)ζ(v − z′, β − α)dz′. (7.6)

The formula (7.5) is valid in the region

{(u, v) ∈ C2 | <u < J + 1− ε,<v > −J + 1 + ε},

and in this region R0,J((u, v); (α, β)) are holomorphic. In particular, choosing
J = 2 and (u, v) = (z, v − z), we have

ζ2((z, v − z); (α, β)) =
Γ(1− z)Γ(v − 1)

Γ(v − z)
ζ(v − 1, β − α)

+ζ(z, α)ζ(v − z, β − α)− (v − z)ζ(z − 1, α)ζ(v − z + 1, β − α)

+R0,2((z, v − z); (α, β)) (7.7)

for <z < 3 − ε and <(v − z) > −1 + ε. If <z = −N + ε, then the right-
hand side of (7.7) can be singular only if v = 2, 1, 0,−1,−2, . . . or v = z + 1.
Hence the integrand of the right-hand side of (7.4) is not singular on the path
<z = −N + ε if <v > 1 − N + ε, which implies that the integral (7.4) can be
continued meromorphically to <v > 1−N + ε. Moreover, the (possible) pole of
ζ2((z, v−z); (α, β)) at v = 0 cancels with the zero coming from the factor Γ(v)−1,
hence (7.4) is holomorphic at v = 0.

Let k be a non-negative integer. Putting z = −k in (7.7), we have

ζ2((−k, v + k); (α, β)) =
Γ(1 + k)Γ(v − 1)

Γ(v + k)
ζ(v − 1, β − α)

+ζ(−k, α)ζ(v + k, β − α)− (v + k)ζ(−k − 1, α)ζ(v + k + 1, β − α)

+R0,2((−k, v + k); (α, β)) (7.8)

for <v > −k − 1 + ε. From (7.8) it is easy to see that ζ2((0, v); (α, β)) is holo-
morphic at v = 0, while ζ2((−k, v + k); (α, β)) has a pole of order 1 at v = 0 for
k ≥ 1. We may write the Laurent expansion at v = 0 as (5.9) for k ≥ 1. Then

(

−v
k

)

ζ2((−k, v + k); (α, β))ξ−v−k
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is holomorphic at v = 0, and its Taylor expansion is

=
(−1)k

k
C−1(k; (α, β))ξ−k +

(−1)k

k

{

C0(k; (α, β))

+C−1(k; (α, β))
(

1 +
1

2
+ · · ·+ 1

k − 1
− log ξ

)}

ξ−kv + · · · (7.9)

for k ≥ 1; recall that the empty sum is to be considered as zero. Now by (7.3),
I(v; (α, β)) can be continued to the region <v > 1−N + ε, and

I ′(0; (α, β)) = ζ ′2((0, 0); (α, β))− ζ2((0, 0); (α, β)) log ξ

+
N−1
∑

k=1

(−1)k

k

{

C0(k; (α, β))

+C−1(k; (α, β))
(

1 +
1

2
+ · · ·+ 1

k − 1
− log ξ

)}

ξ−k

+I ′N(0; (α, β)). (7.10)

We claim that the limit values of ζ ′2((0, 0); (α, β)), ζ2((0, 0); (α, β)), C0(k; (α, β)),
C−1(k; (α, β)) and I ′N (0; (α, β)), when α → +0, all exist. We denote them by
ζ ′2((0, 0); (0, β)), ζ2((0, 0); (0, β)), C0(k; (0, β)), C−1(k; (0, β)) and I ′N(0; (0, β)), re-
spectively.

To prove this claim, first recall that if <v < 0, then ζ(v, α) is continuous with
respect to α when α → +0. This fact can be seen from (2.17.3) of Titchmarsh
[16]. Hence the existence of ζ ′2((0, 0); (0, β)) and ζ2((0, 0); (0, β)) follows easily
from the case k = 0 of (7.8). Similarly we can show the existence of I ′N (0; 0, β)
by using (7.4) and (7.7), and at the same time we find

I ′N(0; (α, β)) = O(ξ−N+ε) (7.11)

and

I ′N(0; (0, β)) = O(ξ−N+ε). (7.12)

Next consider the case k ≥ 1 of (7.8). The Laurent expansion at v = 0 of the
first term on the right-hand side of (7.8) is

= −kζ(−1, β − α)v−1 − P (k; (α, β)) +O(|v|),

where

P (k; (α, β)) = k
{

ζ ′(−1, β − α) + ζ(−1, β − α)

− ζ(−1, β − α)
(

1 +
1

2
+

1

3
+ · · ·+ 1

k − 1

)}

. (7.13)

18



The other terms on the right-hand side of (7.8) are holomorphic at v = 0 if k ≥ 2.
If k = 1, one more pole is coming from the second term on the right-hand side
of (7.8), whose Laurent expansion is

= ζ(−1, α)v−1 − ζ(−1, α)ψ(β − α) +O(|v|).
Collecting the above facts, we obtain

C−1(k; (α, β)) =

{

−ζ(−1, β − α) + ζ(−1, α) if k = 1,
−kζ(−1, β − α) if k ≥ 2,

(7.14)

and

C0(k; (α, β)) = −P (k; (α, β)) +Q(k; (α, β))

−kζ(−k − 1, α)ζ(k + 1, β − α) +R0,2((−k, k); (α, β)), (7.15)

where P (k; (α, β)) is defined by (7.13) and

Q(k; (α, β)) =

{

−ζ(−1, α)ψ(β − α) if k = 1,
ζ(−k, α)ζ(k, β − α) if k ≥ 2.

(7.16)

From the above expressions it is now clear that C0(k; (0, β)) and C−1(k; (0, β))
exist for any k ≥ 1. We complete the proof of our claim, and therefore from
(7.10) we obtain

I ′(0; (0, β)) = lim
α→0

I ′(0; (α, β))

= ζ ′2((0, 0); (0, β))− ζ2((0, 0); (0, β)) log ξ

+
N−1
∑

k=1

(−1)k

k

{

C0(k; (0, β)) + C−1(k; (0, β))
(

1 +
1

2
+ · · ·+ 1

k − 1
− log ξ

)}

ξ−k

+I ′N(0; (0, β)). (7.17)

8 The behaviour of Γ2(2εn − 1, (εn − 1, εn)) and

ρ2(εn − 1, εn); Completion of the proof of The-

orem 3

Let <v > 2 and 0 < α < 1. We have

ζ2(v;α, (εn − 1, εn)) =
∞
∑

m=0

∞
∑

n=0

(α +mξ + n(1 + ξ))−v

= (1 + ξ)−v
∞
∑

n=0

(

α

1 + ξ
+ n

)−v

+(α + n)−v
∞
∑

m=1

∞
∑

n=0

(

1 +
(m+ n)ξ

α + n

)−v

. (8.1)
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Using the Mellin-Barnes integral formula ((2.2) of [11]) we get

Γ(v)

(

1 +
(m + n)ξ

α + n

)−v

=
1

2πi

∫

(c)
Γ(v + z)Γ(−z)

(

(m+ n)ξ

α + n

)z

dz, (8.2)

where −<v < c < 0. We may assume 1− <v < c < −1. Then, summing up the
both sides of (8.2) with respect to m and n, we obtain

(α + n)−v
∞
∑

m=1

∞
∑

n=0

(

1 +
(m+ n)ξ

α + n

)−v

=
1

2πi

∫

(c)

Γ(v + z)Γ(−z)
Γ(v)

∞
∑

m=1

∞
∑

n=0

(α+ n)−v−z(m+ n)zξzdz

=
1

2πi

∫

(c)

Γ(v + z)Γ(−z)
Γ(v)

ζ2((v + z,−z); (α, 1))ξzdz.

Therefore, combining with (8.1), we have

ζ2(v;α, (εn − 1, εn)) = (1 + ξ)−vζ

(

v,
α

1 + ξ

)

+ I(v; (α, 1)) (8.3)

for <v > 2, and by analytic continuation for <v > 1−N + ε. Hence

ζ ′2(0;α, (εn − 1, εn))

= −ζ
(

0,
α

1 + ξ

)

log(1 + ξ) + ζ ′
(

0,
α

1 + ξ

)

+ I ′(0; (α, 1)). (8.4)

Applying (2.4) to the right-hand side, we have

ζ ′2(0;α, (εn − 1, εn)) + logα

= −
(

1

2
− α

1 + ξ

)

log(1 + ξ) + log Γ

(

1 +
α

1 + ξ

)

− 1

2
log 2π

+ log(1 + ξ) + I ′(0; (α, 1)).

Taking the limit α→ 0, and using (7.12) and (7.17) with β = 1, we obtain

Proposition 2 We have

log ρ2(εn − 1, εn) = −1

2
log(1 + ξ) +

1

2
log 2π

−ζ ′2((0, 0); (0, 1)) + ζ2((0, 0); (0, 1)) log ξ

−
N−1
∑

k=1

(−1)k

k

{

C0(k; (0, 1))

+C−1(k; (0, 1))
(

1 +
1

2
+ · · ·+ 1

k − 1
− log ξ

)}

ξ−k

+O(ξ−N+ε). (8.5)
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Remark The error estimate in (8.5) can be strengthened to O(ξ−N log ξ). (Con-
sider (8.5) with N + 1 instead of N , and compare it with the original (8.5).)

Our next aim is to prove the following

Proposition 3 We have

log Γ2(2εn − 1, (εn − 1, εn)) = −1

2
log(1 + ξ) +

1

2
log 2π

+ζ ′2((0, 0); (1, 2))− ζ ′2((0, 0); (0, 1))

−{ζ2((0, 0); (1, 2))− ζ2((0, 0); (0, 1))} log ξ

+
N−1
∑

k=1

(−1)k

k
{C0(k; (1, 2))− C0(k; (0, 1))}ξ−k

+
N−1
∑

k=1

(−1)k

k
{C−1(k; (1, 2))− C−1(k; (0, 1))}

×
(

1 +
1

2
+ · · ·+ 1

k − 1
− log ξ

)

ξ−k

+O(ξ−N log ξ). (8.6)

Proof. For <v > 2, we have

ζ2(v; 2εn − 1, (εn − 1, εn))

=
∞
∑

m=0

∞
∑

n=0

(2ξ + 1 +mξ + n(1 + ξ))−v

=
∞
∑

m=0

∞
∑

n=0

(n+ 1 + (m+ n + 2)ξ)−v,

which is, again using the Mellin-Barnes integral formula,

=
1

2πi

∫

(c)

Γ(v + z)Γ(−z)
Γ(v)

∞
∑

m=0

∞
∑

n=0

(n + 1)−v

(

(m + n+ 2)ξ

n+ 1

)z

dz

=
1

2πi

∫

(c)

Γ(v + z)Γ(−z)
Γ(v)

ζ2((v + z,−z); (1, 2))ξzdz.

That is,

ζ2(v; 2εn − 1, (εn − 1, εn)) = I(v; (1, 2)), (8.7)

and this identity is valid for <v > 1−N + ε by analytic continuation. Hence

ζ ′2(0; 2εn − 1, (εn − 1, εn)) = I ′(0; (1, 2)). (8.8)
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Therefore using (7.10), (7.11) (with α = 1, β = 2) and (8.5) we obtain the
assertion of Proposition 3. The error estimate O(ξ−N log ξ) can be shown similarly
to the remark just after the statement of Proposition 2.

Now we can easily complete the proof of Theorem 3, by combining Proposi-
tions 1, 2 and 3. Since

ζ2((0, v); (1, 2)) =
∞
∑

m=0

∞
∑

n=0

(2 +m+ n)−v = ζ2(v; 2, (1, 1))

(valid at first for <v > 2 but also valid for any v by analytic continuation), by
using (6.4) we find

ζ2((0, 0); (1, 2)) =
5

12
.

Also, (7.14) implies that C−1(1; (1, 2)) = 0 and C−1(k; (1, 2)) = k/12 for k ≥ 2.
Noting these facts, we can deduce the assertion of Theorem 3 straightforwardly.

It should be remarked finally that if we only want to prove Theorem 3, we
can shorten the way; in fact, since the left-hand side of (5.10) is equal to

ζ ′2(0; ε2
n, (εn, ε

2
n − εn))− ζ ′2(0; 2εn − 1, (εn − 1, εn)),

the formulas (6.11), (6.6), (2.5), (2.8), (8.8), (7.10), (7.11) are sufficient to deduce
the conclusion of Theorem 3. However the formulas of Propositions 1, 2 and 3
themselves are of interest, therefore we have chosen the above longer but more
informative route.

References

[1] T.Arakawa, Generalized eta-functions and certain ray class invariants of real
quadratic fields, Math. Ann. 260 (1982), 475-494.

[2] T.Arakawa, Dirichlet series
∑∞

n=1
cot πnα

ns , Dedekind sums, and Hecke L-
functions for real quadratic fields, Comment. Math. Univ. St. Pauli 37

(1988), 209-235.

[3] E.W.Barnes, The genesis of the double gamma functions, Proc. London
Math. Soc. 31 (1899), 358-381.

[4] E.W.Barnes, The theory of the double gamma function, Philos. Trans. Roy.
Soc. (A) 196 (1901), 265-387.

[5] J.Billingham and A.C.King, Uniform asymptotic expansions for the Barnes
double gamma function, Proc. Roy. Soc. London Ser. A 453 (1997), 1817-
1829.

22



[6] A.Fujii, Some problems of Diophantine approximation and a Kronecker limit
formula, in “Investigations in Number Theory”, T.Kubota (ed.), Adv. Stud.
Pure Math. 13, Kinokuniya, 1988, pp.215-236.

[7] A.Fujii, Diophantine approximation, Kronecker’s limit formula and the Rie-
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