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Abstract

The simultaneous universality of twisted automorphic L-functions, asso-
ciated with a new form with respect to a congruence subgroup of SL(2,Z)
and twisted by Dirichlet characters, is proved. Applications to the func-
tional independence and the zero density of linear combinations of those
L-functions are given.

1 Introduction and statement of results

In 1975, Voronin [29] proved the universality theorem for the Riemann zeta-
function ζ(s). Let K be a compact subset in the strip D0 = {s = σ + it ∈ C |
1
2 < σ < 1} with connected complement. Let F(K) be the family of functions
which are non-vanishing, continuous on K and holomorphic in the interior of K.
We use the notation

νT (· · ·) = T−1meas{τ ∈ [0,T] | . . .}

for T > 0, where meas{A} denotes the Lebesgue measure of the set A, and in
place of dots we write some condition satisfied by τ . Then Voronin’s theorem
asserts

lim inf
T→∞

νT (sup
s∈K

|ζ(s+ iτ)− f(s)| < ε) > 0 (1.1)

for any f ∈ F(K) and any ε > 0 (see Chapter 6 of [13]).
After Voronin, the universality theorem was generalized by many mathemati-

cians. The following “joint universality” theorem for Dirichlet L-functions was
shown by Voronin [30], Gonek [6] and Bagchi [1, 2]. Let χ1, . . . , χm be pairwise
non-equivalent Dirichlet characters and L(s, χj) the Dirichlet L-function attached
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to χj (1 6 j 6 m). Let Kj be a compact subset of D0 with connected comple-
ment, and fj ∈ F(Kj) (1 6 j 6 m). Then, for any ε > 0,

lim inf
T→∞

νT ( sup
16j6m

sup
s∈Kj

|L(s+ iτχj)− fj(s)| < ε) > 0. (1.2)

It is desirable to prove universality theorems for more general zeta and L-
functions. Recently, the universality of automorphic L-functions has been stud-
ied. Let F (z) be a holomorphic normalized Hecke-eigen cusp form of weight κ
for the full modular group SL(2,Z). Then F (z) has the Fourier expansion of the
form

F (z) =

∞
∑

n=1

c(n)e2πinz , c(1) = 1. (1.3)

The associated Dirichlet series

L(s, F ) =
∞
∑

n=1

c(n)n−s (1.4)

is convergent absolutely for σ > (κ + 1)/2, and can be continued to an entire
function. The universality of L(s, F ) was first discussed by Kačėnas-Laurinčikas
[9], who proved a certain conditional result. The general result of Laurinčikas
[14] can also be applied to L(s, F ), which gives another conditional universality.
Then in [18], the universality of L(s, F ) was proved unconditionally. Let K be a
compact subset in the strip D = {s ∈ C | κ/2 < σ < (κ + 1)/2} with connected
complement, and f ∈ F(K). Then it is proved in [18] that

lim inf
T→∞

νT ( sup
s∈Kj

|L(s+ iτ, F ) − f(s)| < ε) > 0 (1.5)

for any ε > 0. In [19], this result has been generalized to the case when F is a
new form with respect to the congruence subgroup

Γ0(M) =
{

(

a b
c d

)

∈ SL(2,Z) | c ≡ 0 (mod M)
}

,

where M is a positive integer.
To prove (1.5) unconditionally, a new idea was introduced in [18]; this idea is

called “the positive density method” in [21]. A similar idea was applied to prove
the joint universality of Lerch zeta-functions in [17].

It is the purpose of the present paper to combine this positive density method
with Bagchi’s idea [2] for the proof of (1.2), and establish the following joint
universality theorem for twisted automorphic L-functions.

Theorem 1 Let F(z) be a holomorphic normalized Hecke-eigen new form of
weight κ with respect to Γ0(M), whose Fourier expansion is given by (1.3). Let
qj be positive integers prime to M (1 6 j 6 m), χj be pairwise non-equivalent
Dirichlet characters mod qj (1 6 j 6 m), and define the twisted L-functions

Lj(s, F ) =

∞
∑

n=1

c(n)χj(n)n−s, (1.6)
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which can be continued to the whole complex plane. For each j, let Kj be a
compact subset of D with connected complement, and fj ∈ F(Kj) (1 6 j 6 m).
Then

lim inf
T→∞

νT ( sup
16j6m

sup
s∈Kj

|Lj(s+ iτ, F ) − fj(s)| < ε) > 0 (1.7)

for any ε > 0.

The following three results are simple consequences of Theorem 1. In the
following theorems, Lj(s, F )’s are the same as (1.6).

Theorem 2 Let κ/2 < σ < (κ + 1)/2, N be a positive integer, and ψ be the
mapping from R to C

Nm defined by

ψ(t) = (L1(σ + it, F ), . . . , Lm(σ + it, F ), L′1(σ + it, F ), . . . , L′m(σ + it, F ),

. . . , L
(N−1)
1 (σ + it, F ), . . . , L(N−1)

m (σ + it, F )).

Then ψ(R) is dense in C
Nm.

This is an analogue of Voronin’s result [28] that

{(ζ(σ + it), ζ ′(σ + it), . . . ζ(N−1)(σ + it)) | t ∈ R}

is dense in C
N for 1/2 < σ < 1. Voronin proved this result earlier than his

discovery of the universality theorem, but now it is known that this result as well
as the above Theorem 2 is easily deduced from the universality.

Theorem 3 If continuous functions fl : C
Nm → C (0 6 l 6 L) satisfy

L
∑

l=0

slfl(L1(s, F ), . . . , Lm(s, F ), L′1(s, F ), . . . , L′m(s, F ),

. . . , L
(N−1)
1 (s, F ), . . . , L(N−1)

m (s, F )) ≡ 0 (1.8)

for all s ∈ C, then fl ≡ 0 (0 6 l 6 L).

This result of functional independence is related with a problem mentioned
in Hilbert’s famous “Mathematische Probleme”. Some history of this problem is
written in [5].

Theorem 4 Let m > 2, uj ∈ C (1 6 j 6 m), and assume at least two of ujs
are not zero. Let κ/2 < σ1 < σ2 < (κ + 1)/2, T > 2, and N(σ1, σ2, T ) be the
numbers of zeros (counted with multiplicity) of the function

V (s) =

m
∑

j=1

ujLj(s, F )

in the rectangle σ1 6 σ 6 σ2, 0 6 t 6 T . Then we have, for T sufficiently large,

N(σ1, σ2, T ) > BT

with a constant B > 0.
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This type of application of the universality theorem was first noticed again
by Voronin in his papers [31, 32], and studied further by Laurinčikas [11, 12, 15].

In Section 2 we will prove an analogue of the prime number theorem in arith-
metic progressions for Fourier coefficients of F (z), which will be used in Section 5.
In Section 3 we will prepare the probabilistic setting and will give a limit theorem,
which is one of the keys of the proof of Theorem 1. Another key is Lemma 4 (the
“denseness” lemma), which will be proved in Sections 4 and 5. Then in Section 6
we will complete the proof of Theorem 1. Proofs of other theorems will be shown
in the final section.

The authors express their sincere gratitude to the referee for useful suggestions
and comments.

2 A prime number theorem for the coefficients of cusp

forms

As was mentioned in Section 1, the universality of automorphic L-functions was
first fully proved in [18]. A key ingredient used in [18] is the prime number
formula

∑

p6x

c̃(p)2 =
x

log x
(1 + o(1)) (2.1)

due to Rankin [27], where p runs over prime numbers up to x and c̃(p) =
c(p)p−(κ−1)/2. Rankin proved (2.1) for M = 1. For our present purpose it is
necessary to generalize (2.1) to the case of arbitrary M with adding the condi-
tion p ≡ h (mod q), (h, q) = 1, where q is a positive integer prime to M . In this
paper we will prove

Lemma 1 The formula

∑

p6x
p≡h(mod q)

c̃(p)2 =
1

ϕ(q)

x

log x
(1 + o(1)) (2.2)

holds when (h, q) = 1, where ϕ(q) is Euler’s totient function and the implied
constant depends on q.

Let F (z) be a holomorphic normalized Hecke-eigen new form of weight κ with
respect to Γ0(M). The associated Dirichlet series (1.4) has the Euler product
expansion

L(s, F ) =
∏

p

(1− c(p)p−s + ψ0(p)p
κ−1−2s)−1,

where ψ0(p) = 1 if (p,M) = 1 and ψ0(p) = 0 if p |M . We write each Euler factor
as

1− c(p)p−s + ψ0(p)p
κ−1−2s = (1− α(p)p−s)(1− β(p)p−s),

β(p) = α(p) if (p,M) = 1 and β(p) = 0 if p | M . Hence α(p) + β(p) = c(p), and
if (p,M) = 1, then α(p)β(p) = pκ−1.
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Let χ be a Dirichlet character mod q. The twisted Rankin-Selberg L-function
attached to F and χ is defined by

L(s, F ⊗ F, χ) = L(2s, ψ0χ
2)

∞
∑

n=1

c2(n)χ(n)n1−κ−s, (2.3)

where L(2s, ψ0χ
2) is the Dirichlet L-function attached to ψ0χ

2. The Euler prod-
uct expansion is

L(s, F ⊗ F, χ) =
∏

p-M

(1− χ(p)α(p)2p1−κ−s)−1(1− χ(p)p−s)−2

× (1− χ(p)β(p)2p1−κ−s)−1

×
∏

p|M

(1− χ(p)c(p)2p1−κ−s)−1. (2.4)

The expressions (2.3) and (2.4) are convergent absolutely for σ > 1, but L(s, F ⊗
F, χ) can be continued to the whole plane, and is entire if χ is non-principal. If
χ = χ0 is principal, then it has a simple pole at s = 1.

If χ is primitive, then the twisted form

Fχ(z) =

∞
∑

n=1

c(n)χ(n)e2πinz (2.5)

is a new form of level Mq2. Hence L(s, F ⊗ F, χ) satisfies a standard form of
functional equation (Li [20]). Also L(1 + it, F ⊗ F, χ) 6= 0 for any real t (cf. Ogg
[24], Theorem 4 and Rankin [27], Theorem 1). Hence, applying the lemma in
p.295 of Perelli [25], we can see that

−
L′

L
(s, F ⊗ F, χ)−

εχ
s− 1

(2.6)

is holomorphic in the closed half-plane σ > 1, where εχ = 1 if χ is principal and
εχ = 0 otherwise. Note that (2.6) is valid for any (not necessarily primitive) χ,
as we can see easily by an argument similar to that in p. 89 of Davenport [4].

Define ΛF (n) = (α(p)m + β(p)m)2 log p if n = pm is a prime power and
ΛF (n) = 0 otherwise. Then we can write

−
L′

L
(s, F ⊗ F, χ) =

∞
∑

n=1

ΛF (n)χ(n)n1−κ−s

when σ > 1.
Now we quote the following Tauberian theorem.

Lemma 2 ([7], Chapter 5, Corollary 3) Let a(n), b(n) be arithmetical functions
satisfying a(n) > 0, b(n) = O(a(n)) and

∑

n6x

a(n) = O(x). (2.7)
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If the Dirichlet series

A(s) =
∞
∑

n=1

a(n)

ns
, B(s) =

∞
∑

n=1

b(n)

ns

are holomorphic for σ > 1 and

A(s)−
A0

s− 1
, B(s)−

B0

s− 1

(where A0, B0 are constants) are holomorphic for σ > 1, then

∑

n6x

b(n) = B0x(1 + o(1)). (2.8)

We apply this lemma with a(n) = ΛF (n)n1−κ and b(n) = ΛF (n)χ(n)n1−κ.
Then

A(s) = −
L′

L
(s, F ⊗ F ), B(s) = −

L′

L
(s, F ⊗ F, χ).

hence

A(s)−
1

s− 1
, B(s)−

εχ
s− 1

are holomorphic for σ > 1. Then conditions a(n) > 0, b(n) = O(a(n)) are clearly
valid. Therefore, if we can show (2.7) for our present a(n), we can deduce

∑

n6x

ΛF (n)χ(n)n1−κ = εχx(1 + o(1)) (2.9)

by Lemma 2.
To prove (2.7), we divide the sum as

∑

n6x

ΛF (n)n1−κ =
∑

p6x

ΛF (p)p1−κ +
∑

m>2

∑

pm6x

ΛF (pm)pm(1−κ)

= S1 + S2,

say. If (p,M) = 1, then |α(p)| = |β(p)| = p(κ−1)/2. If p | M , then β(p) = 0 and
|α(p)| = |c(p)| 6 p(κ−2)/2 (see [22], Theorem 4.6.17). Hence

|ΛF (pm)pm(1−κ)| 6 4 log p

for any prime p and any m > 1. Therefore

S2 �
∑

16m6log x/ log 2

∑

p6x1/2

log p� x1/2(log x)2 (2.10)

and
S1 �

∑

p6x

log p� x

by the classical prime number theorem. Hence (2.7) holds, and therefore (2.9) is
established.
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Then, using (2.9), we have

∑

n6x
n≡h(mod q)

ΛF (n)n1−κ =
1

ϕ(q)

∑

χmod q

χ(h)
∑

n6x

ΛF (n)χ(n)n1−κ

=
x

ϕ(q)
(1 + o(1)). (2.11)

The left-hand side of the above is again divided as

∑

p6x
p≡h(mod q)

ΛF (p)p1−κ +
∑

m>2

∑

pm6x
pm≡h(mod q)

ΛF (pm)pm(1−κ),

and the second term is O(x1/2(log x)2) by (2.10). Hence

∑

p6x
p≡h(mod q)

ΛF (p)p1−κ =
x

ϕ(q)
(1 + o(1)). (2.12)

Since ΛF (p) = c(p)2 log p, the assertion of Lemma 1 follows easily from (2.12) by
partial summation.

The above proof of Lemma 1 is an analogue of the proof of Theorem 1,
Chapter 6 of [7].

It is possible to refine Lemma 1. In fact, as in Perelli [26] and Ichihara [8],
we can argue along the same line as in Davenport’s book [4] to obtain

∑

p6x
p≡h(mod q)

ΛF (p)p1−κ =
x

ϕ(q)
+O(x exp(−c1

√

log x)) (2.13)

with a certain c1 > 0. Since L(s, F ⊗F, χ) satisfies a functional equation, we can
use the results in Perelli [25] to prove (2.13). From (2.13) we can immediately
obtain a refinement of Lemma 1; or we may quote Remark 5.2.2 (especially
formula (14)) of Moreno’s paper [23]. However, Lemma 1 is enough for our
present purpose.

3 A limit theorem

Let λ > 0, and put

Dλ = {s ∈ C | κ/2 < σ < (κ+ 1)/2, |t| < λ}.

By H(Dλ) we denote the space of functions analytic on Dλ, equipped with the
topology of uniform convergence on compacta, and put Hm = H(Dλ)m (direct
product). Denote by B(S) the family of all Borel subsets of the space S. The
measure PT , defined by

PT (A) = νT ((L1(s+ iτ, F ), . . . , Lm(s+ iτ, F )) ∈ A)
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for T > 2 and A ∈ B(Hm), is a probability measure on (Hm,B(Hm)).
Let γ = {s ∈ C | |s| = 1}, and Ω =

∏

p γp, where p runs over all primes and
γp = γ for any p. We may regard Ω as a compact abelian topological group,
hence the probability Haar measure mH exists. This gives a probability space
(Ω,B(Ω),mH). By ω(p) we denote the projection of ω ∈ Ω to the coordinate
space γp. Define the Hm-valued random element ϕ(s, ω) by

ϕ(s, ω) = (ϕ(s, ω, L1), . . . , ϕ(s, ω, Lm)), (3.1)

where ω ∈ Ω, s ∈ Dλ and

ϕ(s, ω, Lj) =
∏

p

(1−
α(p)χj(p)ω(p)

ps
)−1(1−

β(p)χj(p)ω(p)

ps
)−1 (3.2)

for 1 6 j 6 m. Let Pϕ be the distribution of ϕ(s, ω), that is

Pϕ(A) = mH(ω ∈ Ω | ϕ(s, ω) ∈ A)

for A ∈ B(Hm). Then

Lemma 3 The probability measure PT converges weakly to Pϕ as T →∞.

Proof Let F1, . . . , Fm be normalized eigenforms of weight κ,

L(s, Fj) =
∞
∑

n=1

cj(n)n−s (1 6 j 6 m)

the corresponding L-functions, D0 = {s ∈ C | <s > κ/2}, Hm
0 = H(D0)

m, and
define

PT,0(A) = νT ((L(s+ iτ, F1), . . . , L(s+ iτ, Fm)) ∈ A)

for A ∈ B(Hm
0 ). Also let

ϕ0(s, ω) =

(

∞
∑

n=1

c1(n)ω(n)

ns
, · · · ,

∞
∑

n=1

cm(n)ω(n)

ns

)

,

where
ω(n) =

∏

pα||n

ω(p)α,

and Pϕ,0 be the distribution of the Hm
0 -valued random element ϕ0. Then Lau-

rinčikas [16] proved that PT,0 converges weakly to Pϕ,0 as T → ∞. Actually
Laurinčikas only discussed the case when F1, . . . , Fm are cusp forms with respect
to SL(2,Z), but we can easily generalize his result to the case of congruence
subgroups of higher level.

The function g : Hm
0 → Hm defined by the coordinatewise restriction is

continuous. Hence, using a property of weak convergence of probability measures
([3, Theorem 5.1]), we can replace Hm

0 in the above statement by Hm. Lemma 3
is a special case of this assertion.

It is also possible to show Lemma 3 as a special case of Theorem 2 of Lau-
rinčikas [15].
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4 A denseness lemma

Let

fjp(s, ap) = − log

(

1−
α(p)χj(p)ap

ps

)

− log

(

1−
β(p)χj(p)ap

ps

)

for ap ∈ γ (1 6 j 6 m), and

fp(s, ap) = (f1p(s, ap), . . . , fmp(s, ap)).

Then we have

Lemma 4 The set of all series
∑

p fp(s, ap), which are convergent in Hm, is
dense in Hm.

This is a generalization of Lemma 2 in [18], and one of the key ingredients of
the proof of Theorem 1. This and the next section are devoted to the proof of
Lemma 4.

Let p0 > 0, and put

f̂p(s) =

{

fp(s, 1) if p > p0,
0 if p 6 p0.

Then there exists an âp ∈ γ for which

∑

p

âpf̂p(s)

is convergent in Hm. This can be shown similarly to the first step of the proof
of Lemma 2 in [18]. Let

gp = (g1p, . . . , gmp) = âpf̂p(s).

Then we have

Lemma 5 The set of all series
∑

p apgp (ap ∈ γ), which are convergent in Hm,
is dense in Hm.

By using this lemma, we can complete the proof of Lemma 4 similarly to the
third step of the proof of Lemma 2 in [18], the details being omitted here.

The proof of Lemma 5 is based on the following

Lemma 6 Let fl = (f1l, . . . , fml) ∈ Hm (l = 1, 2, 3, . . .). Assume that the se-
quence {fl} satisfies

(a) if µ1, . . . , µm are complex measures on (C,B(C)), whose supports are com-
pact and contained in Dλ, and

∞
∑

l=1

∣

∣

∣

∣

∣

m
∑

j=1

∫

C
fjl dµj

∣

∣

∣

∣

∣

<∞,
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then
∫

C
sr dµj(s) = 0 (4.1)

for 1 6 j 6 m and r = 0, 1, 2, . . .;
(b) the series

∑∞
l=1 fl is convergent in Hm;

(c) for any compact subset Kj of Dλ (1 6 j 6 m),

∞
∑

l=1

m
∑

j=1

sup
s∈Kj

|fjl(s)|
2 <∞.

Then the set of all convergent series
∑∞

l=1 alfl (al ∈ γ) is dense in Hm.

This is Lemma 5.2.9 of Bagchi [1]. The proof in the case m = 1 is given in
[13] (see Theorem 6.3.10), and the proof of the general case is similar.

We apply Lemma 6 to fl = gp. The condition (b) is clearly satisfied by the
definition of gp. Since

fjp(s, 1) =
c(p)χj(p)

ps
+ rjp(s) (4.2)

with rjp(s) = O(pκ−2σ−1), it can be easily seen that the condition (c) is also
satisfied.

Next we check the condition (a). Let µj (1 6 j 6 m) be complex measures
whose supports are compact and contained in Dλ, and

∑

p

∣

∣

∣

∣

∣

m
∑

j=1

∫

C
gjp dµj

∣

∣

∣

∣

∣

<∞. (4.3)

Using (4.2), we find that (4.3) is equivalent to

∑

p>p0

∣

∣

∣

∣

∣

m
∑

j=1

∫

C
âpc(p)χj(p)p

−s dµj(s)

∣

∣

∣

∣

∣

<∞.

Since |âp| = 1, this is further equivalent to

∑

p>p0

∣

∣

∣

∣

∣

c̃(p)

m
∑

j=1

χj(p)

∫

C
p−s dµjw

−1(s)

∣

∣

∣

∣

∣

<∞, (4.4)

where w is the mapping defined by w(s) = s− (κ− 1)/2.
Let q be the least common multiple of q1, . . . , qm, χ∗j be the character mod

q induced by χj (1 6 j 6 m), and h be a positive integer satisfying 1 6 h 6 q,
(h, q) = 1. If p ≡ h (mod q), then χj(p) = χ∗j (p) = χ∗j(h), hence from (4.4) we
have

∑

p≡h (mod q)

∣

∣

∣

∣

∣

c̃(p)
m
∑

j=1

χ∗j (h)

∫

C
p−s dµjw

−1(s)

∣

∣

∣

∣

∣

<∞,
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or equivalently,
∑

p≡h (mod q)

|c̃(p)||ρ(log p)| <∞, (4.5)

where

ρ(z) =

∫

C
e−sz dνh(s) (4.6)

and

dνh =
m
∑

j=1

χ∗j(h) dµjw
−1. (4.7)

In the next section we will show that (4.5) implies ρ(z) ≡ 0. Then, differen-
tiating r-times the equality ρ(z) ≡ 0 and putting z = 0, we obtain

∫

C
sr dνh(s) ≡ 0 (r = 0, 1, 2, . . .).

Hence
m
∑

j=1

χ∗j(h)

∫

C
sr dµj(s) ≡ 0 (r = 0, 1, 2, . . .)

for 1 6 h 6 q, (h, q) = 1. Multiplying the both sides of the above equality by
χ̄∗i (h) and summing with respect to h, we have

0 =
∑

16h6q
(h,q)=1

m
∑

j=1

χ∗j(h)χ̄
∗
i (h)

∫

C
sr dµj(s)

=

m
∑

j=1

{

∑

16h6q
(h,q)=1

χ∗j(h)χ̄
∗
i (h)

}

∫

C
sr dµj(s)

= ϕ(q)

∫

C
sr dµi(s)

for 1 6 i 6 m, hence (4.1) follows. All the conditions of Lemma 6 are now
verified, hence, applying Lemma 6, we obtain the assertion of Lemma 5.

The above argument of deducing (4.1) from (4.3), by using the orthogonality
of Dirichlet characters, is analogous to the proof of Lemma 4.9 of Bagchi [2].
Bagchi assumed that all the characters are of the same modulus, but this restric-
tion can be easily removed as above. This point was inspired by Section 7.3 of
Karatsuba–Voronin [10].

5 A vanishing lemma

To complete the proof of Lemma 4, now the only remaining task is to establish

Lemma 7 The function ρ(z) defined by (4.6) is identically equal to zero.
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This is a generalization of Lemma 6 in [18]. The positive density method
mentioned in Section 1 is used in the proof of this lemma. Let 0 < θ < 1, and
Pθ(h) be the set of primes satisfying p ≡ h (mod q) and |c̃(p)| > θ. From (4.5)
we have

∑

p∈Pθ(h)

|ρ(log p)| <∞. (5.1)

Let β be a positive number satisfying

βλ < π, (5.2)

and put a = a(m) = exp ((m− 1
4)β), b = b(m) = exp ((m+ 1

4 )β). Denote by A the
set of all integers m such that there exists an r ∈ (log a, log b] with |ρ(r)| 6 e−r.
Then

∑

p∈Pθ(h)

|ρ(log p)| >
∑

m/∈A

∑

p∈Pθ(h)
a<p6b

|ρ(log p)| >
∑

m/∈A

∑

p∈Pθ(h)
a<p6b

p−1,

hence with (5.1) we obtain

∑

m/∈A

∑

p∈Pθ(h)
a<p6b

p−1 <∞. (5.3)

Next, let δ be a positive number with 1 + δ < min{3/2, eβ/2}, and assume
0 < ε < δ/100. Using Lemma 1, analogously to (4.9) of [18], we obtain

∑

p∈Pθ(h)
a<p6b

p−1
>

1− θ2

4− θ2

(

∑

a(1+δ)<p6b
p≡h (mod q)

p−1

)

(1 + o(1)) (5.4)

as m → ∞. Here we mention that there are misprints on the right-hand side of
the first line of (4.9) of [18]; it is to be read as

(

∑

p∈Pµ

a<p6b

1

)

1

b
+

∫ b

a

(

∑

p∈Pµ

a<p6u

1

)

du

u2
.

Let π(x; q, h) be the number of primes up to x satisfying p ≡ h (mod q). Then
the Siegel–Walfisz theorem implies

π(x; q, h) =
1

ϕ(q)

∫ x

0

dt

log t
+ O

(

x exp(−c5(ε)
√

log x)
)

(5.5)

for x > exp(qε) with a constant c5(ε) > 0. From (5.5) it can be easily deduced
that

∑

p6x
p≡h (mod q)

p−1 =
1

ϕ(q)
log log x+B + O(exp(−c6

√

log x)), (5.6)

12



where B, c6(> 0), and the implied constant depend on q. Using (5.6) we obtain

∑

a(1+δ)<p6b
p≡h(q)

p−1 =
1

ϕ(q)

(

1

2
−

log(1 + δ)

β

)

1

m
+ O

(

1

m2

)

. (5.7)

Collecting (5.3), (5.4) and (5.7) we find

∑

m/∈A

1

m
<∞.

Hence, if we write A = {am | m = 1, 2, . . .}, a1 < a2 < · · ·, then

lim
m→∞

am

m
= 1.

The definition of A implies that there exists a ξm for each m such that (am−
1
4)β <

ξm 6 (am + 1
4)β and |ρ(ξm)| 6 exp(−ξm). Hence

lim
m→∞

ξm
m

= β (5.8)

and

lim sup
m→∞

log |ρ(ξm)|

ξm
6 −1. (5.9)

Now we quote the following

Lemma 8 Let f(s) be an entire function of exponential type, and let {ξm} be a
sequence of complex numbers. Let λ, η and ω be positive numbers such that

lim sup
y→∞

log |f(±iy)|

y
6 λ,

|ξm − ξn| > ω|m− n|,

lim
m→∞

ξm
m

= β,

and λβ < π. Then

lim sup
m→∞

log |f(ξm)|

|ξm|
= lim sup

r→∞

log |f(r)|

r
.

For the proof of this lemma, see Theorem 6.4.12 of [13].
In view of (5.2) and (5.8), we can apply this lemma to f = ρ. From (5.9) we

obtain

lim sup
r→∞

log |ρ(r)|

r
6 −1.

This corresponds to (4.12) of [18], and from this we can deduce the conclusion
ρ(z) ≡ 0 in much the same way as in [18]. The proof of Lemma 7, hence of
Lemma 4, is now complete.

13



6 Completion of the proof of Theorem 1

Let Sλ be the set of functions f ∈ H(Dλ) such that f(s) 6= 0 for any s ∈ Dλ, or
f ≡ 0. We first show

Lemma 9 The support of the random element ϕ(s, ω) is Sm
λ .

This is a generalization of Lemma 8 of [18]. Instead of Lemma 10 of [18],
we use its multidimensional version, that is Lemma 2 of [17] (with replacing D
by Dλ). Similarly to [18], we find that the support of the Hm-valued random
element

(

∑

p

f1p(s, ω(p)), . . . ,
∑

p

fmp(s, ω(p))

)

is the closure of the set of all convergent series of the form

∑

p

fp(s, ap) (ap ∈ γ).

By Lemma 4 the latter set is dense in Hm. From this fact, again similarly to
[18], we obtain the conclusion of Lemma 9.

Now we can complete the proof of Theorem 1 in a standard way. For any
given Kj , we find a λ sufficiently large for which Kj ⊂ Dλ holds (1 6 j 6 m).
Let fj ∈ F(Kj) (1 6 j 6 m), and first consider the case when all fjs have
non-vanishing holomorphic continuation to Dλ. Let

G = {(g1, . . . , gm) ∈ Hm | sup
16j6m

sup
s∈Kj

|gj(s)− fj(s)| < ε}.

Then G is open, hence Lemma 3 implies

lim inf
T→∞

PT (G) > Pϕ(G). (6.1)

Since G is an open neighbourhood of (f1, . . . , fm), which is contained in the
support of Pϕ by Lemma 9, we have Pϕ(G) > 0. This implies the assertion of
Theorem 1, because

PT (G) = νT ( sup
16j6m

sup
s∈Kj

|Lj(s+ iτ, F )− fj(s)| < ε).

When fj(s) cannot be continued to Dλ for some j, then we use Mergelyan’s
theorem to find a polynomial qj(s) for which exp(qj(s)) approximates fj(s) suffi-
ciently (see the last section of [18]). Therefore we can reduce the problem to the
already proved case. The proof of Theorem 1 is now complete.

7 Proof of Theorems 2, 3 and 4

The proofs presented in this section are simple modifications of known arguments,
but we describe the details for the convenience of readers.

14



The following proofs of Theorems 2 and 3 are similar to the proofs of Theo-
rem 6.6.2 and Theorem 6.6.3 of [13].

Let sνj be complex numbers (0 6 ν 6 N−1, 1 6 j 6 m), and assume s0j 6= 0

(1 6 j 6 m). By Lemma 6.6.1 of [13] we can find polynomials pj(s) =
∑N−1

ν=0 bνjs
ν

such that
sνj = (exp(pj(s)))

(ν)|s=0 (0 6 ν 6 N − 1).

Let κ/2 < σ1 < (κ + 1)/2, and K be a compact subset of D with connected
complement such that σ1 is contained in the interior of K. By δ we denote the
distance of σ1 from the boundary of K. Then from Theorem 1 we find a real τ
for which

sup
16j6m

sup
s∈K

|Lj(s+ iτ, F ) − epj(s−σ1)| <
εδN

2NN !

holds. Then, using Cauchy’s integral formula we have

|L
(ν)
j (σ1 + iτ, F )− sνj|

=
ν!

2π

∣

∣

∣

∣

∣

∫

|s−σ1|=δ/2

|Lj(s+ iτ, F )− epj(s−σ1)

(s− σ1)ν+1
ds

∣

∣

∣

∣

∣

< ε

for 0 6 ν 6 N − 1, which implies Theorem 2.
Next we prove Theorem 3. Suppose fL 6≡ 0. Then there exists a bounded

region R ⊂ C
Nm such that

|fL| > B0 > 0 (7.1)

in R, where B0 is a constant. Let κ/2 < σ < (κ+1)/2. From Theorem 2 we find
a sequence of real numbers {τk} satisfying limn→∞ τk = +∞ and

xk = (L1(σ + iτk, F ), . . . , Lm(σ + iτk, F ), L′1(σ + iτk, F ), . . . , L′m(σ + iτk, F ),

. . . , L
(N−1)
1 (σ + iτk, F ), . . . , L(N−1)

m (σ + iτk, F )) ∈ R.

Substituting s = σ + iτk into (1.8) and dividing the both sides by (σ + iτk)
L, we

have
L−1
∑

l=0

(σ + iτk)
l−Lfl(xk) = −fL(xk). (7.2)

Since R is bounded, |fl(xk)| is bounded (0 6 l 6 L−1). Hence the left-hand side
of (7.2) tends to zero as k →∞. On the other hand, |fL(xk)| > B0 > 0 by (7.1).
This contradiction implies fL ≡ 0. Similarly we obtain fL−1 ≡ · · · ≡ f1 ≡ f0 ≡ 0.

Finally we prove Theorem 4. The following argument is analogous to the
proof of Theorem 1 in Laurinčikas [15]. We may assume u1 6= 0 and u2 6= 0. Let
η > 0, σ̂ = (σ1 + σ2)/2,

f1(s) =
s− σ̂ + 3

u1
, f2(s) = −

3

u2
,

f3(s) = · · · = fm(s) = η,

and

K =

{

s ∈ C |

∣

∣

∣

∣

s−

(

κ

2
+

1

4

)
∣

∣

∣

∣

6 max

(
∣

∣

∣

∣

σ1 −

(

κ

2
+

1

4

)
∣

∣

∣

∣

,

∣

∣

∣

∣

σ2 −

(

κ

2
+

1

4

)
∣

∣

∣

∣

)}

.
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Applying Theorem 1 we find a τ for which

sup
16j6m

sup
s∈K

|Lj(s+ iτ, F )− fj(s)| < η. (7.3)

Then

sup
s∈Kj

∣

∣

∣

∣

V (s+ iτ)−

m
∑

j=1

ujfj(s)

∣

∣

∣

∣

< η

m
∑

j=1

|uj |.

Since
m
∑

j=1

ujfj(s) = s− σ̂ + (u3 + · · ·+ um)η,

we have

sup
s∈K

|V (s+ iτ)− (s− σ̂)| < 2η
m
∑

j=1

|uj |. (7.4)

Let C be the circle {s ∈ C | |s − σ̂| = (σ2 − σ1)/2}. Then C is included in K.
Choosing η so small that it satisfies

2η

m
∑

j=1

|uj | <
σ2 − σ1

4
,

we find from (7.4) that

|s− σ̂| > |V (s+ iτ)− (s− σ̂)|

for s ∈ C. Hence by Rouché’s theorem we can conclude that V (s + iτ) has a
zero in |s − σ̂| 6 (σ2 − σ1)/2. Since Theorem 1 further implies that the set of
τ ∈ [0, T ] satisfying (7.3) has a positive lower density, we obtain the assertion of
Theorem 4.
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