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1. Basic properties of the Riemann zeta-function

The Riemann zeta-function is defined by the infinite series

=> n’, (1.1)
n=1

where s = o + it is a complex variable. This series is convergent absolutely
in the half-plane Dy = {o = Res > 1}, uniformly in any compact subset
of Dy, hence is holomorphic there. Moreover, as was discovered by L. Euler
(1737), ¢(s) has the infinite product expression

H 1—Pn (1.2)

(the Euler product) in Dg, where p,, denotes the nth prime number. Conse-
quently ((s) # 0 in Dy.
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The meromorphic continuation of ((s) was proved by B. Riemann (1859).
He proved that ((s) is holomorphic in the whole complex plane C except for
the only simple pole at s = 1. Riemann also proved the functional equation

7=S/2T (g) ¢(s) = 7~ (1=9)/2p (1 3 5) C(1—s) (1.3)

predicted by Euler, by which we can easily reduce the study of ((s) in the
region o < 0 to that in Dgy. In particular, we find that {(—2k) = 0 for any
k € N (where N is the set of positive integers), and those are the only zeros
in the region o < 0.

Riemann noticed that the behaviour of {(s) in the remaining region 0 <
o < 1 (the critical strip), especially the distribution of zeros of ((s) in this
strip, is closely connected to the behaviour of prime numbers. Therefore
the study of ((s) in this strip is very important in prime number theory.
In particular, Riemann wrote that it is quite plausible that all the zeros in
this strip are on the line 0 = 1/2 (the Riemann hypothesis). However, still
now, no one knows whether the Riemann hypothesis is true or not. Generally
speaking, the study of the behaviour of {(s) in this strip is extremely difficult.
Many theorems on the zeros of ((s) in this strip are now known, but our
knowledge is still far from the real understanding of ((s).

By function theory we can say that we can understand ((s) completely if
we understand its zeros and poles completely. This implies that the proper-
ties of non-zero values of ((s) includes the information of zeros, that is, “what
kind of distribution of zeros may give such properties of non-zero values?”
This gives a motivation of the study of non-zero values of ((s). The purpose
of the present article is to survey the theory of distribution of non-zero values
of ¢(s) and more general zeta-functions.

We may expect that, by studying general distribution properties of (s),
we can arrive at the global understanding of ((s) (which may not be arrived
at if we watch only the zeros). Moreover, the history of the distribution theo-
ry of non-zero values shows that the theory is connected with various other
branches of mathematics, such as probability theory, ergodic theory, func-
tional analysis, and the theory of almost periodic functions. Furthermore,
several unexpected applications of theorems on the value-distribution theory
have been discovered recently. Therefore we can say that the distribution
theory of non-zero values is a rather rich and fruitful area.

This article is an extended written version of the author’s lecture at the
Colloquium on the value-distribution of Dirichlet series, held at Departa-
mento de Matematicas, Universidad Auténoma de Madrid, Spain, December
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2005. The author would like to thank Professors Jorn Steuding and Rasa
(Sleieviéiené—)Steuding for the invitation and hospitality. The author would
also like to thank Professor Antanas Laurin¢ikas for his suggestion of sub-
mitting this written version to the present journal published in Lithuania,
where the value-distribution theory is very actively studied.

2. The denseness theorem of Bohr

The study of the distribution of non-zero values of {(s) was initiated by
H. Bohr in 1910s. Because of the functional equation (1.3), it is not strange
to restrict our consideration to the region o > 1/2. If ¢ > 1, it is clear that
|C(0 4+ it)] < ((o) for any t € R (where R is the set of real numbers), that
is, the orbit (o + it) is included in a compact subset of C. However, the
situation is different when o < 1.
THEOREM 1 (Bohr-Courant, [8]). For any o satisfying 1/2 < o < 1, the set
{¢(c +it) | t € R} is dense in C.

THEOREM 2 (Bohr, [7]). For any o satisfying 1/2 < o < 1, the set {log (o +
it) | t € R} is dense in C.

REMARK. Since we do not assume the Riemann hypothesis, we cannot
exclude the possibility of existence of zeros of {(s) in the strip 1/2 < o < 1.
Hence, in Theorem 2, we have to decide the branch of the logarithm. When
o > 1 we define

log¢(s) = — Y Log(l—p,*),
n=1

where Log denotes the branch of the logarithm which is real on the positive
real axis. Next, in the case 1/2 < o < 1, denote by P all (possible) poles
and the zeros of ((s) in this strip, and exclude

U {o+ito|1/2 <0 <00}
s=oqg+itgEP

from our consideration. When o + it is not in the above set, we define the
value of log (o +it) by the analytic continuation from the region o > 1 along
the horizontal line segment.

Actually Theorem 1 is a simple consequence of Theorem 2. In fact, let a
be any non-zero complex number. For any ¢ > 0, Theorem 2 says that we
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can find a t € R such that

|log ((o +it) — logal < 2‘ i

Hence
IC(o+it) —a| = |a|-|eletlotiti—loga _ 1|
< 2lal - [log (o +it) —logal <,

which implies Theorem 1.
Now we briefly sketch how to prove Theorem 2. Let N € N, and consider
the finite truncation

N
s\ -1
Cvs) =TT (0 =p) (21)
n=1
of the Euler product (1.2). Then
log (v (o +it) Z Log o ”) (2.2)

— _ZLOg( —O’ —ztlogpn> )

Define the mapping Sy : [0,1)Y — C by

Sn(01,...,0 Z Log ( poe %lf’n) : (2.3)

Then from (2.2) and (2.3) we have

log(n (o +it) = Sy <{—;7Tlogp1},...,{—;;Tlogp]v}> , (2.4)

where {x} denotes the fractional part of x.
When 6,, moves from 0 to 1, each term Log (1 — 0,7 27”9") on the right-
hand side of (2.3) describes a closed convex curve. Therefore

Uy ={Sn(01,...,0n) 0<0, <1 (1<n<N)}

is a “geometric sum” of convex curves. Since 1/2 < ¢ < 1, the series Y p, 7
is divergent. By using this fact, we can show that

UuN:c
N
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Therefore, for any a € C, we can find a sufficiently large N and 6,, € [0,1)
(1 < n < N) for which

Sn(01,...,0n) =a (2.5)

holds.
An arithmetic key lemma in the proof of Theorem 2 is the following
approximation lemma of L. Kronecker. Let ai,...,any € R, linearly inde-

pendent over the rational number field QQ, and let by,...,by € R. Then
Kronecker’s lemma asserts that, for any € > 0, we can find a t > 0 and
rational integers myq, ..., my for which

[tan, — by, —my| <e (1<n<N) (2.6)

holds. Since logpi,...,logpx are linearly independent over Q (which is an
immediate consequence of uniqueness of the decomposition of integers into
prime factors), we can apply Kronecker’s lemma to a, = —logp, /27 and
b, = 6,, to obtain that

t
—?logpn—en—mn <e (1<n<N) (2.7)
T

with some ¢ > 0 and my,...,my. Combining (2.4), (2.5) and (2.7) we find
that, under a suitable choice of ¢, |log (ny (o +it) —a| can be arbitrarily small.

The only remaining task is to replace log (x (o +it) by log (o +it). This
can be achieved by using the following mean value result. Let n > 0. Then,
for any sufficiently large N = N(n) and T'= T'(N, n), one has

/ (o +1it)

C N(o + Zt
This can be shown by using a general mean value theorem of F. Carlson, and
the (classically known) mean square result

dt < nT. (2.8)

T

/g(g +it)2dt = O(T) (o > 1/2). (2.9)

1

Inequality (2.8) implies that the value (x (o +it) is not far from ((o + it) for
almost all t. Therefore we obtain the assertion of Theorem 2.

It is to be noted that mean value estimates such as (2.9) are usually
essentially used in the proof of value-distribution theorems.
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3. Voronin’s multidimensional denseness

The multidimensional generalization of Bohr’s denseness theorem was
proved by S. M. Voronin more than half-century later. Let

Di={seC|1/2<Res<1l}, D={seC|1/2<Res<1}.

His results can be stated as follows.
THEOREM 3 (Voronin, [71]). Let m € N, h > 0.
(i) For any s € Dy, the set

{(C(s +inh),'(s +inh), ..., " V(s +inh)) | n € N}

is dense in C™.
(ii) For any si,...,sm € D1 (distinct from each other), the set

{(¢(s1 + inh),((s2 + inh),...,((sm +inh)) | n € N}

1s dense in C™.

The following generalization of Theorem 1 is an immediate corollary of
the assertion (i) of the above theorem.

THEOREM 4. For any o satisfying 1/2 < o < 1, the set
{(Clo+it), (o +it),....c"" V(o +it) | t e R} (3.1)
dense in C™.

At first glance, this is just a simple generalization of Theorem 1. Actually,
however, this result suggests a rather surprising fact that “any holomorphic
function can be approximated by ((s)”.

Let sg = og + ity be any point in D. Let U = {s € C | |s — so| < a} be a
disc, U C D, and f(s) be a function holomorphic on U. Then

(k) (g
1) = S T (o (32

k=0

for s € U. By Cauchy’s estimate of the coefficients we have

(s — s0)*| < Ma="|s — so|* (3.3)

‘f(k)(s())
k!
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for any k, where M = sup{|f(s)|| s € U}. Let
Vo={se€C||s—so| <dpa} CU

where 0 < &y < 1. Then the right-hand side of (3.3) is < Md} if s € V.
Therefore, for any e > 0, we can find a sufficiently large m = m(M,e,dp) € N
for which

m—1 f(k) s

k=0

0) (s —s0)| < ¢ (3.4)

holds for s € Vj.
On the other hand, Theorem 4 implies that we can find a t; € R for
which

(W og+it1) = fPso) <ee™™  (0<k<m—1)  (35)

holds. Hence

m—1 m—1
f(k) S0 C(k) g0 -I-Ztl
E: k(' )(S—S)k— (k‘ )( _So)k
k=0 ) k=0 ’
m—1
93 (50a)k
S X <€ (3.6)
k=0

for s € V. Put 7 =t1 — ty. Then og + ity = s9 + ¢7. The Taylor expansion
of {(s+i7) as a function in s at s = s is

2 ¢(k) '
C(s +iT) ZC 80+” S_SO)k:ZC(U]Z‘—FZtl)(S_SO)k' (3.7)

Let Vs = {s € C | |s — so| < da}, where 0 < § < dp. Again using Cauchy’s
estimate, we find that

C(k) (o0 + it1)

k! (5= 50)

for s € Vs, where A(r) = sup{|((s +iT)| | s € U}. Hence, if we choose
d = §(m, e, ) sufficiently small, we have

m—1
t1)
‘ s +iT) ZC UO+11 (s —s0)¥| < e (3.8)
k=0
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for s € Vs. From (3.4), (3.6) and (3.8) we obtain

sup |¢(s +1i7) — f(s)] < 3e. (3.9)
seVs

This implies that f(s) can be approximated by (a certain translation of) ((s)
uniformly in the disc Vs. This kind of property is called universality of {(s).
The above argument of deducing (3.9) from Theorem 4 is sketched in
the author’s textbook [56], written in Japanese. An unsatisfactory point of
(3.9) is that it holds only in a small disc Vs, and moreover, the radius da
of V5 depends on 7. This point is overcome in the stronger version of the
universality due to Voronin, which will be discussed in the next section.

4. The universality

Denote by p1{A} the 1-dimensional Lebesgue measure of the set A. We
use the notation

i) = s € 0,77+ )

for T > 0, where in place of dots we write a certain condition satisfied by 7.
Let K be a compact subset of D, and F(K) be the family of functions which
are non-vanishing, continuous on K and holomorphic in the interior of K.
Then

THEOREM 5 (The universality theorem of Voronin). For any compact subset
K of D with connected complement, we have

liminfuT{sup((s—i—z‘r)—f(s)] <E} >0 (4.1)
T—o0 seK

for any f € F(K) and any € > 0.

This formulation of the universality theorem is due to Reich [65]. Voro-
nin’s original statement in |72] is restricted to the case when K is a disc in
D, but the above form of the universality can be deduced by his argument.

It is a natural question how to generalize this remarkable result to more
general zeta and L-functions. Let x be a Dirichlet character mod ¢, and
L(s, x) the associated Dirichlet L-function. Voronin |72] already mentioned
that his result can be generalized to L(s,x). More strongly, the following
“joint universality theorem” holds (see Voronin [73], Gonek [15], and Bagchi

21, [3])-
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THEOREM 6. Let K1,..., K, be compact subsets of D with connected com-
plements, and f; € F(K;) (1 < j < m). Let x1,...,Xm be pairwise non-
equivalent Dirichlet characters. Then we have

liminf vy ¢ max sup |L(s +i7,x;) — fi(s)| <ep >0 (4.2)
Tooo | | 1<j<m ek,

for any e > 0.

In the proof of Theorem 2, we used the fact that logpi,...,logpy are
linearly independent over Q. The same fact is also used in the proof of
Theorem 5. To prove Theorem 6, the orthogonality property of Dirichlet
characters is also applied.

Let ((s,a) be the Hurwitz zeta-function with parameter o (0 < av < 1).
If « is rational or transcendental, then (s, «) has the universality property,
that is, the inequality of the form (4.1) with replacing ((s+i7) by {(s+iT, a)
holds (Bagchi [2], Gonek [15]). In this case the non-vanishing condition for
f(s) is not necessary. This is because we do not use the Euler product
expansion in the proof; actually Hurwitz zeta-function in general has no Euler
product. Instead, when « is rational, we write (s, @) as a linear combination
of Dirichlet L-functions and apply Theorem 6. When « is transcendental,
we use the fact that log(n + a) (n € N) are linearly independent over Q.
When « is algebraic irrational, to prove the universality of {(s, «) is an open
problem.

In general, we call a Dirichlet series Z(s) strongly universal if (4.1) with
replacing ((s+1i7) by Z(s+1i7) holds. Now it is known that various zeta and
L-functions are strongly universal; Dedekind zeta-functions of algebraic num-
ber fields (Voronin [74], Gonek [15], Reich [66], [67]), Lerch zeta-functions
(Laurincikas [30], [31], see also Laurin¢ikas and Garunkstis [43|), Dirichlet se-
ries attached to finite Abelian groups (Laurinéikas [37], [39]), Rankin-Selberg
L-functions (the author [54]), etc.

The universality in some general setting has also been studied. This direc-
tion was cultivated by Reich [65], and then, pursued further by Laurinc¢ikas
([20], [21], [22], [23], [24], [32]). Joint universality theorems in general setting
are discussed in Laurin¢ikas [25], [33]. See also the next section.

An important problem is to find some quantitative version of universality
theorems. The first attempt to this direction is due to Good [14]. Recently,
this problem has been studied by Laurincikas [35], Steuding [69], and Ga-
runkstis [11]. Steuding considered the upper density (defined by replacing
lim inf by lim sup on the left-hand side of (4.1)) and obtained an upper bound
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of it, while Garunkstis, inspired by the work of Good [14], obtained a lower
bound of the lower density when K is sufficiently small.

There are three textbooks ([19], [27], [43]) in which the universality is
treated. Also there are several survey papers, such as Laurinc¢ikas [36], [39],
[41], the author [55]. Steuding’s lecture note on this topic will appear soon.

5. The positive density method

There is a conjecture, due to Yu. V. Linnik and I. A. Ibragimov, which
says that all functions defined by Dirichlet series, which can be continued
analytically to the left of the abscissa of absolute convergence and satisfy
some natural conditions there, would be strongly universal. In view of this
conjecture, it is desirable to show universality property for more and more
zeta and L-functions.

In this direction, one important turning point is the unconditional proof of
the strong universality of automorphic L-functions attached to cusp forms for
SL(2,Z), due to Lauriné¢ikas and the author [45]. Let F'(z) be a holomorphic
normalized Hecke-eigen cusp form of weight « for SL(2,7Z), and ¢(n) the nth
Fourier coefficient of F'(z). Then the associated Dirichlet series

L(s,F) = Z e(n)n™?
n=1

is convergent absolutely for ¢ > (k + 1)/2, and can be continued holomor-
phically to the whole plane. Let

D(k)={seC|kr/2<0<(k+1)/2}.

Then
THEOREM 7 ([45]). For any compact subset K of D(k) with connected com-
plement, we have

liminfl/T{sup|L(s+iT,F)—f(s)| <€} >0 (5.1)
T—o0 s€K

for any f € F(K) and any € > 0.

The behaviour of ¢(p), when p runs over the set of primes, is very com-
plicated. This situation causes a trouble when one try to prove the above
theorem analogously to Theorem 5. However, by a certain mean value result
on ¢(p) we can deduce that the set of primes, for which |c(p)| is not so small,
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is of positive density. By using this fact, we can go through the obstacle to
obtain Theorem 7.

This idea (“the positive density method”) has then been repeatedly used
in the study of universality. In fact, the method in [45] has been generalized
to show the universality of L-functions of new forms in [48|, and the joint
universality of twisted automorphic L-functions in [46]. Laurin¢ikas and the
author [44] used a subset of positive density, not in the set of primes, but in
the set of positive integers, to prove a joint universality theorem for Lerch
zeta-functions. (Note that the results in [44] are valid under the condition
that a1,...,q, are algebraically independent over Q, which is lacking in
the statements. See [47].) Mishou [57], [58] used certain sets of primes of
positive density to show that Hecke L-functions of algebraic number fields
are strongly universal. The universality of Artin L-functions has been proved
by Bauer [4].

The positive density method has been applied in a more general situation.
Laurincikas and SleZeviciene [50] applied this method to show a universality
theorem for general zeta-functions with multiplicative coefficients. Sleze-
vi¢iené [68| generalized this result to the joint case, which has been further
applied to the proof of the universality of Estermann zeta-functions [13].

The universality of zeta-functions belonging to a certain subclass of Sel-
berg class has been shown by Steuding [70]. Laurin¢ikas, Schwarz and Steu-
ding [49] proved a universality theorem for a certain type of general Dirichlet
series, and its joint version was obtained by Laurincikas [40], [42].

For any holomorphic cusp form F(z), the Ramanujan-Petersson conjec-
ture |c(p)| < 2p" /2 was proved by P. Deligne, and this was used in [45].
However, the corresponding conjecture has not yet been proved for Maass
forms. Nagoshi [63] tried to prove the universality for L-functions attached
to Maass forms, and he proved it under a certain condition weaker than
the Ramanujan conjecture. Then in [64], Nagoshi succeeded in proving the
universality of Maass form L-functions unconditionally, by employing a cer-
tain fourth power mean estimate of the coefficients. The readers will notice
that the total number of papers discussing universality of various zeta and
L-functions is increasing very rapidly in recent years. It is impossible here
to mention all relevant papers.

The universality property may be regarded as an ergodic property of
zeta-functions in function spaces. Therefore it is natural to understand this
property in a formulation of function spaces, and in fact, it is closely con-
nected with functional limit theorems of zeta-functions. To explain this con-
nection, however, it is better to begin with limit theorems on the complex
plane, which goes back to Bohr’s work.
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6. Limit theorems on the complex plane

Let R be a given rectangle in the complex plane C with the edges parallel
to the axes, and define

V(T:i0,R) = i {t € [0,7] | logClo +it) € R},

where T' > 0. As a refinement of his denseness theorems (Theorems 1 and
2), Bohr proved the following result in a collaborated work with Jessen:
THEOREM 8 (Bohr-Jessen, |9]). For any o > 1/2, there exists the limit

W(o, R) = lim %V(T; o, R). (6.1)

This limit W (o, R) may be regarded as the “probability” of how many
values of log ((s) on the line Re s = o belong to R. The proof of this theorem
given in [9] is based on the same idea as in the proof of Theorem 2 sketched
in Section 2. In particular, the fact that each term on the right-hand side
of (2.3) is convex is important in their proof. However, for more general
zeta-functions, the corresponding term is not always convex. The author
[51], [52], [53] presented alternative proofs which are free from convexity,
hence succeeded in proving an analogous result for a certain general class of
zeta-functions defined by Euler products.

It is more convenient to formulate the above type of limit theorems in
the frame of modern probability theory.

We recall some basic notion of probability theory. The triple (S, F, P),
where S is an non-empty set, F is a o-field consisting of some subsets of .S,
and P is a probability measure on S, is called a probability space. Hereafter
we consider the case that S is a metric space and F = B(S) is the family of
all Borel subsets (that is the o-field generated by all open subsets) of S. We
call a set A € B(S) a continuity set with respect to P if P(0A) = 0, where
0A is the boundary of A. Let P, (n € N) and P be probability measures on
(S,B(S)). Then the following three assertions are equivalent:

(i) For any real bounded continuous function f on S,

/ fdpP, — / fdP  (n — o), (6.2)
S S

(ii) For any continuity set A with respect to P,

lim P,(A) = P(A), (6.3)
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(iii) For any open set G,

liminf P,(G) > P(G). (6.4)
n—oo
When these three assertions are valid, we say that P, converges weakly
to P, and we write P, = P. This is the standard definition of weak con-
vergence, but for our purpose, it is necessary to consider the family {Pr}
with a continuous parameter T" > 0. When T' — oo continuously, the three
statements analogous to the above are also equivalent, hence we can define
the weak convergence Pr = P (see the comment after Theorem 2.3 of [5]).
For any 0 > 1/2 and 0 < v < 9, let

1 .
W,%(Sp—(A) = m . ,Ul{’}/ <t<$é | 10gC(U+Zt) S A}

where A € B(C). Then W, 5, is a probability measure on C, and we have

THEOREM 9 (Borchsenius-Jessen, [10]). For any o > 1/2, there exists a
probability measure W, , on C for which W, s , = W, 5 holds as 6 — oo.

When A is a rectangle R (with the edges parallel to the axes), we can
show that R is a continuity set with respect to the limit measure (see, e. g.,
(4.1) of [52]). Hence from (6.3) and the above theorem we have

Thm Wl,T,U(R) = Wl,U(R)7

which implies Theorem 8.

The proof of Borchsenius and Jessen [10] is based on the theory of almost
periodic functions. This theory was also created by Bohr in connection with
the value-distribution theory of zeta-functions, though he did not use this
theory in [9].

In Borchsenius and Jessen [10], an analogue of Theorem 9 for (not log {(s)
but) {(s) has been proved. From such an analogue, we can show the following
corollary. Let T > 0, 0 > 1/2, and define

Pro(A) = Znft € 0,71 | (o +it) € 4}

for any A € B(C). Then

THEOREM 10. For any o > 1/2, there ezists a probability measure P, on C
for which Pr, = P, holds.
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This is the form stated as Theorem 4.1.1 of Lauriné¢ikas [27|. This kind
of limit theorems has now been shown in a very general situation; see Lau-
rin¢ikas [38]. Discrete analogues of Theorem 10 for another general class of

zeta-functions can be found in Kacinskaiteé [17] and Kacinskaité and Laurin-
Cikas [18].

7. Limit theorems in function spaces

Let H(D) be the set of all functions holomorphic on D. Introducing the
topology of uniform convergence on compact subsets, we can regard H (D)
as a topological space. There exists a family of compact subsets K,, of D

(n € N) such that
Kickace. D—|)Kn
n=1

and for any compact subset K of D, there exists an n for which K C K,
holds. For any f,g € H(D), let

pn(f,9) = sup [f(s) — g(s)|,

SEK’VL
and define

_ - —n pn(f7g>
o0 =22 L+ pu(fr9)

n=1

Then p is a metric on H (D), which induces the above topology.
For any A € B(H(D)), define

PA(A) = %ul{r € [0,7] | C(s +i7) € A}

Then P} is a probability measure on H (D), and
THEOREM 11 (Bagchi, |2]|). There exists a probability measure Q* on H (D)
such that P;. = Q* as T — oo.

This is clearly a “functional analogue” of Theorem 10. Moreover, Bagchi
discovered an explicit form of the limit measure @Q*. Denote by ~ the unit
circle in the complex plane, and let

Q= H’va
p
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where p runs over all primes and v, = 7 for each p. This is naturally a
compact Abelian group, hence there exists the unique Haar measure mg on
Q with mg(2) = 1. Then (2, B(£2), mpy) is a probability space. For w € €,
denote by w(p) the projection of w to the coordinate space 7,. Define

oo =TI (142 . (1)

S
» p

Let 1/2 < 09 < 1. Then ((0g,w) converges almost surely (with respect to
the measure my), and equals to

> w(n)n, (7.2)
n=1

where w(n) = w(p1)* -+ w(p,)* if n = pi*---pd. Using the theory of
Dirichlet series we find that the convergence of (7.2) implies the convergence
of the series

> w(n)n?, (7.3)

n=1

uniformly on any compact subset of the half-plane o > 0. Since (7.3) equals
to the right-hand side of (7.1), we can conclude that (7.1) converges almost
surely on any compact subset of D, and hence an element of H(D). Therefore
w — ((s,w) is an H(D)-valued random element. Let Q¢ be the distribution
of this random element, that is

Qc(A) =mpwe Q| ((s,w) € A) (AeB(H(D))).
Then
THEOREM 12 (Bagchi, [2]). We have Q¢ = Q*.

From these theorems we can deduce an explicit form of P, in Theorem 10.
In fact, let h be a mapping from H (D) to C defined by h(f) = f(o) for any
f € H(D). Then Pr, = Pjoh™!. Since h is continuous, noting Theorem
1.1.16 of [27], from Theorems 11 and 12 we find that P, = Q*oh~! = Qcohfl,
that is,
P,(A) =mp(w e Q| ((o,w) € A)

for any A € B(C). This argument (suggested by B. Grigelionis) is presented
in Laurin¢ikas [26], and also in Notes of Chapter 5 of |27].
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Bagchi used his Theorems 11 and 12 to give a new proof of Voronin’s
universality theorem. Here we sketch his argument.

The support Supp(P) of a probability measure P on a probability space
S is defined by

Supp(P) ={z € S| P(G) >0 for any neighbourhood G of z}.
Another key of Bagchi’s proof of the universality is the fact that
Supp(Q¢) ={p € H(D) | p(s) #0 for any s € D, or ¢ =0}.  (7.4)
This is a consequence of the following “denseness lemma” of Bagchi. For
s € D and a, € 7, put f,(s) = —log(l —app™?).
THEOREM 13 (Bagchi, [2]). The set of all convergent series of the form
>, fp(8) is dense in H(D).

Now, let f(s) € F(K), and assume that f(s) can be continued to a
holomorphic function on D, and f(s) # 0 for any s € D. Since the set

G:{geH(D)

sup lg(s) — F(s)] < }

seK

is open, Theorems 11, 12 and (6.4) implies that
lizgn inf P7(G) > Q¢(G). (7.5)

On the other hand, f € Supp(Q¢) by the assumption and (7.4). Since G is
a neighbourhood of f, we have Q¢(G) > 0. From this and (7.5) we have

liminf P7(G) > 0,
T—o00
which is exactly (4.1).

In general case, we use a theorem of Mergelyan, which asserts that any
function f € F(K) can be approximated by a certain polynomial uniformly
on K. Then, applying the above argument to that polynomial, we can obtain
(4.1).

The details of Bagchi’s proof of (4.1) can be found in Chapter 6 of Lau-
rincikas [27].

In Sections 4 and 5, we mention many papers in which various generaliza-
tions of Voronin’s universality theorem are treated. In most of those papers,
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the argument is based on Bagchi’s idea. In order to generalize Bagchi’s
method, it is necessary to generalize Theorems 11, 12, and 13. Now, in-
deed, Theorems 11 and 12 have been generalized to a fairly general class of
zeta-functions which have Euler products introduced by the author [52]; see
Laurincikas [28], [29].

Moreover, even in the case of Dirichlet series without Euler products, it
is possible to prove an analogue of Theorems 11 and 12 under some suitable
conditions. In this case, instead of the above §2, the basic probability space

is of the form -
ﬁ = H 7777n
m=1

where v, = v for all m € N. The case of Lerch zeta-functions is written
in [43]. For more general Dirichlet series, see Laurin¢ikas [34] (partly with
Schwarz, Steuding and Genys). Various discrete versions and joint versions
of those limit theorems have also been extensively studied.

On the other hand, in general, Theorem 13 cannot be easily generalized.
This is because the proof of Theorem 13 is based on a deep arithmetical
result, that is the asymptotic formula

1
Z — =loglogz + a; + O(exp(—az+/logx), (7.6)
p

p<T

where the sum runs over all primes < x, and a4, as are constants with as > 0.
It is sometimes very difficult to obtain such an asymptotic formula in the
case of more general zeta-functions. The positive density method explained
in Section 5 is a technique which, in some sense, avoids the role of such an
asymptotic formula in the proof of universality.

The original proof of the universality theorem due to Voronin himself
is also still useful. For example, the argument in Mishou [57] and Nagoshi
[63] are inspired by Voronin’s method. Garunkstis [12] pointed out that
it is possible to remove the rearrangement argument from Voronin’s proof,
which sheds some light on the effectivization problem. Voronin’s idea is also
important in Nagoshi’s recent work on the joint universality of automorphic
L-functions.

Finally, it is to be stressed that various interesting applications of univer-
sality theorems have already been discovered. Applications to the functional
independence and the distribution of zeros of Dirichlet series were already
studied by Voronin himself. Andersson [1] used the universality to disprove
a conjecture of Ramachandra. The connections between universality and
quantum physics were studied by [6], [16]. Recent series of joint papers of
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Mishou and Nagoshi [60], [61], [62], and also Mishou [59], studied universality
properties of L-functions of number fields, and deduced interesting arithme-
tical consequences, such as some distribution properties of class numbers of
algebraic fields.

These applications suggest that the importance of limit theorems and
universality theorems in the theory of zeta-functions will increase more and
more in the near future.
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