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AN EXPLICIT FORMULA OF ATKINSON TYPEFOR THE PRODUCT OF ζ(s) ANDA DIRICHLET POLYNOMIAL. IIHideaki ISHIKAWA1, Kohji MATSUMOTO2

1Faulty of Eduation, Shimane University,Nishi Kawatsu 1060, Matsue ity, Shimane 690-8504, Japan;e-mail: ishikawah�edu.shimane-u.a.jp
2Graduate Shool of Mathematis, Nagoya University,Chikusa-ku, Nagoya 464-8602, Japan;e-mail: kohjimat�math.nagoya-u.a.jpAbstrat. In our former paper, we proved a formula of Atkinson typefor the mean square I(T,A) of the produt of the Riemann zeta-funtionand a Dirihlet polynomial A(s). Using that formula, in the present paper,we prove an Ω-result on the di�erene between I(T,A) and I(T,A), where

A(s) is the Dirihlet polynomial whose oe�eients are omplex onjugatesof those of A(s).Key words and phrases: Atkinson formula, Dirihlet polynomial, mean square,Riemann zeta-funtion, Ω-result.2010 Mathematis Subjet Classi�ation: 11M06.1. Introdution and statement of resultsLet s = σ + it be a omplex variable, ζ(s) the Riemann zeta-funtion,and
A(s) =

∑

m6M

a(m)m−sbe a Dirihlet polynomial, where M > 1 and a(m) ∈ C with a(m) = O(mε).Here, and in what follows, ε denotes an arbitrarily small positive number,not neessarily the same at eah ourrene.



2 H. Ishikawa, K. MatsumotoThe mean value
I(T,A) =
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dt, T > 2,has been studied by many mathematiians, motivated by the theory of powermoments or the distribution of zeros of ζ(s). For the history, see the intro-dution of [6℄. It is known that I(T,A) an be written as
I(T,A) = M(T,A) + E(T,A), (1.1)whereM(T,A) is the main term andE(T,A) is the error term. The de�nitionof M(T,A) is given by

M(T,A) =
∑

k6M

∑

l6M

a(k)a(l)

[k, l]

(

log
(k, l)2T

2πkl
+ 2γ − 1

)

T,where (k, l) is the greatest ommon divisor of k and l, [k, l] = kl
(k,l) is theleast ommon multiple of k and l, a(l) is the omplex onjugate of a(l), γ isEuler's onstant. Formula (1.1) is a generalization of the asymptoti formulafor the mean square of the Riemann zeta-funtion
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dt = T log T + (2γ − 1− log 2π)T + E(T ), (1.2)where E(T ) denotes the error term.In our former paper [6℄, we proved an expliit formula of Atkinson typefor E(T,A). Atkinson's original formula [1℄ is an expliit formula for E(T ),and it is known that a lot of detailed information on the behaviour of E(T )an be dedued from Atkinson's formula. Therefore, it is natural to expetthat various information on the behaviour of E(T,A) an be obtained byusing our expliit formula for E(T,A) in [6℄.Let L(s, χ) be the Dirihlet L-funtion attahed to a Dirihlet harater
χ. In [4℄, the �rst author proved a generalization of Atkinson's formula for
L(s, χ). As an appliation, he proved that if χ1 and χ2 are distint primitiveharaters of the same modulus, then
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. (1.3)In partiular, when χ is not a real harater, then χ 6= χ, and so
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An expliit formula of Atkinson type... 3Moreover, in [5℄, the �rst author studied the sign hanges of the left-handside of (1.3), (1.4) in detail, espeially he showed that the right-hand sides of(1.3) and (1.4) an be replaed by Ω±(T
1/4). The method in [5℄ is inspiredby the work of Heath-Brown and Tsang [3℄.It is the purpose of the present paper to onsider the same problem for

I(T,A), that is, to study the sign hanges of
Λ(T,A) =
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dt. (1.5)Sine the seond integral on the right-hand side is equal to
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dt,we see that (1.5) an be rewritten as
Λ(T,A) = I(T,A) − I(T,A), (1.6)where the Dirihlet polynomial A(s) is de�ned by

A(s) =
∑

m6M

a(m)m−s.Sine M(T,A) = M(T,A), ombining (1.1) and (1.6) we �nd that
Λ(T,A) = E(T,A) − E(T,A). (1.7)From this expression of Λ(T,A), it is lear why the expliit formula for

E(T,A) is useful to our problem.In order to state our main result, we �rst prepare notation. Let
α(k, l) = a(k)a(l) − a(k)a(l) = 2iIm (a(k)a(l))for k, l 6 M , κ = k/(k, l), λ = l/(k, l), and let

δ0 = max
k,l6M

α(k,l) 6=0

κλ. (1.8)(If α(k, l) = 0 for all k and l, then Λ(T,A) = 0, so our present problem has nomeaning. Therefore, hereafter we assume M > 2 and that some α(k, l) 6= 0,and hene, δ0 exists.)
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Ccos(M) = M−3/2

∑

k,l6M
κλ=δ0

|α(k, l)|
[k, l]

(κλ)3/4 cos

(

2π
κκ

δ0
+ argα(k, l)

)and
Csin(M) = M−3/2

∑

k,l6M
κλ=δ0

|α(k, l)|
[k, l]

(κλ)3/4 sin

(

2π
κκ

δ0
+ argα(k, l)

)

.Then our main theorem an be stated as follows.Theorem 1. Let M > 2. Assume δ0 exists and
√

Ccos(M)2 + Csin(M)2 6= 0. (1.9)Then there exist positive onstants T0, c1 and c2 satisfying the property that,for any T > T0, there exist t1 and t2 in the interval [T, T + c2
√
T ] for whih

Λ(t1, A) > c1t
1/4
1 , Λ(t2, A) < −c1t

1/4
2hold. In partiular, Λ(T,A) = Ω±(T

1/4).Remark 1. The onstants T0, c1 and c2 depend on M and {a(m)}, and anbe omputed e�etively. This situation is di�erent from the ase of Dirihlet
L-funtions, where the orresponding onstants annot be e�etively om-puted (see Remark 1 on p. 2 of [5℄).Remark 2. In the ase of E(T ), the omega result E(T ) = Ω(T 1/4) wasproved by Good [2℄, and it is widely believed that E(T ) would be O(T 1/4+ε).Therefore, it is also plausible to onjeture that E(T,A) = O(T 1/4+ε) (withrespet to T ). Then Λ(T,A) = O(T 1/4+ε) would follow by (1.7). This impliesthat the Omega-result given in the above theorem would be best-possible (upto ε-fator).We will prove Theorem 1 in Setions 2 and 3. The struture of the proofis the same as in [5℄, so we only show a brief outline. Then in Setion 4,we will disuss ondition (1.9). This ondition seems natural, and we mayexpet that this ondition is valid in many pratial ases. In Setion 4, wewill give a su�ient ondition for (1.9), and will also give some exampleswhih satisfy, or do not satisfy, ondition (1.9).



An expliit formula of Atkinson type... 52. The main lemmaOur basi tool is the expliit formula of Atkinson type for E(T,A) proved in[6℄, so we �rst state it. Let T , Y be positive numbers satisfying C1T < Y <
C2T and T > C∗ = max{e, C−1

1 } (where C1, C2 are �xed onstants with
0 < C1 < C2 and e = 2.71828...),

arcsinhx = log(x+
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√
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4
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4
,and de�ne
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∑
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√
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(
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+
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))}and
Σ2(T, Y ) =

∑

k,l6M
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n6(λ/κ)Y

Re

{

a(k)a(l)
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(κλ)1/2

d(n)
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e−2πinκ/λ
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log
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)−1

exp
(
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(

T,
κn

λ

))

}

,where d(n) denotes the number of positive divisors of n, and κ is de�ned by
κκ ≡ 1 (mod λ). Then Theorem 1.2 of [6℄ asserts that

E(T,A) = Σ1(T, Y ) + Σ2(T, ξ(T, Y )) +R(T,A), (2.1)where R(T,A) is the error term, satisfying the estimate
R(T,A) ≪ M1+ε(log T )3 +M2+ε(log T )3/2−ε(log log T )2 (2.2)

+M5/2+ε(log T )−3/4+ε.



6 H. Ishikawa, K. MatsumotoNow we explain our strategy to the proof of Theorem 1. We �rst introduethe �weight�
K(u) = Kτ,θ,ν(u) = (1− |u|)

(

1 + τ sin
(

4π
ν

M
θu
)) (2.3)for −1 6 u 6 1, where θ (> 1) is a large positive onstant, τ takes the value1 or −1, and ν = δ

−1/2
0 . The speial ase ν = M = 1 of this weight wasintrodued by Heath-Brown and Tsang [3℄ (inspired by the work of Mueller[7℄) to onsider the sign hanges of E(T ). In [5℄, to study the sign hanges of(1.3), (1.4), the �rst author de�ned a more general form of the weight. Theabove (2.3) is an analogue of the weight in [5℄. The hoie of the above valueof ν is one of the essential point of our proof.Let Q(t) be a real-valued funtion de�ned on t > 0, satisfying

|Q(t)| 6 c1t
1/4, t > 0, (2.4)where c1 is a positive onstant. De�ne

Λ∗(t) =
1√

2M2t

(

Λ

(

2πt2

M2

)

+Q

(

2πt2

M2

))

.The following is an analogue of Lemma 1 of [3℄ or Lemma 1 of [5℄, and is themain body of our proof of the theorem.Lemma 1. Let M > 2, and assume (1.9). Then we have
∫ 1

−1
Λ∗(t+ θu)K(u)du (2.5)

= −τ

2

√

Ccos(M)2 + Csin(M)2 sin

(

4πt

Mδ
1/2
0

− π

4
− π

δ0
+ β

)

+R∗,where β is de�ned by
sinβ =

Csin(M)
√

Ccos(M)2 + Csin(M)2and R∗ is the error term written as R∗ = R1 + I2 + I3 + I4 with
R1 ≪ 1

M3/2

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)3/4

{

θ

t1/2−ε
+

M5/6

(κλ)5/12−εt5/6−ε
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+(κλ)1/4+εM

3/8−ε

t3/8−ε

(

M

θ
+

1

δ
1/2
0

)

+ (κλ)1/4+εM
3/2−ε

t3/2−ε

+ (κλ)1/4+ε θ2

M13/8+εt3/8+ε
+ κλ

M2

θ2

}

+
1

M3/2

∑

k,l6M
κλ=δ0

|α(k, l)|
[k, l]

δ
3/4
0

×
(

θ2M2

δ30t
4

+
δ0M

2

θ2
+

M2

δ0t2
+

M

tδ
3/2
0

)

, (2.6)
I2 ≪ 1

MT 1/2−ε

∑

k.l6M

|α(k, l)|
[k, l]

(κλ)1/2

(

M3/2−ε

θ
+

M1/2−ε

δ
1/2
0

+
M3/2−ε

t1−ε
+ θ

)

, (2.7)and I3 ≪ M3/2+εt−1/2+ε, I4 ≪ c1M
−3/2.From this lemma, just similarly to Setion 4 of [5℄, we an easily dedueTheorem 1. The argument runs as follows. Choose c1 = c1(M, {a(m)})su�iently small, θ = θ(M, {a(m)}, δ0) su�iently large, and then hoose

t = t(M, {a(m)}, δ0, θ) su�iently large suh that R∗ is su�iently small,ompared with the main term on the right-hand side of (2.5).Let S be the set of large real number t suh that the distane between
4πt

Mδ
1/2
0

− π

4
− π

δ0
+ βand its nearest integer is > 1

6 . Then, for t ∈ S, by suitable hoies of τ we anshow that the right-hand side of (2.5) an be positive, and also be negative,and hene, Λ∗(w) should hange its sign in the interval w ∈ [t− θ, t+ θ]. If
t /∈ S, then t− Mδ

1/2
0

24 or t+ Mδ
1/2
0

24 belongs to S, and hene, Λ∗(w) hanges itssign in the interval [t−θ−Mδ
1/2
0

24 , t+θ+
Mδ

1/2
0

24

]. Therefore, putting x = 2πw2

M2we �nd that, for any large t, the quantity Λ(x)+Q(x) hanges its sign in theinterval
2π

M2
ξ2 6 x 6

2π

M2

(

ξ2 + 4

(

θ +
Mδ

1/2
0

24

)

ξ + 4

(

θ +
Mδ

1/2
0

24

)2)

,where ξ = t− θ− Mδ
1/2
0

24 . Writing 2πξ2

M2 = T and hoosing Q(t) = ±c1t
1/4, weobtain the assertion of Theorem 1.



8 H. Ishikawa, K. Matsumoto3. Proof of Lemma 1In this setion, we give a brief sketh of the proof of Lemma 1. Let
e(t, y) =

(

1 +
y

4t2

)−1/4
(

2t√
y
arcsinh

√
y

2t

)−1

,

fM(t, y) =
2πt

√
y

M2

(

2t√
y
arcsinh

√
y

2t
+

√

1 +
y

4t2

)

− π

4
,and

gM (t, y) =
4πt2

M2
log

t√
ye

+
π

4
+

2πy

M2
.For su�iently large t, using (2.1) with T = 2π(t+θu)2

M2 and Y = (t+θu)2

M2 , weobtain
Λ∗(t+ θu) = Λ∗

1 − Λ∗

2 + Λ∗

3 + Λ∗

4 (3.1)with
Λ∗

1 =
1

M3/2

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)3/4
∑

n6
κλ(t+θu)2

M2

d(n)

n3/4
e

(

t+ θu,
nM2

κλ

)

× cos

(

2πn
κ

λ
+ argα(k, l) + fM

(

t+ θu,
nM2

κλ

)

− πn

κλ

)

,

Λ∗

2 =
1

√

2M2(t+ θu)

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)1/2
∑

n6 ((3−
√

5)λ/2κ)(t+θu)2

M2

d(n)

n1/2

× 1

log((λ/nκ)1/2(t+ θu)/M)

× cos

(

−2πn
κ

λ
+ gM

(

t+ θu,
nκM2

λ

)

+ argα(k, l)

)

,

Λ∗

3 =
1

√

2M2(t+ θu)

(

R

(

2π(t+ θu)2

M2
, A

)

−R

(

2π(t+ θu)2

M2
, A

))

,and
Λ∗

4 =
1

√

2M2(t+ θu)
Q

(

2π(t+ θu)2

M2

)

.Therefore,
∫ 1

−1
Λ∗(t+ θu)K(u)du = I1 − I2 + I3 + I4, (3.2)
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Ij =

∫ 1

−1
Λ∗

jK(u)du, 1 6 j 6 4.Using the fat |K(u)| 6 2 and (2.2) (or, more roughly, R(T,A) ≪
M5/2+ε(log T )3), we �nd that I3 satis�es the estimate given in the state-ment of Lemma 1. The estimate I4 ≪ c1M

−3/2 follows from |K(u)| 6 2 and(2.4). (It is to be noted that, if the exponent on the right-hand side of (2.4)is larger than 1
4 , then a positive power of t remains in the estimate of I4,whih invalidates our argument. This explains the optimality of the value 1

4of the exponent appearing in our theorem.)The method of estimating I2 is similar to that in pp.5�6 of [5℄. Theformula orresponding to (9) of [5℄ is
I2 =

1√
2M2t

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)1/2
∑

n6
((3−

√
5)λ/2κ)t2

M2

d(n)

n1/2

× 1

log((λ/nκ)1/2t/M)

×
∫ 1

−1
cos

(

−2πn
κ

λ
+ gM

(

t+ θu,
nκM2

λ

)

+ argα(k, l)

)

Kτ (u)du

+O





θ

Mt1/2−ε

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)1/2



 .We evaluate the integral on the right-hand side by integration by parts,similarly to the argument in [5℄. Here we note a misprint in [5℄; on line 2,p. 6 of [5℄, the estimate K ′
τ,n0

(u) ≪ q−1n
1/2
0 θ is to be read as K ′

τ,n0
(u) ≪

1+q−1n
1/2
0 θ. The orresponding estimate in our present situation isK ′

τ (u) ≪
1 + νθ

M . Applying this estimate, we obtain (2.7).Now we treat I1. First, as an analogue of (11) of [5℄, we obtain
I1 =

1

M3/2

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)3/4
∑

n6κλt2

M2

d(n)

n3/4
e

(

t,
nM2

κλ

)

J1

+O





1

M3/2

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)3/4

×
(

θ

t1/2−ε
+

M5/6

(κλ)5/12−εt5/6−ε

))

, (3.3)
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J1 =

∫ 1

−1
cos

(

2πn
κ

λ
+ argα(k, l) + fM

(

t+ θu,
nM2

κλ

)

− πn

κλ

)

K(u)du.This J1 is the analogue of JA in [5℄. In [5℄, JA was evaluated in two ways.The result of the �rst evaluation is (12) of [5℄, while the seond evaluation ispresented by (13), (14), and (15) of [5℄. Analogously to (12) of [5℄, we obtain
J1 ≪

M(κλ)1/2

θn1/2
+

ν(κλ)1/2

n1/2
+

M2

t2
(3.4)for n 6 κλt2

M2 . On the other hand, the analogy of (13) of [5℄ is
J1 = J∗

1 +O

(

θ2

M2t3

(

nM2

κλ

)3/2
)

, (3.5)where
J∗

1 =

∫ 1

−1
cos

(

C + fM

(

t,
nM2

κλ

)

+ f ′

M

(

t,
nM2

κλ

)

θu

)

K(u)duwith C = 2πnκ
λ + argα(k, l)− πn

κλ . As for J∗
1 , analogously to (14) and (15) of[5℄, we obtain

J∗

1 = −τ

2
sin

(

C + fM

(

t,
nM2

κλ

))

+O

(

θ2M2

δ30t
4

)

+O

(

δ0M
2

θ2

) (3.6)when n = κλ
δ0

(hene n = 1 by the de�nition of δ0), and
J∗

1 ≪
∣

∣

∣

∣

(

f ′

M

(

t,
nM2

κλ

)

− 4πν

M

)

θ

∣

∣

∣

∣

−2

+
κλM2

nθ2
(3.7)otherwise. (3.6) and (3.7) an be shown by alulations similar to those in theupper-half of p.7 of [5℄. During the alulations the quantity f ′

M ± 4πνM−1appears in denominators. Sine f ′

M is positive, f ′

M + 4πνM−1 is alwayspositive. On the other hand, to avoid the possibility that f ′

M −4πνM−1 = 0,we have to assume that t is large and n 6 κλt3/2

M3/2 . Therefore, (3.6) and (3.7)are valid under these assumptions.The main term on the right-hand side of (3.6) produes the main term inthe formula of Lemma 1. It is a key point of the proof that this main term



An expliit formula of Atkinson type... 11appears only in the ase n = 1 and κλ = δ0. (We have hosen the values of
δ0 and ν arefully in order to produe this situation.)Divide the sum with respet to n on the right-hand side of (3.3) into twoparts, aording as n 6

κλt3/2

M3/2 and κλt3/2

M3/2 < n 6
κλt2

M2 . We evaluate the �rstpart by (3.5)�(3.7), and the seond part by (3.4). We obtain
I1 =− τ

2M3/2

∑

k,l6M
κλ=δ0

|α(k, l)|
[k, l]

(κλ)3/4

× sin

(

2πκκ

δ0
+ argα(k, l) − π

δ0
+

4πt

Mδ
1/2
0

− π

4

)

+R1, (3.8)where R1 is the error term satisfying the estimate (2.6). It is easy to see thatthe main term on the right-hand side of the above is equal to the main termon the right-hand side of (2.5) if (1.9) holds. Thus, the assertion of Lemma 1follows.4. On ondition (1.9)In this �nal setion we disuss when ondition (1.9) of Theorem 1 holds, ordoes not hold. Hereafter we assume that M is a positive integer (> 2), and�rst we prove the following simple riterion.Lemma 2. If α(M − 1,M) 6= 0, then Csin(M) 6= 0, and hene (1.9) holds.Proof. If α(M −1,M) 6= 0, then also α(M,M −1) 6= 0. For (k, l) = (M−
1,M) we have κ = M −1, λ = M , and κ = −1, while for (k, l) = (M,M −1)we have κ = M , λ = M −1, and κ = 1. Only these two pairs of (κ, λ) satisfy
κλ = δ0 = M(M − 1). Sine |α(M − 1,M)| = |α(M,M − 1)|, we see that
Csin(M) 6= 0 is equivalent to

sin

(−2π

M
+ argα(M − 1,M)

)

+

sin

(

2π

M − 1
+ argα(M,M − 1)

)

6= 0. (4.1)Sine argα(M − 1,M) = ±π
2 and argα(M,M − 1) = ∓π

2 , we see that thereis no M (> 2) for whih both of the terms on the left-hand side of (4.1) are0. (In fat, the �rst term is 0 only when M = 4, while the seond term is 0



12 H. Ishikawa, K. Matsumotoonly when M = 5.) Moreover, sine 2M−1
M(M−1) is not an integer for any M > 2,

(−2π

M
+ argα(M − 1,M)

)

−
(

2π

M − 1
+ argα(M,M − 1)

)

= −2π
2M − 1

M(M − 1)
± πis not ongruent to π (mod 2π). Therefore, (4.1) holds for any M > 2.Remark 3. Under the assumption α(M − 1,M) 6= 0, we see similarly that

Ccos(M) 6= 0 is equivalent to
cos

(−2π

M
+ argα(M − 1,M)

)

+cos

(

2π

M − 1
+ argα(M,M − 1)

)

6= 0. (4.2)But when M = 2, this does not hold; in fat, both of the terms on the right-hand side of (4.2) are 0. For M > 3, we an show Ccos(M) 6= 0 similarly asabove.We disuss some examples for small values of M .Example 1. When M = 2, the assumption of the existene of δ0 impliesthat α(1, 2) 6= 0. Therefore, from Lemma 2 we see that (1.9) holds.Example 2. When M = 3, the existene of δ0 implies that at least oneof α(2, 3), α(1, 3), or α(1, 2) is not 0. If α(2, 3) 6= 0, then by Lemma 2 itfollows that (1.9) holds. If α(2, 3) = 0 but α(1, 3) 6= 0, then δ0 = 3 andthe pairs of (k, l) whih attains κλ = δ0 are (k, l) = (1, 3) and (3, 1). Bysimple alulations, we see that Ccos(3) 6= 0, Csin(3) 6= 0, and so (1.9) holds.Lastly, if α(2, 3) = α(1, 3) = 0 but α(1, 2) 6= 0, then δ0 = 2, and Ccos(3) = 0but Csin(3) 6= 0. Therefore, when M = 3, ondition (1.9) always holds if δ0exists.Example 3. Finally, we onsider the ase M = 4. In this ase, we anonstrut an example for whih δ0 exists but (1.9) does not hold. Let a(1) =
1, a(2) = −2i, a(3) = 0, and a(4) = 2. Then, obviously, α(1, 3) = α(2, 3) =
α(3, 4) = 0. Also we have α(1, 4) = 0. However, α(1, 2) = 4i and α(2, 4) =
−8i, both are not 0, hene δ0 exists. The value of δ0 is 2, and the pairs of
(k, l) whih attains κλ = δ0 are (k, l) = (1, 2), (2, 4) (with (κ, λ) = (1, 2)),and (k, l) = (2, 1), (4, 2) (with (κ, λ) = (2, 1)). Using these data, we analulate

Csin(4) = 4−3/223/4
{ |4i|

2
sin

3π

2
+

| − 8i|
4

sin
π

2
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+

| − 4i|
2

sin
3π

2
+

|8i|
4

sin
5π

2

}

= 4−3/223/4 {2 · (−1) + 2 · 1 + 2 · (−1) + 2 · 1} = 0,and, more obviously, Ccos(4) = 0. Therefore, (1.9) does not hold.Referenes[1℄ F. V. Atkinson, The mean-value of the Riemann zeta funtion, Ata Math.,81, 353�376 (1949).[2℄ A. Good, Ein Ω-Resultat für das quadratishe Mittel der Riemannshen Zeta-funktion auf der ritishen Linie, Invent. Math., 41, 233�251 (1977).[3℄ D. R. Heath-Brown, K. Tsang, Sign hanges of E(T ), ∆(x) and P (x), J.Number Theory, 49, 73�83 (1994).[4℄ H. Ishikawa, A di�erene between the values of ∣∣L( 1
2
+ it, χj

)∣

∣ and ∣∣L(1
2
+

it, χk

)∣

∣. I, Comment. Math. Univ. St. Pauli, 55, 41�66 (2006).[5℄ H. Ishikawa, A di�erene between the values of ∣∣L( 1
2
+ it, χj

)∣

∣ and ∣∣L(1
2
+

it, χk

)∣

∣. II, Comment. Math. Univ. St. Pauli, 56, 1�9 (2007).[6℄ H. Ishikawa, K. Matsumoto, An expliit formula of Atkinson type for theprodut of ζ(s) and a Dirihlet polynomial, Central European J. Math., 9,102�126 (2011).[7℄ J. Mueller, On the Riemann zeta-funtion ζ(s) � gaps between sign hangesof S(t), Mathematika, 29, 264�269 (1983). Reeived2 April 2013


