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1. Introduction

In 1950, Tornheim [14] introduced the double series

∞
∑

m=1

∞
∑

n=1

m−s1n−s2(m + n)−s3 (1.1)

of three variables, and studied its values when s1, s2, s3 are integers in the region
of absolute convergence. Later Mordell [12] independently considered the special
case s1 = s2 = s3, and also studied the multiple sum

∞
∑

m1=1

· · ·
∞
∑

mr=1

1

m1 · · ·mr(m1 + · · ·+ mr + a)
(1.2)

with a > −r. Mordell’s result for (1.2) was used by Hoffman [5] to obtain a
formula for the value of

∞
∑

m1=1

· · ·
∞
∑

mr=1

1

m1 · · ·mr(m1 + · · ·+ mr)s
(1.3)

when s is a positive integer.
One of the purposes of the present paper is to consider the multiple sum

ζMT,r(s1, . . . , sr; sr+1)

=
∞
∑

m1=1

· · ·
∞
∑

mr=1

m−s1

1 · · ·m−sr

r (m1 + · · ·+ mr)
−sr+1, (1.4)

which is a generalization of both (1.1) and (1.3). Here s1, . . . , sr+1 are complex
variables. We call this the Mordell-Tornheim r-ple zeta-function. The series (1.4)
is convergent absolutely when <sj > 1 (1 ≤ j ≤ r) and <sr+1 > 0, but we can
prove the following theorem, a part of which was announced in [8].

Theorem 1. The series (1.4) can be continued meromorphically to the whole
Cr+1 space, and the possible singularities are located only on the subsets of Cr+1

1
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defined by one of the following equations:

sj + sr+1 = 1− ` (1 ≤ j ≤ r, ` ∈ N0),

sj1 + sj2 + sr+1 = 2− ` (1 ≤ j1 < j2 ≤ r, ` ∈ N0),

· · · · · ·
sj1 + · · ·+ sjr−1

+ sr+1 = r − 1− ` (1 ≤ j1 < · · · < jr−1 ≤ r, ` ∈ N0),

s1 + · · ·+ sr + sr+1 = r,

where N0 denotes the set of non-negative integers.

In the case r = 2 (that is, the series (1.1)), this result was proved in [8]. The
analytic continuation of (1.1) was first obtained by S. Akiyama and also by S.
Egami (both proofs are unpublished), but the argument in [8] is different from
theirs.

The series
∞
∑

m=1

∑

n<m

m−s1n−s2(m + n)−1, (1.5)

closely connected with (1.1), was introduced by Apostol and Vu [3]. They were
inspired by the work of Sitaramachandrarao and Sivaramasarma [13]. Partial
results on the analytic continuation of (1.5) was obtained by Apostol and Vu
themselves in [3], but the meromorphic continuation of (1.5), and of the more
general series

∞
∑

m=1

∑

n<m

m−s1n−s2(m + n)−s3, (1.6)

to the whole space was first proved in [8]. In the present paper, we introduce the
following generalization of (1.6), which we call the Apostol-Vu r-ple zeta-function:

ζAV,r(s1, . . . , sr; sr+1)

=
∑

· · ·
∑

1≤m1<···<mr<∞

m−s1

1 · · ·m−sr

r (m1 + · · ·+ mr)
−sr+1. (1.7)

This series is convergent absolutely when <sj > 1 (1 ≤ j ≤ r) and <sr+1 > 0.
Our second result is

Theorem 2. The series (1.7) can be continued meromorphically to the whole
Cr+1 space, and the possible singularities are located only on the subsets of Cr+1

defined by one of the following equations:

si + · · ·+ sr+1 = r + 1− i− ` (1 ≤ i ≤ r, ` ∈ N0).
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Another type of multiple zeta-functions is the Euler-Zagier r-ple sum, which is

ζr(s1, . . . , sr) =
∑

· · ·
∑

1≤m1<···<mr<∞

m−s1

1 m−s2

2 · · ·m−sr

r (1.8)

(cf. Zagier [19]). The meromorphic continuation of (1.8) to the whole C
r space

was recently established by various methods. One of them is due to the author
[7], based on the Mellin-Barnes integral formula. Proofs of Theorems 1 and 2 in
the present paper will be carried out under the same principle, in Section 3.

There are numerous papers on the values of various multiple zeta-functions in
the domain of absolute convergence. Concerning multiple zeta-functions of the
Mordell-Tornheim type, we mention here the recent work of Tsumura [15][16][17].
On the other hand, after proving the analytic continuation, we can discuss the
values outside the domain of absolute convergence. As far as the author knows,
the first work studying such a problem is a paper of Matsuoka [11], who discussed
the value of ζ2(1, s2) when s2 is a negative integer. Apostol and Vu [3] also
studied some special values of ζ2(s1, s2) and of (1.5) outside the domain of absolute
convergence. Recently, special values of (1.8) at negative integers were studied
extensively by Akiyama, Egami and Tanigawa ([1], [2]). Now our Theorems 1
and 2 give the full meromorphic continuation of the Mordell-Tornheim and the
Apostol-Vu multiple zeta-functions. It is therefore desirable to develop a study
on the values of these multiple zeta-functions at negative integers.

It is possible to consider the following more general multiple zeta-functions.
Let Anr = (aij)1≤i≤n,1≤j≤r be an (n, r)-matrix, where aij are non-negative real
numbers. Assume that all rows and all columns of Anr include at least one
non-zero element. Define

ζr(s1, . . . , sn; Anr) =
∞
∑

m1=1

· · ·
∞
∑

mr=1

(a11m1 + · · ·+ a1rmr)
−s1

× · · · × (an1m1 + · · ·+ anrmr)
−sn. (1.9)

This multiple series is absolutely convergent when <si > r (1 ≤ i ≤ n). We have

Theorem 3. The multiple zeta-function (1.9) can be continued meromorphically
to the whole Cn space.

Our proof of Theorem 3, presented in Section 2, also depends on the Mellin-
Barnes formula. The assertion of the analytic continuation of ζMT,r and ζAV,r

is clearly special cases of Theorem 3, but our treatment of ζMT,r and ζAV,r in
Section 3 will give more explicit information. It is likely that Theorem 3 can be
proved by various other ways. Indeed, in some cases, the assertion follows from a
general result of Lichtin [6]. An advantage of our present method is that it shows
a recursive structure of the theory, which will be embodied in (2.4), (3.2), and
(3.6) below. Similar recursive structure also exists for other classes of multiple
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zeta-functions, such as those of Barnes, of Shintani, and of Witten. In view of
the Mellin-Barnes induction argument in the present paper, we can find that all
of the multiple zeta-functions mentioned above are members of a single family.
In the final section we will discuss this unified viewpoint, which might be useful
for further systematic study of multiple zeta-functions.

In the following sections, we write σj = <sj. The Riemann zeta-function is
denoted by ζ(s). The letter ε denotes an arbitrarily small positive number.

A part of this work was done during the author’s stay at Max-Planck-Institut
für Mathematik, Bonn (June 2002). The author expresses his gratitude to Pro-
fessor D. R. Heath-Brown and Professor B. Z. Moroz for invitation, and the staffs
of the institute for their hospitality. The author is also indebted to Professor W.
M. Schmidt, Professor B. Lichtin and the referee for useful comments.

2. Proof of Theorem 3

For each row ai = (ai1, . . . , air) of Anr, let ρ(ai) be the number of non-zero
elements of ai, and define

ρ(Anr) =
n
∏

i=1

ρ(ai).

By induction on ρ(Anr), we prove Theorem 3 and the assertions that ζr(s1, . . . , sn; Anr)
is of polynomial order with respect to =sj (1 ≤ j ≤ n) and possible singularities
of ζr(s1, . . . , sn; Anr) are located only on hyperplanes of the form

c1s1 + · · ·+ cnsn = u(c1, . . . , cn)− `, (2.1)

where c1, . . . , cn are non-negative integers, u(c1, . . . , cn) is an integer determined
by c1, . . . , cn, and ` ∈ N0.

First consider the case ρ(Anr) = 1. Each row includes only one non-zero
element, which we denote by ai,h(i). Then

ζr(s1, . . . , sn; Anr) =
∞
∑

m1=1

· · ·
∞
∑

mr=1

(a1,h(1)mh(1))
−s1 · · · (an,h(n)mh(n))

−sn

= (a1,h(1))
−s1 · · · (an,h(n))

−sn





∞
∑

m1=1

m
−s(1)
1



 · · ·




∞
∑

mr=1

m−s(r)
r





= (a1,h(1))
−s1 · · · (an,h(n))

−sn

r
∏

j=1

ζ(s(j)), (2.2)

where
s(j) =

∑

h(i)=j

si.
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Hence ζr(s1, . . . , sn; Anr) is clearly meromorphic in the whole Cn space, and
the assertions on the order and on the location of singularities are obvious.

Now consider the case ρ(Anr) ≥ 2. Then r ≥ 2, and at least one row of Anr has
at least two non-zero elements. Changing the parameters if necessary, we may
assume that an,r−1 6= 0, anr 6= 0.

The Mellin-Barnes integral formula can be stated as follows. Let s and λ
be complex numbers with <s > 0, | arg λ| < π, λ 6= 0, and c be real with
−<s < c < 0. Then

(1 + λ)−s =
1

2π
√
−1

∫

(c)

Γ(s + z)Γ(−z)

Γ(s)
λzdz, (2.3)

where the path of integration is the vertical line from c−
√
−1∞ to c +

√
−1∞.

A simple proof of (2.3) is mentioned in Section 4 of [8].
Let r∗ ≥ r and assume that (s1, . . . , sn) is in the region

B∗ = {(s1, . . . , sn) | σi > r∗ (1 ≤ i ≤ n)}.
Then the series (1.9) is absolutely convergent. Rewrite the right-hand side of
(1.9) as

∞
∑

m1=1

· · ·
∞
∑

mr=1

(a11m1 + · · ·+ a1rmr)
−s1 · · · (an−1,1m1 + · · ·+ an−1,rmr)

−sn−1

×(an1m1 + · · ·+ an,r−1mr−1)
−sn

(

1 +
anrmr

an1m1 + · · ·+ an,r−1mr−1

)−sn

,

and apply (2.3) with s = sn and λ = anrmr/(an1m1 + · · · + an,r−1mr−1). Then
we have

ζr(s1, . . . , sn; Anr)

=
1

2π
√
−1

∫

(c)

Γ(sn + z)Γ(−z)

Γ(sn)

∑

m1

· · ·
∑

mr

(a11m1 + · · ·+ a1rmr)
−s1

× · · · × (an−1,1m1 + · · ·+ an−1,rmr)
−sn−1

× (an1m1 + · · ·+ an,r−1mr−1)
−sn−z(anrmr)

zdz

=
1

2π
√
−1

∫

(c)

Γ(sn + z)Γ(−z)

Γ(sn)
ζr(s1, . . . , sn−1, sn + z,−z; A′

n+1,r)dz,
(2.4)

where

A′
n+1,r =















a11 · · · a1,r−1 a1r

. . . . . . . . . . . . . . . . . . . . . . . . . . .
an−1,1 · · · an−1,r−1 an−1,r

an1 · · · an,r−1 0
0 · · · 0 anr















.
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To assure the absolute convergence of the multiple series in the integrand, we have
to choose a c satisfying −σn + r− 1 < c < −1. Since ρ(A′

n+1,r) < ρ(Anr), we can
use the induction assumption to find that ζr(s1, . . . , sn−1, sn + z,−z; A′

n+1,r) is
continued meromorphically, and possible singularities are located on hyperplanes
of one of the following forms:

(i) c1s1 + · · ·+ cnsn = u(c1, . . . , cn)− `,
(ii) d1s1 + · · ·+ dnsn + d0z = u(d1, . . . , dn, d0)− `

or
(iii) e1s1 + · · ·+ ensn − e0z = u(e1, . . . , en, e0)− `,

where ci, di, ei are non-negative integers (1 ≤ i ≤ n), d0 and e0 are positive
integers, and ` ∈ N0. Hence the poles of the integrand on the right-hand side of
(2.5) with respect to z are

(I) z = −d1d
−1
0 s1 − · · · − dnd−1

0 sn + d−1
0 u(d1, . . . , dn, d0)− d−1

0 `,
(II) z = e1e

−1
0 s1 + · · ·+ ene−1

0 sn − e−1
0 u(e1, . . . , en, e0) + e−1

0 `,
(III) z = −sn − `

and
(IV) z = `,

where ` ∈ N0. Since σi > r∗ (1 ≤ i ≤ n), choosing r∗ sufficiently large if necessary,
we can assume that all poles of types I and III are on the left of the line <z = c,
while all poles of types II and IV are on the right of <z = c. For brevity we write

−d1d
−1
0 s1 − · · · − dnd

−1
0 sn + d−1

0 u(d1, . . . , dn, d0) = D(s1, . . . , sn),

e1e
−1
0 s1 + · · ·+ ene−1

0 sn − e−1
0 u(e1, . . . , en, e0) = E(s1, . . . , sn).

Let (s0
1, . . . , s0

n) be any point in the space Cn. We show that the right-hand
side of (2.4) can be continued meromorphically to (s0

1, . . . , s0
n).

First of all, remove the singularities of type (i) from the integral on the right-
hand side of (2.4). This type of singularity is cancelled by the factor

(c1s1 + · · ·+ cnsn − u(c1, . . . , cn) + `)v(c1,... ,cn),

where v(c1, . . . , cn) is a positive integer. Let L be a sufficiently large positive
integer for which

c1s1 + · · ·+ cnsn = u(c1, . . . , cn)− L

does not hold for any (c1, . . . , cn) appearing in (i), if <si ≥ <s0
i (1 ≤ i ≤ n).

Define

Φ(s1, . . . , sn)

=
∏

ci

L−1
∏

`=0

(c1s1 + · · ·+ cnsn − u(c1, . . . , cn) + `)v(c1,... ,cn),

where the first product runs over all (c1, . . . , cn) appearing in (i). Rewrite the
right-hand side of (2.4) as

Φ(s1, . . . , sn)−1J(s1, . . . , sn),
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where

J(s1, . . . , sn) =
1

2π
√
−1

∫

(c)

Γ(sn + z)Γ(−z)

Γ(sn)
Φ(s1, . . . , sn)

× ζr(s1, . . . , sn−1, sn + z,−z; A′
n+1,r)dz.

Then the integrand of J(s1, . . . , sn) does not have singularities of type (i) in the
region <si ≥ <s0

i (1 ≤ i ≤ n).
Let M > 0 be sufficiently large integer for which <s0

i + M > r∗ (1 ≤ i ≤ n)
holds. Put s∗i = s0

i + M , and consider the poles of types I, II, III and IV for
(s1, . . . , sn) = (s∗1, . . . , s∗n) ∈ B∗. Let I(I, III) be the set of all imaginary parts of
the poles of type I and of type III, and similarly define I(II, IV).

First consider the case

I(I, III) ∩ I(II, IV) = ∅, (2.5)

and join D(s∗1, . . . , s∗n) and D(s0
1, . . . , s0

n) by the segment S(D) which is parallel
to the real axis. Similarly join E(s∗1, . . . , s∗n) and E(s0

1, . . . , s0
n) by the segment

S(E), and join −s∗n and −s0
n by the segment S(n). By the assumption (2.5),

we can modify the path <z = c to obtain the new path C, from c −
√
−1∞ to

c +
√
−1∞, such that all segments of the form S(D) and S(n) are on the left of

C, and all segments of the form S(E) are on the right of C. We have

J(s1, . . . , sn) =
1

2π
√
−1

∫

C

Γ(sn + z)Γ(−z)

Γ(sn)
Φ(s1, . . . , sn)

× ζr(s1, . . . , sn−1, sn + z,−z; A′
n+1,r)dz (2.6)

in a sufficiently small neighbourhood of (s∗1, . . . , s∗n). When we move (s1, . . . , sn)
from (s∗1, . . . , s∗n) to (s0

1, . . . , s0
n) with keeping the values of imaginary parts of

each si, the path C does not cross any poles of the integrand. Therefore the
integral (2.6) can be continued holomorphically to (s0

1, . . . , s0
n). This implies the

continuation of ζr(s1, . . . , sn; Anr) to the point (s0
1, . . . , s0

n) where (2.5) holds.
Next we consider the case when (2.5) does not hold. We describe the method

for this case by discussing a typical example, that is, there are (d1, . . . , dn, d0)
appearing in I and (e1, . . . , en, e0) appearing in II such that

=D(s∗1, . . . , s∗n) = =E(s∗1, . . . , s∗n). (2.7)

The associated poles are D(s∗1, . . . , s∗n)−d−1
0 `1 and E(s∗1, . . . , s∗n)+e−1

0 `2 (`1, `2 ∈
N0). When (s∗1, . . . , s∗n) is moved to (s0

1, . . . , s0
n), these poles are moved to

D(s0
1, . . . , s0

n)− d−1
0 `1 and E(s0

1, . . . , s0
n) + e−1

0 `2. If

<D(s0
1, . . . , s0

n)− d−1
0 `1 6= <E(s0

1, . . . , s0
n) + e−1

0 `2 (2.8)

for any `1 and `2, then the above argument (in the case (2.5) holds) is still valid
with a slight modification. In fact, let η be a small positive number, and con-
sider the oriented polygonal path S ′(D) joining the points D(s∗1, . . . , s∗n), D(s∗1 +√
−1η, . . . , s∗n +

√
−1η), D(s0

1 +
√
−1η, . . . , s0

n +
√
−1η), and then D(s0

1, . . . , s0
n)
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in that order. Similarly define the path S ′(E) which joins E(s∗1, . . . , s∗n), E(s∗1 +√
−1η, . . . , s∗n +

√
−1η), E(s0

1 +
√
−1η, . . . , s0

n +
√
−1η), and then E(s0

1, . . . , s0
n).

Then S ′(D) lies on the lower side of the line

L = {z | =z = =D(s∗1, . . . , s∗n) = =E(s∗1, . . . , s∗n)},
while S ′(E) lies on the upper side of L. Because of (2.8), we can define the path
C ′, which is almost the same as C, but near the line L we draw C ′ such that it
separates

⋃

`1∈N0

(S ′(D)− d−1
0 `1) and

⋃

`2∈N0

(S ′(E) + e−1
0 `2).

Then the expression (2.6), with replacing C by C ′, is valid in a sufficiently small
neighbourhood of (s∗1, . . . , s∗n). When (s1, . . . , sn) moves along the polygonal path
joining (s∗1, . . . , s∗n), (s∗1 +

√
−1η, . . . , s∗n +

√
−1η), (s0

1 +
√
−1η, . . . , s0

n +
√
−1η),

and then (s0
1, . . . , s0

n) in that order, the path C ′ encounters no pole, hence we
obtain the analytic continuation.

The remaining case is that

D(s0
1, . . . , s0

n)− d−1
0 `1 = E(s0

1, . . . , s0
n) + e−1

0 `2 (2.9)

holds for some `1 and `2. Then this might hold for some other pairs of (`1, `2).
In this case we consider the path C ′′ which is almost the same as C, but near the
line L we only require that S(D) is on the left of C ′′. When we deform the path
<z = c on the right-hand side of (2.4) to C ′′, we might encounter several poles
of type II. Then we move (s1, . . . , sn) from (s∗1, . . . , s∗n) to (s0

1, . . . , s0
n); again the

path might encounter several poles of the same type. Hence, in a sufficiently small
neighbourhood U of (s0

1, . . . , s0
n), the integral J(s1, . . . , sn) has the expression

R(s1, . . . , sn) +
1

2π
√
−1

∫

C′′

Γ(sn + z)Γ(−z)

Γ(sn)
Φ(s1, . . . , sn)

× ζr(s1, . . . , sn−1, sn + z,−z; A′
n+1,r)dz, (2.10)

where R(s1, . . . , sn) is the sum of residues of the above poles. The expression
(2.10) gives the analytic continuation to U .

From the condition (2.9) we find that possible polar sets of R(s1, . . . , sn) are
of the form

c1s1 + · · ·+ cnsn = u(c1, . . . , cn)− `,

where c1, . . . , cn ∈ N0, u(c1, . . . , cn) is an integer and ` ∈ N0. The polar sets of
Φ(s1, . . . , sn)−1 are clearly of the same form. Hence the proof of Theorem 3 is
now complete.

3. Proofs of Theorems 1 and 2

The analytic continuation of the Mordell-Tornheim and the Apostol-Vu multi-
ple zeta-functions is now established by Theorem 3. In this section, however, we
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prove Theorems 1 and 2 by a little different argument, which gives more explicit
information.

First we prove, by induction on r, the assertions of Theorem 1 and the fact that
ζMT,r(s1, . . . , sr; sr+1) is of polynomial order with respect to |=sr+1|, uniformly
in any vertical strip −∞ < σ1 ≤ <sr+1 ≤ σ2 < ∞.

When r = 1, ζMT,1(s1; s2) is nothing but the Euler sum ζ2(s1, s2), and the
desired assertions were proved in [7] or [8]. The case r = 2 was also established
in [8].

Now let r ≥ 3, and assume σj > 1 (1 ≤ j ≤ r), σr+1 > 0. Rewrite the
right-hand side of (1.4) as

∞
∑

m1=1

· · ·
∞
∑

mr=1

m−s1

1 · · ·m−sr

r (m1 + · · ·+ mr−1)
−sr+1

(

1 +
mr

m1 + · · ·+ mr−1

)−sr+1

,

and apply (2.4) to obtain

ζMT,r(s1, . . . , sr; sr+1)

=
1

2π
√
−1

∫

(c)

Γ(sr+1 + z)Γ(−z)

Γ(sr+1)

× ζMT,r−1(s1, . . . , sr−1; sr+1 + z)ζ(sr − z)dz, (3.1)

where −σr+1 < c < 0. By the induction assumption we find that the poles of
ζMT,r−1(s1, . . . , sr−1; sr+1 + z) as a function in z are

z = −sj − sr+1 + 1− ` (1 ≤ j ≤ r − 1, ` ∈ N0),

z = −sj1 − sj2 − sr+1 + 2− ` (1 ≤ j1 < j2 ≤ r − 1, ` ∈ N0),

· · · · · ·
z = −sj1 − · · · − sjr−2

− sr+1 + r − 2− `

(1 ≤ j1 < · · · < jr−2 ≤ r − 1, ` ∈ N0),

z = −s1 − · · · − sr−1 − sr+1 + r − 1,

all of which are located to the left of <z = c. The other poles of the integrand
on the right-hand side of (2.2) are z = −sr+1 − ` (` ∈ N0), z = ` (` ∈ N0), and
z = sr − 1. When we shift the path of integration to the right to <z = K − ε,
where K is a positive integer, the relevant poles are z = ` (0 ≤ ` ≤ K − 1) and
z = sr − 1. If we assume that sr is not a positive integer, then all of these poles
are simple. By the induction assumption on the order of ζMT,r−1 and Stirling’s
formula we see that the integrand is of exponential decay with respect to |=z|,
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hence this shifting is possible. we obtain

ζMT,r(s1, . . . , sr; sr+1)

=
Γ(sr + sr+1 − 1)Γ(1− sr)

Γ(sr+1)
ζMT,r−1(s1, . . . , sr−1; sr + sr+1 − 1)

+
K−1
∑

k=0

(

−sr+1

k

)

ζMT,r−1(s1, . . . , sr−1; sr+1 + k)ζ(sr − k)

+
1

2π
√
−1

∫

(K−ε)

Γ(sr+1 + z)Γ(−z)

Γ(sr+1)

× ζMT,r−1(s1, . . . , sr−1; sr+1 + z)ζ(sr − z)dz. (3.2)

The poles of the integrand of the last integral are listed above, hence we see
that this integral is holomorphic at any points satisfying all of the following
inequalities:

σr+1 > −K + ε,

σj + σr+1 > 1−K + ε (1 ≤ j ≤ r − 1),

σj1 + σj2 + σr+1 > 2−K + ε (1 ≤ j1 < j2 ≤ r − 1),

· · · · · ·
σj1 + · · ·+ σjr−2

+ σr+1 > r − 2−K + ε (1 ≤ j1 < · · · < jr−2 ≤ r − 1),

σ1 + · · ·+ σr−1 + σr+1 > r − 1−K + ε,

σr < 1 + K − ε.

Since K can be taken arbitrarily large, (3.2) implies the meromorphic continua-
tion of ζMT,r(s1, . . . , sr; sr+1) to the whole Cr+1 space, including the case when
sr = m, a positive integer. When sr = m, the first and the second terms on the
right-hand side of (3.2) are singular (when K ≥ m), but these singularities cancel
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each other. Indeed we can easily show

ζMT,r(s1, . . . , sr−1, m; sr+1)

=

(

−sr+1

m− 1

){

ζ ′MT,r−1(s1, . . . , sr−1; sr+1 + m− 1)

+

(

Γ′

Γ
(sr+1 + m− 1)−

(

1 +
1

2
+ · · ·+ 1

m− 1

)

)

× ζMT,r−1(s1, . . . , sr−1; sr+1 + m− 1)

}

+
∑

0≤k≤K−1
k 6=m−1

(

−sr+1

k

)

ζMT,r−1(s1, . . . , sr−1; sr+1 + k)ζ(sr − k)

+
1

2π
√
−1

∫

(K−ε)

Γ(sr+1 + z)Γ(−z)

Γ(sr+1)

× ζMT,r−1(s1, . . . , sr−1; sr+1 + z)ζ(sr − z)dz, (3.3)

where ζ ′MT,r−1 means the derivative with respect to the last variable.
From (3.2) and (3.3) we can see that the location of possible singularities

are as stated in the statement of the theorem. Also from (3.2) and (3.3) we
can prove the assertion on the order of ζMT,r. As for the last integral on the
right-hand sides of (3.2) and (3.3), split it at z = 0 and z = −=sr+1, and
estimate each part separately. The factor ζ ′MT,r−1 in (3.3) can be estimated by
using Cauchy’s integral formula. Then we find that ζMT,r(s1, . . . , sr; sr+1) is of
polynomial order with respect to |=sr+1|, uniformly in any vertical strip. Hence
the proof of Theorem 1 is complete.

Now we proceed to the proof of Theorem 2. We introduce the auxiliary multiple
series

ϕj,r(s1, . . . , sj; sj+1, . . . , sr; sr+1)

=
∑

· · ·
∑

1≤m1<···<mr<∞

m−s1

1 · · ·m−sr

r (m1 + · · ·+ mj)
−sr+1 (3.4)

(1 ≤ j ≤ r), which is convergent absolutely when σj > 1 (1 ≤ j ≤ r) and
σr+1 > 0. It is clear that ϕr,r = ζAV,r, and

ϕ1,r(s1; s2, . . . , sr; sr+1) = ζr(s1 + sr+1, s2, . . . , sr), (3.5)

where the right-hand side is the r-ple sum of the Euler-Zagier type. We prove

Theorem 4. For 1 ≤ j ≤ r, we have
(i) the function ϕj,r(s1, . . . , sj; sj+1, . . . , sr; sr+1) can be continued meromor-

phically to the whole Cr+1 space,
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(ii) the possible singularities of ϕj,r are located only on the subsets of Cr+1

defined by one of the following equations:

sr = 1,

si + · · ·+ sr = r + 1− i− ` (j + 1 ≤ i ≤ r − 1, ` ∈ N0),

si + · · ·+ sr + sr+1 = r + 1− i− ` (1 ≤ i ≤ j, ` ∈ N0).

(iii) each of these singularities can be cancelled by the corresponding linear
factor, and

(iv) ϕj,r is of polynomial order with respect to |=si| (1 ≤ i ≤ r + 1).

When j = 1, that is the case of the Euler-Zagier r-ple sum (3.2), the assertion
(i) was proved by various methods, as was mentioned in Section 1. In [9], (i) and
(ii) were proved in a more generalized form, and (iii) and (iv) can be easily shown
from (4.4) of [9].

Now let j ≥ 2, assume that Proposition 1 is true for j− 1. Also assume σj > 1
(1 ≤ j ≤ r) and σr+1 > 0. By using (2.4) with s = sr+1, λ = mj/(m1+· · ·+mj−1)
we have

ϕj,r(s1, . . . , sj; sj+1, . . . , sr; sr+1)

= +
1

2π
√
−1

∫

(c)

Γ(sr+1 + z)Γ(−z)

Γ(sr+1)

× ϕj−1,r(s1, . . . , sj−1; sj − z, sj+1, . . . , sr; sr+1 + z)dz, (3.6)

where −σr+1 < c < 0. The singularities of ϕj−1,r in the integrand are, by the
induction assumption, only on

sr = 1,

si + · · ·+ sr = r + 1− i− ` (j + 1 ≤ i ≤ r − 1, ` ∈ N0),

si + · · ·+ sr + sr+1 = r + 1− i− ` (1 ≤ i ≤ j − 1, ` ∈ N0),

or

sj + · · ·+ sr − z = r + 1− j − ` (` ∈ N0). (3.7)

The poles of other factors of the integrand with respect to z are z = −sr+1 − `
(` ∈ N0) and z = ` (` ∈ N0). Therefore, when we shift the path of integration,
this time to the left, to <z = −σr+1 − K + ε (which is possible because of the
induction assumption (iv)), the relevant poles are z = −sr+1− ` (0 ≤ ` ≤ K−1),
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and we obtain

ϕj,r(s1, . . . , sj; sj+1, . . . , sr; sr+1)

=
K−1
∑

k=0

(

−sr+1

k

)

ϕj−1,r(s1, . . . , sj−1; sj + sr+1 + k, sj+1, . . . , sr;−k)

+
1

2π
√
−1

∫

(−σr+1−K+ε)

Γ(sr+1 + z)Γ(−z)

Γ(sr+1)

× ϕj−1,r(s1, . . . , sj−1; sj − z, sj+1, . . . , sr; sr+1 + z)dz. (3.8)

Let

ΦL(s1, . . . , sr+1) =(sr − 1)
∏

`≤L

{

r−1
∏

i=j+1

(si + . . . + sr − r − 1 + i + `)

×
j−1
∏

i=1

(si + . . . + sr + sr+1 − r − 1 + i + `)

}

,

where L is a positive integer, and rewrite the integral on the right-hand side of
(3.8) as

ΦL(s1, . . . , sr+1)
−1
∫

(−σr+1−K+ε)

Γ(sr+1 + z)Γ(−z)

Γ(sr+1)

× ΦL(s1, . . . , sr+1)ϕj−1,r(s1, . . . , sj−1; sj − z, sj+1, . . . , sr; sr+1 + z)dz.
(3.9)

By the induction assumption (iii), ΦL(s1, . . . , sr+1) cancels the singularities of
ϕj−1,r for ` ≤ L, except for those of the form (3.7). Hence the integral on (3.9)
is holomorphic at any points satisfying all of the following inequalities:

σr+1 > −K + ε,

σi + · · ·+ σr > r − i− L (j + 1 ≤ i ≤ r − 1),

σj + · · ·+ σr + σr+1 > −K + r + 1− j + ε,

σi + · · ·+ σr + σr+1 > r − i− L (1 ≤ i ≤ j − 1).

Since K and L can be arbitrarily large, this with (3.8) implies the meromorphic
continuation of ϕj,r(s1, . . . , sj; sj+1, . . . , sr; sr+1) to the whole C

r+1 space. The
other assertions of Theorem 4 can also be shown from (3.8).

The case j = r of Theorem 4 implies Theorem 2, because in this case the sum
on the right-hand side of (3.8) is

K−1
∑

k=0

(

−sr+1

k

)

ϕr−1,r(s1, . . . , sr−1; sr + sr+1 + k;−k),

hence the singularity sr = 1 does not appear.
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4. The family of multiple zeta-functions

First we discuss the continuation of Witten multiple zeta-functions. Let g be
a semi-simple Lie algebra, and define

ζg(s) =
∑

ρ

(dim ρ)−s, (4.1)

where ρ runs over all finite dimensional representations of g. This type of multiple
series was introduced by Witten [18] in order to calculate the volumes of certain
moduli spaces. In Zagier [19], explicit forms of (4.1) for some simple examples
are given; ζsl(2)(s) = ζ(s), ζsl(3)(s) = 2sζMT,2(s, s; s), and

ζso(5)(s) = 6s
∞
∑

m=1

∞
∑

n=1

m−sn−s(m + n)−s(m + 2n)−s. (4.2)

From Theorem 1 (or [8]) we know that ζsl(3)(s) is meromorphic in the whole
complex plane. Similarly we can show the meromorphic continuation of ζso(5)(s).
In fact, Theorem 3 implies the meromorphic continuation of

ζso(5)(s1, s2, s3, s4) =
∞
∑

m=1

∞
∑

n=1

m−s1n−s2(m + n)−s3(m + 2n)−s4 (4.3)

to the whole C4 space. Or, similarly to the argument in Section 3, we can show

ζso(5)(s1, s2, s3, s4)

=
1

2π
√
−1

∫

(c)

Γ(s4 + z)Γ(−z)

Γ(s4)

∑

m

∑

n

m−s1n−s2(m + n)−s3

× (m + n)−s4

(

n

m + n

)z

dz

=
1

2π
√
−1

∫

(c)

Γ(s4 + z)Γ(−z)

Γ(s4)
ζMT,2(s1, s2 − z; s3 + s4 + z)dz,

(4.4)

where −<s4 < c < 0, and can prove the meromorphic continuation by shifting
the path to <z = K − ε.

On the other hand, the author [7] [8] introduced the generalized r-ple zeta-
function

ζ̃r(s1, . . . , sr; α1, . . . , αr; w1, . . . , wr)

=
∞
∑

m1=0

· · ·
∞
∑

mr=0

(α1 + m1w1)
−s1(α2 + m1w1 + m2w2)

−s2

× · · · × (αr + m1w1 + · · ·+ mrwr)
−sr , (4.5)

where α1, . . . , αr, w1, . . . , wr are complex parameters. This function has been
studied in detail in [7] [8] [9] [10]. It is to be stressed that (4.5) includes both the
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Euler-Zagier r-ple sum and the Barnes r-ple zeta-function (Barnes [4]) as special
cases. The latter is defined by

ζB,r(s) = ζ̃r(0, . . . , 0, s; 1, . . . , 1, αr; w1, . . . , wr),

and so ζB,1 is essentially equal to the Hurwitz zeta-function ζHur. Moreover,
at least in the case r = 2, we can show that the Shintani double zeta-function
ζSH,2(s1, s2) can be written as an integral of Mellin-Barnes type including the

generalized double zeta ζ̃2 as a factor of the integrand (see Section 8 of [7]).
Therefore, based on the Mellin-Barnes induction argument, we now have a

unified view of the family of various multiple zeta-functions mentioned above,
introduced historically under various motivations different from each other. The
whole situation may be illustrated in the following figure. In this figure, ζX −→ ζY

means that ζX can be expressed as a Mellin-Barnes integral involving ζY , and
ζX −−− ζY means that ζX is a generalization of ζY .
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