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1. Introduction and statement of results

Let s = o + it be a complex variable, ((s) the Riemann zeta-function,
and

m<M

be a Dirichlet polynomial, where M > 1 and a(m) € C with a(m) = O(m?).
Here, and in what follows, € denotes an arbitrarily small positive number,
not necessarily the same at each occurrence.
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The mean value

vy ['e(Lea)a(lee)

has been studied by many mathematicians, motivated by the theory of power
moments or the distribution of zeros of {(s). For the history, see the intro-
duction of [6]. It is known that I(T, A) can be written as

I(T, A) = M(T, A) + E(T, A), (1.1)

2
dt, T >2,

where M(T', A) is the main term and E(T, A) is the error term. The definition
of M(T, A) is given by

a(k)a(l) 2
M(T,A)=>" > ([IZ) l](l) <log (]“;’iLZT + 27y — 1> T,

k<M I<M ’

where (k,l) is the greatest common divisor of k and [, [k,] = % is the

least common multiple of k£ and [, a(l) is the complex conjugate of a(l), v is
Euler’s constant. Formula (1.1) is a generalization of the asymptotic formula
for the mean square of the Riemann zeta-function

[ leGo)

where E(T') denotes the error term.

In our former paper [6], we proved an explicit formula of Atkinson type
for E(T, A). Atkinson’s original formula [1] is an explicit formula for E(T),
and it is known that a lot of detailed information on the behaviour of E(T")
can be deduced from Atkinson’s formula. Therefore, it is natural to expect
that various information on the behaviour of E(T,A) can be obtained by
using our explicit formula for E(T, A) in [6].

Let L(s,x) be the Dirichlet L-function attached to a Dirichlet character
X- In [4], the first author proved a generalization of Atkinson’s formula for
L(s,x). As an application, he proved that if x; and x5 are distinct primitive
characters of the same modulus, then

T 1 2 T 1
/ L (- + it,X1> dt — / L <— + it X2>
0 2 0 2

In particular, when x is not a real character, then ¥ # x, and so

T 1 2 0 1
/ L(——i—it,x) dt—/ L(——i—it,x)
0 2 —r| \2

2
dt =TlogT + (2y — 1 —log2m)T + E(T), (1.2)

2dt =Q(TV").  (1.3)

gt Q(TVY.  (1.4)
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Moreover, in |5], the first author studied the sign changes of the left-hand
side of (1.3), (1.4) in detail, especially he showed that the right-hand sides of
(1.3) and (1.4) can be replaced by Q4 (T/*). The method in [5] is inspired
by the work of Heath-Brown and Tsang [3].

It is the purpose of the present paper to consider the same problem for
I(T, A), that is, to study the sign changes of

sy = [fe(bri)a(lea)
L (bl

Since the second integral on the right-hand side is equal to

2
dt

2
dt. (1.5)

0 2 T N |2
/T §<% —it> %% d(—t) = /0 CG +z’t> mgw% dt,

we see that (1.5) can be rewritten as

AT, A) = I(T,A) — I(T, A), (1.6)
where the Dirichlet polynomial A(s) is defined by

A(s) = Z a(m)m™*
m<M

Since M(T, A) = M(T, A), combining (1.1) and (1.6) we find that

AT, A) = E(T,A) — E(T, A). (1.7)

From this expression of A(T,A), it is clear why the explicit formula for
E(T, A) is useful to our problem.
In order to state our main result, we first prepare notation. Let

a(k,l) = a(k)a(l) — a(k)a(l) = 2ilm (a(k)a(l))
for k,l < M, k =k/(k,l), A\=1/(k,l), and let
dp = max KA. (1.8)

k<M

a(k,l)#0
(If a(k,1) = O for all k and I, then A(T, A) = 0, so our present problem has no
meaning. Therefore, hereafter we assume M > 2 and that some «(k,l) # 0,

and hence, 0y exists.)
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Define

Clos(M) = M~3/? Z %(ﬁ)\)?’/‘l cos <27T§—E + arg a(k‘,l))

k<M 0

KA=d(

and

k,l "
Cain(M) = M3/? Z M(/{)\)gm sin <27rﬁ + arg a(k, l)> .
G [k, ] do
KA=4(
Then our main theorem can be stated as follows.
THEOREM 1. Let M > 2. Assume dqy exists and

V Ceos(M)? + Ciin(M)? # 0. (1.9)

Then there exist positive constants Ty, c1 and co satisfying the property that,
for any T > Ty, there exist t| and to in the interval [T, T + co\/T] for which

A(tl,A) > Clt}/4, A(tQ,A) < —Clt;/4
hold. In particular, A(T, A) = Qi (T/4).

REMARK 1. The constants Tp, ¢; and cg depend on M and {a(m)}, and can
be computed effectively. This situation is different from the case of Dirichlet
L-functions, where the corresponding constants cannot be effectively com-
puted (see Remark 1 on p. 2 of [5]).

REMARK 2. In the case of E(T), the omega result E(T) = Q(TY*) was
proved by Good |2, and it is widely believed that E(T') would be O(T1/4+¢),
Therefore, it is also plausible to conjecture that E(T, A) = O(T/4+¢) (with
respect to T'). Then A(T, A) = O(T/4+¢) would follow by (1.7). This implies
that the Omega-result given in the above theorem would be best-possible (up
to e-factor).

We will prove Theorem 1 in Sections 2 and 3. The structure of the proof
is the same as in [5], so we only show a brief outline. Then in Section 4,
we will discuss condition (1.9). This condition seems natural, and we may
expect that this condition is valid in many practical cases. In Section 4, we
will give a sufficient condition for (1.9), and will also give some examples
which satisfy, or do not satisfy, condition (1.9).
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2. The main lemma

Our basic tool is the explicit formula of Atkinson type for F(T, A) proved in
[6], so we first state it. Let 7', Y be positive numbers satisfying C1T <Y <
CyT and T > C* = max{e,C;'} (where Cy, Cy are fixed constants with
0 <Cy < C9ande=271828...),

T wu u?  ul
arcsinhe = log(x + Va2 +1), &(Tu) = —+5 -\ + 5
f(T,u) = 2Tarcsinh,/ T-|- QﬂuT+w2u2_g’
T T
T = Tlog — —T +2 Z
9(T',u) 0g27m + 7Tu—|—4,
and define
k:)a(l 1/2d( n) on; %/
EI(T,Y) = Z<: { [ka’l 1/26 Nk
m ) L 2Tk ~1/4
arcsinh
TrA

n

Xexp( ni)-5e3)

and

Yo(T,Y) = Z Z Re { ](l)( )\)1/2%52””“/’\

EI<SM n<(AK)Y
o) e ()}

where d(n) denotes the number of positive divisors of n, and % is defined by
kK =1 (mod X). Then Theorem 1.2 of [6] asserts that

where R(T, A) is the error term, satisfying the estimate

R(T, A) < M'*(log T)? + M+ (log T)*/*~¢ (log log T')* (2.2)
+ M5/2+6(10gT)_3/4+E.
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Now we explain our strategy to the proof of Theorem 1. We first introduce
the “weight”

K(u)=Krg,(u)=(1—|u]) (1 + 7sin (477%6’11)) (2.3)

for —1 < u < 1, where 6 (> 1) is a large positive constant, 7 takes the value
lor —1, and v = 50_1/2. The special case v = M = 1 of this weight was
introduced by Heath-Brown and Tsang [3] (inspired by the work of Mueller
[7]) to consider the sign changes of E(T'). In [5], to study the sign changes of
(1.3), (1.4), the first author defined a more general form of the weight. The
above (2.3) is an analogue of the weight in |5]. The choice of the above value
of v is one of the essential point of our proof.
Let Q(t) be a real-valued function defined on ¢ > 0, satisfying

Q)| < ert't, >0, (2.4)

where ¢ is a positive constant. Define

<07 (* (5) e (57))

The following is an analogue of Lemma 1 of [3| or Lemma 1 of [5], and is the
main body of our proof of the theorem.

LEMMA 1. Let M > 2, and assume (1.9). Then we have

1
/ A (¢ + 6w K (u)du (2.5)
-1
= VOB T Con O Psin | i =T T ) 4 R,
> a2 1 %
0

where B is defined by

Csin(M)
\/CCOS(M)2 + Csin(M)2

sin g =

and R* is the error term written as R* = Ry + Is + I3 + I with

R ZMW)W‘*{ R Vi

M3/2 =t k, l] tl/2—¢ (/ﬁ:)\)5/12_5t5/6_5
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3/8—¢ 3/2—¢
+(/€)\)1/4+EM (%Jr L) +(/€)\)1/4+EL

$3/8—¢ 2] 61/2 $3/2—¢
0
1/4+
+ (/-i)\) / am +'L€)\W
!a 53/
w2
&>\ 8o
02M?  SoM?  M? M
2.6
X ( 58t4 + 62 + 50t2 + t58/2) ( )
1 ‘04 )‘ 1/2 M3/2—€ M1/2—5
T /
2 < MT1/2— Z [k, l] (1) 0 + 5(1]/2
M3/2 €
= +0> (2.7)

and I3 < M3/2+5t_1/2+€, I < ClM_3/2.

From this lemma, just similarly to Section 4 of [5], we can easily deduce
Theorem 1. The argument runs as follows. Choose ¢; = ¢1(M,{a(m)})
sufficiently small, § = 6(M,{a(m)},dy) sufficiently large, and then choose
t = t(M,{a(m)}, do, ) sufficiently large such that R* is sufficiently small,
compared with the main term on the right-hand side of (2.5).

Let S be the set of large real number ¢ such that the distance between

4mt T
M 51/ 24 &
and its nearest integer is > 1 . Then, for t € S, by suitable choices of 7 we can

show that the right-hand 51de of (2.5) can be positive, and also be negative,
and hence, A*(w) should change its sign in the interval w € [t — 0, ¢+ 60]. If

1/2 1/2
t ¢S, then M

0rt+

belongs to S, and hence, A*(w) changes its

M5 2rw?

/
sign in the interval [t—@— ] Therefore, putting z = <z
we find that, for any large ¢, the quantlty A( )+ Q(z) changes its sign in the
interval

1/2 1/2\ 2
e g 2 <£2+4<9+M262 >£+4<9+M§Z )),

1/2

where £ =t — 0 — —9—. Writing 2]\7252 = T and choosing Q(t) = £cit'/*, we

obtain the assertion of Theorem 1.
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3. Proof of Lemma 1

In this section, we give a brief sketch of the proof of Lemma 1. Let

e(t,y) = <1+ y> 1/4 (_arcsmh\/g>_17

4t? VY 2t
fu(ty) = Ve (Earcsmh oy 1+ @> -
and
() = T v+ T 20
agm\t,y) = M2 g — \/y_ e

For sufficiently large ¢, using (2.1) with 7' = 2”%;};9“) and Y = (tt\%)Q, we
obtain

A (t40u) = AT — A5+ A3+ A} (3.1)
with
1 la(k, D] 1134 d(n) nM?
A = Z (kA Z ——e|t+bu,
3/2 3/4
M k<M [k’l] m(t+0u)2 n / KA
nM? ™
2 t - —
xcos(wn/\+argoz(k‘l)—|—fM<+0u /{)\> m\)’
]a (k, l A2 d(n
Ay = —/7 Z / Z 12
2M2 t+ 9“ kl<M <((3 f)/\/Zli)(t+9u)2 n
M?2
y 1
log((\/nk)Y/2(t + Ou) /M)
2
X COS (—27171; +9m <t + Ou, n/{/]\% > + arg a(k:,l)) ,
1 27 (t + Ou)? ) <27T(t + Ou)? —>>
ANy, = —|R|——————,A|—-R|———F,4) |,
’ 2M2(t + Ou) ( ( M? M2
and (t 4+ 6u)?
1 2m(t + 0u
A = .
4 2M2(t+9u)Q< M? )
Therefore,

1
/ AN (t+ 0u)K(u)du = I) — Iy + I3 + 14, (3.2)
1
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with .
I; :/ AJK (u)du, 1<j<4
~1

Using the fact |K(u)| < 2 and (2.2) (or, more roughly, R(T,A) <
MP5/?*2(log T)3), we find that I3 satisfies the estimate given in the state-
ment of Lemma 1. The estimate I; < ¢; M ~3/2 follows from |K (u)| < 2 and
(2.4). (It is to be noted that, if the exponent on the right-hand side of (2.4)
is larger than i, then a positive power of ¢ remains in the estimate of Iy,
which invalidates our argument. This explains the optimality of the value %
of the exponent appearing in our theorem.)

The method of estimating I is similar to that in pp.5—6 of [5]. The

formula corresponding to (9) of [5] is

1 la(k, 1) d(n)
I, = S Z i (KA)Y/2 Z o

k<M ’ e (B=VE)A/20)2

1
“log((\/nr) 72t/ M)

1 M2
X / cos <—27m§ +9m <t + Ou, %) + arg a(k, l)> K, (u)du
—1

4 la(k, 1) 1/2
+0 — > (kN
Mitl/2—¢ Wi [k, 1]

We evaluate the integral on the right-hand side by integration by parts,
similarly to the argument in [5]. Here we note a misprint in [5]; on line 2,

p. 6 of [5], the estimate K., (u) < q_ln(l]/zﬁ is to be read as K7, (u) <

7,10
1+q_1n(1)/ %9. The corresponding estimate in our present situation is K’ (u) <
1+ ”—Aﬁ. Applying this estimate, we obtain (2.7).
Now we treat I;. First, as an analogue of (11) of [5], we obtain

1 la(k, D] 1374 d(n) (, nM?
L = — iS4
1 Ve k;M Tl (KA) Z Y t, Y J1

<A
1 la(k, 1) 3/4
0 ’ )3/
+ M3/2 et [k, l] (H )

/] M5/6
X <t1/2—a + (H)\)5/12_5t5/6_5>> ’ (33)
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where

nM2> ™m

! R
J1 = / cos (27171} +arga(k,l) + fu <t + Ou, ) a) K (u)du.

-1
This J; is the analogue of Jy4 in [5]. In [5], J4 was evaluated in two ways.

The result of the first evaluation is (12) of [5], while the second evaluation is
presented by (13), (14), and (15) of [5]. Analogously to (12) of [5], we obtain

M(kNY2 (kN2 M2

S < Onl/2 nl/2 w2

(3.4)

for n < E55 "’\t . On the other hand, the analogy of (13) of [5] is

62 nM2\*?
Ji=J;+0 <M2t3 <K> , (3.5)
where

1
Jf:/_lcos <C+fM< ng2>+fM< né\i2>0u> K(u)du

with C = 2225 4 arg a(k, 1) — Z%. As for J;, analogously to (14) and (15) of
[5], we obtain

2 2 2 2
Ji = Lsin <C+fM (t, %)) +0 (955”4 ) +0 (509]‘24 > (3.6)

when n = ’;—g‘ (hence n = 1 by the definition of dy), and

2 s
o (1 55) <)

otherwise. (3.6) and (3.7) can be shown by calculations similar to those in the
upper-half of p.7 of [5]. During the calculations the quantity f), &+ 4mvM -1
appears in denominators. Since f}, is positive, f}, + 4mvM —1is always
positive. On the other hand, to avoid the possibility that f}, —drvM~t =0,
we have to assume that ¢ is large and n < ”3\}’;3//2 . Therefore, (3.6) and (3.7)
are valid under these assumptions.

The main term on the right-hand side of (3.6) produces the main term in
the formula of Lemma 1. It is a key point of the proof that this main term

2 RAM?

o (3.7)
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appears only in the case n = 1 and kKA = dyg. (We have chosen the values of
dp and v carefully in order to produce this situation.)
Divide the sum with respect to n on the right-hand side of (3.3) into two

. 3/2 3/2 2
parts, according as n < 3}@/2 and "”}Qg/z <n < ’?Q—tz We evaluate the first

part by (3.5)-(3.7), and the second part by (3.4). We obtain

T alk,l
h==5ypm > | [E@,l])|(ﬁ)\)3/4

k,JI<M
KA=4(
2TKR T 47t T
i klD)——+——r — — R 3.8
><s1n< 5 +arg a(k,l) 50+M63/2 4>-|- 1, (3.8)

where R; is the error term satisfying the estimate (2.6). It is easy to see that
the main term on the right-hand side of the above is equal to the main term
on the right-hand side of (2.5) if (1.9) holds. Thus, the assertion of Lemma 1
follows.

4. On condition (1.9)

In this final section we discuss when condition (1.9) of Theorem 1 holds, or
does not hold. Hereafter we assume that M is a positive integer (> 2), and
first we prove the following simple criterion.

LEMMA 2. If a(M — 1, M) # 0, then Cgn(M) # 0, and hence (1.9) holds.

Proof. If a(M —1, M) # 0, then also a(M, M —1) # 0. For (k,l) = (M —
1,M) we have k = M —1, A\ = M, and & = —1, while for (k,l) = (M, M —1)
we have Kk = M, A = M —1, and § = 1. Ounly these two pairs of (k, \) satisfy
KA =69 = M(M —1). Since |a(M —1,M)| = |a(M, M — 1)|, we see that
Csin(M) # 0 is equivalent to

—2
sin (WW + arg a(M — 1,M)> +

sin <M27i T +arg a(M, M — 1)> # 0. (4.1)

Since arg (M — 1, M) = £F and arga(M, M — 1) = F5, we see that there
is no M (> 2) for which both of the terms on the left-hand side of (4.1) are
0. (In fact, the first term is 0 only when M = 4, while the second term is 0
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only when M = 5.) Moreover, since A}AJ/\"/[ L is not an integer for any M >

<_W27T+arga( -1 M> (

oM — 1
e Y
"M -1 "

+ arg a(M, M — 1)>

is not congruent to 7 (mod 2m). Therefore, (4.1) holds for any M > 2. O

REMARK 3. Under the assumption a(M — 1, M) # 0, we see similarly that
Ceos(M) # 0 is equivalent to

—2
cos (WW + arg a(M — 1,M)>

+ cos <M2 T +arg (M, M — 1)> # 0. (4.2)

But when M = 2, this does not hold; in fact, both of the terms on the right-
hand side of (4.2) are 0. For M > 3, we can show Ceos(M) # 0 similarly as
above.

We discuss some examples for small values of M.

ExAMPLE 1. When M = 2, the assumption of the existence of dy implies
that a(1,2) # 0. Therefore, from Lemma 2 we see that (1.9) holds.

ExamMpLE 2. When M = 3, the existence of dg implies that at least one
of «(2,3), a(1,3), or «(1,2) is not 0. If «(2,3) # 0, then by Lemma 2 it
follows that (1.9) holds. If «(2,3) = 0 but «(1,3) # 0, then §y = 3 and
the pairs of (k,l) which attains kA = &y are (k,l) = (1,3) and (3,1). By
simple calculations, we see that Ceos(3) # 0, Csin(3) # 0, and so (1.9) holds.
Lastly, if «(2,3) = a(1,3) = 0 but «(1,2) # 0, then dp = 2, and Ceos(3) =0
but Cgin(3) # 0. Therefore, when M = 3, condition (1.9) always holds if dy
exists.

ExampLE 3. Finally, we consider the case M = 4. In this case, we can
construct an example for which ¢ exists but (1.9) does not hold. Let a(1) =
1, a(2) = —2i, a(3) = 0, and a(4) = 2. Then, obviously, a(1,3) = «(2,3) =
a(3,4) = 0. Also we have a(1,4) = 0. However, a(1,2) = 47 and «(2,4) =
—8&8qi, both are not 0, hence Jy exists. The value of §y is 2, and the pairs of
(k,1) which attains kA = Jg are (k,1) = (1,2), (2,4) (with (k,A) = (1,2)),
and (k,1) = (2,1), (4,2) (with (k,\) = (2,1)). Using these data, we can
calculate

_ 1 -8 . 7
Csn(4) = 4 3/223/4{‘2’ sin — 5 —{—’ 1 ’SIHE
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+ sin — + —— sin —

2 2 42
= 47PN (1) +2-1+2- (1) +2-1} =0,

|—4i] . 37 |8i| . 57r}

and, more obviously, Ccos(4) = 0. Therefore, (1.9) does not hold.
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