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.jpAbstra
t. In our former paper, we proved a formula of Atkinson typefor the mean square I(T,A) of the produ
t of the Riemann zeta-fun
tionand a Diri
hlet polynomial A(s). Using that formula, in the present paper,we prove an Ω-result on the di�eren
e between I(T,A) and I(T,A), where

A(s) is the Diri
hlet polynomial whose 
oe�e
ients are 
omplex 
onjugatesof those of A(s).Key words and phrases: Atkinson formula, Diri
hlet polynomial, mean square,Riemann zeta-fun
tion, Ω-result.2010 Mathemati
s Subje
t Classi�
ation: 11M06.1. Introdu
tion and statement of resultsLet s = σ + it be a 
omplex variable, ζ(s) the Riemann zeta-fun
tion,and
A(s) =

∑

m6M

a(m)m−sbe a Diri
hlet polynomial, where M > 1 and a(m) ∈ C with a(m) = O(mε).Here, and in what follows, ε denotes an arbitrarily small positive number,not ne
essarily the same at ea
h o

urren
e.



2 H. Ishikawa, K. MatsumotoThe mean value
I(T,A) =
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dt, T > 2,has been studied by many mathemati
ians, motivated by the theory of powermoments or the distribution of zeros of ζ(s). For the history, see the intro-du
tion of [6℄. It is known that I(T,A) 
an be written as
I(T,A) = M(T,A) + E(T,A), (1.1)whereM(T,A) is the main term andE(T,A) is the error term. The de�nitionof M(T,A) is given by

M(T,A) =
∑

k6M

∑

l6M

a(k)a(l)

[k, l]

(

log
(k, l)2T

2πkl
+ 2γ − 1

)

T,where (k, l) is the greatest 
ommon divisor of k and l, [k, l] = kl
(k,l) is theleast 
ommon multiple of k and l, a(l) is the 
omplex 
onjugate of a(l), γ isEuler's 
onstant. Formula (1.1) is a generalization of the asymptoti
 formulafor the mean square of the Riemann zeta-fun
tion
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dt = T log T + (2γ − 1− log 2π)T + E(T ), (1.2)where E(T ) denotes the error term.In our former paper [6℄, we proved an expli
it formula of Atkinson typefor E(T,A). Atkinson's original formula [1℄ is an expli
it formula for E(T ),and it is known that a lot of detailed information on the behaviour of E(T )
an be dedu
ed from Atkinson's formula. Therefore, it is natural to expe
tthat various information on the behaviour of E(T,A) 
an be obtained byusing our expli
it formula for E(T,A) in [6℄.Let L(s, χ) be the Diri
hlet L-fun
tion atta
hed to a Diri
hlet 
hara
ter
χ. In [4℄, the �rst author proved a generalization of Atkinson's formula for
L(s, χ). As an appli
ation, he proved that if χ1 and χ2 are distin
t primitive
hara
ters of the same modulus, then
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. (1.3)In parti
ular, when χ is not a real 
hara
ter, then χ 6= χ, and so
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An expli
it formula of Atkinson type... 3Moreover, in [5℄, the �rst author studied the sign 
hanges of the left-handside of (1.3), (1.4) in detail, espe
ially he showed that the right-hand sides of(1.3) and (1.4) 
an be repla
ed by Ω±(T
1/4). The method in [5℄ is inspiredby the work of Heath-Brown and Tsang [3℄.It is the purpose of the present paper to 
onsider the same problem for

I(T,A), that is, to study the sign 
hanges of
Λ(T,A) =
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dt. (1.5)Sin
e the se
ond integral on the right-hand side is equal to
∫ 0
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∣
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∣
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m6M

a(m)

m1/2+it

∣

∣

∣

∣

2

dt,we see that (1.5) 
an be rewritten as
Λ(T,A) = I(T,A) − I(T,A), (1.6)where the Diri
hlet polynomial A(s) is de�ned by

A(s) =
∑

m6M

a(m)m−s.Sin
e M(T,A) = M(T,A), 
ombining (1.1) and (1.6) we �nd that
Λ(T,A) = E(T,A) − E(T,A). (1.7)From this expression of Λ(T,A), it is 
lear why the expli
it formula for

E(T,A) is useful to our problem.In order to state our main result, we �rst prepare notation. Let
α(k, l) = a(k)a(l) − a(k)a(l) = 2iIm (a(k)a(l))for k, l 6 M , κ = k/(k, l), λ = l/(k, l), and let

δ0 = max
k,l6M

α(k,l) 6=0

κλ. (1.8)(If α(k, l) = 0 for all k and l, then Λ(T,A) = 0, so our present problem has nomeaning. Therefore, hereafter we assume M > 2 and that some α(k, l) 6= 0,and hen
e, δ0 exists.)



4 H. Ishikawa, K. MatsumotoDe�ne
Ccos(M) = M−3/2

∑

k,l6M
κλ=δ0

|α(k, l)|
[k, l]

(κλ)3/4 cos

(

2π
κκ

δ0
+ argα(k, l)

)and
Csin(M) = M−3/2

∑

k,l6M
κλ=δ0

|α(k, l)|
[k, l]

(κλ)3/4 sin

(

2π
κκ

δ0
+ argα(k, l)

)

.Then our main theorem 
an be stated as follows.Theorem 1. Let M > 2. Assume δ0 exists and
√

Ccos(M)2 + Csin(M)2 6= 0. (1.9)Then there exist positive 
onstants T0, c1 and c2 satisfying the property that,for any T > T0, there exist t1 and t2 in the interval [T, T + c2
√
T ] for whi
h

Λ(t1, A) > c1t
1/4
1 , Λ(t2, A) < −c1t

1/4
2hold. In parti
ular, Λ(T,A) = Ω±(T

1/4).Remark 1. The 
onstants T0, c1 and c2 depend on M and {a(m)}, and 
anbe 
omputed e�e
tively. This situation is di�erent from the 
ase of Diri
hlet
L-fun
tions, where the 
orresponding 
onstants 
annot be e�e
tively 
om-puted (see Remark 1 on p. 2 of [5℄).Remark 2. In the 
ase of E(T ), the omega result E(T ) = Ω(T 1/4) wasproved by Good [2℄, and it is widely believed that E(T ) would be O(T 1/4+ε).Therefore, it is also plausible to 
onje
ture that E(T,A) = O(T 1/4+ε) (withrespe
t to T ). Then Λ(T,A) = O(T 1/4+ε) would follow by (1.7). This impliesthat the Omega-result given in the above theorem would be best-possible (upto ε-fa
tor).We will prove Theorem 1 in Se
tions 2 and 3. The stru
ture of the proofis the same as in [5℄, so we only show a brief outline. Then in Se
tion 4,we will dis
uss 
ondition (1.9). This 
ondition seems natural, and we mayexpe
t that this 
ondition is valid in many pra
ti
al 
ases. In Se
tion 4, wewill give a su�
ient 
ondition for (1.9), and will also give some exampleswhi
h satisfy, or do not satisfy, 
ondition (1.9).



An expli
it formula of Atkinson type... 52. The main lemmaOur basi
 tool is the expli
it formula of Atkinson type for E(T,A) proved in[6℄, so we �rst state it. Let T , Y be positive numbers satisfying C1T < Y <
C2T and T > C∗ = max{e, C−1

1 } (where C1, C2 are �xed 
onstants with
0 < C1 < C2 and e = 2.71828...),

arcsinhx = log(x+
√

x2 + 1), ξ(T, u) =
T

2π
+

u

2
−
√

u2

4
+

uT

2π
,

f(T, u) = 2Tarcsinh

√

πu

2T
+
√

2πuT + π2u2 − π

4
,

g(T, u) = T log
T

2πu
− T + 2πu+

π

4
,and de�ne

Σ1(T, Y ) =
∑

k,l6M

∑

n6κλY

Im

{

a(k)a(l)

[k, l]
(κλ)1/2

d(n)

n1/2
e2πinκ/λ

×
(

arcsinh

√

πn

2Tκλ

)−1(

1 +
2Tκλ

πn

)−1/4

× exp
(

i
(

f
(

T,
n

κλ

)

− πn

κλ
+

π

2

))}and
Σ2(T, Y ) =

∑

k,l6M

∑

n6(λ/κ)Y

Re

{

a(k)a(l)

[k, l]
(κλ)1/2

d(n)

n1/2
e−2πinκ/λ

×
(

log
Tλ

2πnκ

)−1

exp
(

ig
(

T,
κn

λ

))

}

,where d(n) denotes the number of positive divisors of n, and κ is de�ned by
κκ ≡ 1 (mod λ). Then Theorem 1.2 of [6℄ asserts that

E(T,A) = Σ1(T, Y ) + Σ2(T, ξ(T, Y )) +R(T,A), (2.1)where R(T,A) is the error term, satisfying the estimate
R(T,A) ≪ M1+ε(log T )3 +M2+ε(log T )3/2−ε(log log T )2 (2.2)

+M5/2+ε(log T )−3/4+ε.



6 H. Ishikawa, K. MatsumotoNow we explain our strategy to the proof of Theorem 1. We �rst introdu
ethe �weight�
K(u) = Kτ,θ,ν(u) = (1− |u|)

(

1 + τ sin
(

4π
ν

M
θu
)) (2.3)for −1 6 u 6 1, where θ (> 1) is a large positive 
onstant, τ takes the value1 or −1, and ν = δ

−1/2
0 . The spe
ial 
ase ν = M = 1 of this weight wasintrodu
ed by Heath-Brown and Tsang [3℄ (inspired by the work of Mueller[7℄) to 
onsider the sign 
hanges of E(T ). In [5℄, to study the sign 
hanges of(1.3), (1.4), the �rst author de�ned a more general form of the weight. Theabove (2.3) is an analogue of the weight in [5℄. The 
hoi
e of the above valueof ν is one of the essential point of our proof.Let Q(t) be a real-valued fun
tion de�ned on t > 0, satisfying

|Q(t)| 6 c1t
1/4, t > 0, (2.4)where c1 is a positive 
onstant. De�ne

Λ∗(t) =
1√

2M2t

(

Λ

(

2πt2

M2

)

+Q

(

2πt2

M2

))

.The following is an analogue of Lemma 1 of [3℄ or Lemma 1 of [5℄, and is themain body of our proof of the theorem.Lemma 1. Let M > 2, and assume (1.9). Then we have
∫ 1

−1
Λ∗(t+ θu)K(u)du (2.5)

= −τ

2

√

Ccos(M)2 + Csin(M)2 sin

(

4πt

Mδ
1/2
0

− π

4
− π

δ0
+ β

)

+R∗,where β is de�ned by
sinβ =

Csin(M)
√

Ccos(M)2 + Csin(M)2and R∗ is the error term written as R∗ = R1 + I2 + I3 + I4 with
R1 ≪ 1

M3/2

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)3/4

{

θ

t1/2−ε
+

M5/6

(κλ)5/12−εt5/6−ε
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+(κλ)1/4+εM

3/8−ε

t3/8−ε

(

M

θ
+

1

δ
1/2
0

)

+ (κλ)1/4+εM
3/2−ε

t3/2−ε

+ (κλ)1/4+ε θ2

M13/8+εt3/8+ε
+ κλ

M2

θ2

}

+
1

M3/2

∑

k,l6M
κλ=δ0

|α(k, l)|
[k, l]

δ
3/4
0

×
(

θ2M2

δ30t
4

+
δ0M

2

θ2
+

M2

δ0t2
+

M

tδ
3/2
0

)

, (2.6)
I2 ≪ 1

MT 1/2−ε

∑

k.l6M

|α(k, l)|
[k, l]

(κλ)1/2

(

M3/2−ε

θ
+

M1/2−ε

δ
1/2
0

+
M3/2−ε

t1−ε
+ θ

)

, (2.7)and I3 ≪ M3/2+εt−1/2+ε, I4 ≪ c1M
−3/2.From this lemma, just similarly to Se
tion 4 of [5℄, we 
an easily dedu
eTheorem 1. The argument runs as follows. Choose c1 = c1(M, {a(m)})su�
iently small, θ = θ(M, {a(m)}, δ0) su�
iently large, and then 
hoose

t = t(M, {a(m)}, δ0, θ) su�
iently large su
h that R∗ is su�
iently small,
ompared with the main term on the right-hand side of (2.5).Let S be the set of large real number t su
h that the distan
e between
4πt

Mδ
1/2
0

− π

4
− π

δ0
+ βand its nearest integer is > 1

6 . Then, for t ∈ S, by suitable 
hoi
es of τ we 
anshow that the right-hand side of (2.5) 
an be positive, and also be negative,and hen
e, Λ∗(w) should 
hange its sign in the interval w ∈ [t− θ, t+ θ]. If
t /∈ S, then t− Mδ

1/2
0

24 or t+ Mδ
1/2
0

24 belongs to S, and hen
e, Λ∗(w) 
hanges itssign in the interval [t−θ−Mδ
1/2
0

24 , t+θ+
Mδ

1/2
0

24

]. Therefore, putting x = 2πw2

M2we �nd that, for any large t, the quantity Λ(x)+Q(x) 
hanges its sign in theinterval
2π

M2
ξ2 6 x 6

2π

M2

(

ξ2 + 4

(

θ +
Mδ

1/2
0

24

)

ξ + 4

(

θ +
Mδ

1/2
0

24

)2)

,where ξ = t− θ− Mδ
1/2
0

24 . Writing 2πξ2

M2 = T and 
hoosing Q(t) = ±c1t
1/4, weobtain the assertion of Theorem 1.



8 H. Ishikawa, K. Matsumoto3. Proof of Lemma 1In this se
tion, we give a brief sket
h of the proof of Lemma 1. Let
e(t, y) =

(

1 +
y

4t2

)−1/4
(

2t√
y
arcsinh

√
y

2t

)−1

,

fM(t, y) =
2πt

√
y

M2

(

2t√
y
arcsinh

√
y

2t
+

√

1 +
y

4t2

)

− π

4
,and

gM (t, y) =
4πt2

M2
log

t√
ye

+
π

4
+

2πy

M2
.For su�
iently large t, using (2.1) with T = 2π(t+θu)2

M2 and Y = (t+θu)2

M2 , weobtain
Λ∗(t+ θu) = Λ∗

1 − Λ∗

2 + Λ∗

3 + Λ∗

4 (3.1)with
Λ∗

1 =
1

M3/2

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)3/4
∑

n6
κλ(t+θu)2

M2

d(n)

n3/4
e

(

t+ θu,
nM2

κλ

)

× cos

(

2πn
κ

λ
+ argα(k, l) + fM

(

t+ θu,
nM2

κλ

)

− πn

κλ

)

,

Λ∗

2 =
1

√

2M2(t+ θu)

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)1/2
∑

n6 ((3−
√

5)λ/2κ)(t+θu)2

M2

d(n)

n1/2

× 1

log((λ/nκ)1/2(t+ θu)/M)

× cos

(

−2πn
κ

λ
+ gM

(

t+ θu,
nκM2

λ

)

+ argα(k, l)

)

,

Λ∗

3 =
1

√

2M2(t+ θu)

(

R

(

2π(t+ θu)2

M2
, A

)

−R

(

2π(t+ θu)2

M2
, A

))

,and
Λ∗

4 =
1

√

2M2(t+ θu)
Q

(

2π(t+ θu)2

M2

)

.Therefore,
∫ 1

−1
Λ∗(t+ θu)K(u)du = I1 − I2 + I3 + I4, (3.2)
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Ij =

∫ 1

−1
Λ∗

jK(u)du, 1 6 j 6 4.Using the fa
t |K(u)| 6 2 and (2.2) (or, more roughly, R(T,A) ≪
M5/2+ε(log T )3), we �nd that I3 satis�es the estimate given in the state-ment of Lemma 1. The estimate I4 ≪ c1M

−3/2 follows from |K(u)| 6 2 and(2.4). (It is to be noted that, if the exponent on the right-hand side of (2.4)is larger than 1
4 , then a positive power of t remains in the estimate of I4,whi
h invalidates our argument. This explains the optimality of the value 1

4of the exponent appearing in our theorem.)The method of estimating I2 is similar to that in pp.5�6 of [5℄. Theformula 
orresponding to (9) of [5℄ is
I2 =

1√
2M2t

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)1/2
∑

n6
((3−

√
5)λ/2κ)t2

M2

d(n)

n1/2

× 1

log((λ/nκ)1/2t/M)

×
∫ 1

−1
cos

(

−2πn
κ

λ
+ gM

(

t+ θu,
nκM2

λ

)

+ argα(k, l)

)

Kτ (u)du

+O





θ

Mt1/2−ε

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)1/2



 .We evaluate the integral on the right-hand side by integration by parts,similarly to the argument in [5℄. Here we note a misprint in [5℄; on line 2,p. 6 of [5℄, the estimate K ′
τ,n0

(u) ≪ q−1n
1/2
0 θ is to be read as K ′

τ,n0
(u) ≪

1+q−1n
1/2
0 θ. The 
orresponding estimate in our present situation isK ′

τ (u) ≪
1 + νθ

M . Applying this estimate, we obtain (2.7).Now we treat I1. First, as an analogue of (11) of [5℄, we obtain
I1 =

1

M3/2

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)3/4
∑

n6κλt2

M2

d(n)

n3/4
e

(

t,
nM2

κλ

)

J1

+O





1

M3/2

∑

k,l6M

|α(k, l)|
[k, l]

(κλ)3/4

×
(

θ

t1/2−ε
+

M5/6

(κλ)5/12−εt5/6−ε

))

, (3.3)
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J1 =

∫ 1

−1
cos

(

2πn
κ

λ
+ argα(k, l) + fM

(

t+ θu,
nM2

κλ

)

− πn

κλ

)

K(u)du.This J1 is the analogue of JA in [5℄. In [5℄, JA was evaluated in two ways.The result of the �rst evaluation is (12) of [5℄, while the se
ond evaluation ispresented by (13), (14), and (15) of [5℄. Analogously to (12) of [5℄, we obtain
J1 ≪

M(κλ)1/2

θn1/2
+

ν(κλ)1/2

n1/2
+

M2

t2
(3.4)for n 6 κλt2

M2 . On the other hand, the analogy of (13) of [5℄ is
J1 = J∗

1 +O

(

θ2

M2t3

(

nM2

κλ

)3/2
)

, (3.5)where
J∗

1 =

∫ 1

−1
cos

(

C + fM

(

t,
nM2

κλ

)

+ f ′

M

(

t,
nM2

κλ

)

θu

)

K(u)duwith C = 2πnκ
λ + argα(k, l)− πn

κλ . As for J∗
1 , analogously to (14) and (15) of[5℄, we obtain

J∗

1 = −τ

2
sin

(

C + fM

(

t,
nM2

κλ

))

+O

(

θ2M2

δ30t
4

)

+O

(

δ0M
2

θ2

) (3.6)when n = κλ
δ0

(hen
e n = 1 by the de�nition of δ0), and
J∗

1 ≪
∣

∣

∣

∣

(

f ′

M

(

t,
nM2

κλ

)

− 4πν

M

)

θ

∣

∣

∣

∣

−2

+
κλM2

nθ2
(3.7)otherwise. (3.6) and (3.7) 
an be shown by 
al
ulations similar to those in theupper-half of p.7 of [5℄. During the 
al
ulations the quantity f ′

M ± 4πνM−1appears in denominators. Sin
e f ′

M is positive, f ′

M + 4πνM−1 is alwayspositive. On the other hand, to avoid the possibility that f ′

M −4πνM−1 = 0,we have to assume that t is large and n 6 κλt3/2

M3/2 . Therefore, (3.6) and (3.7)are valid under these assumptions.The main term on the right-hand side of (3.6) produ
es the main term inthe formula of Lemma 1. It is a key point of the proof that this main term
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it formula of Atkinson type... 11appears only in the 
ase n = 1 and κλ = δ0. (We have 
hosen the values of
δ0 and ν 
arefully in order to produ
e this situation.)Divide the sum with respe
t to n on the right-hand side of (3.3) into twoparts, a

ording as n 6

κλt3/2

M3/2 and κλt3/2

M3/2 < n 6
κλt2

M2 . We evaluate the �rstpart by (3.5)�(3.7), and the se
ond part by (3.4). We obtain
I1 =− τ

2M3/2

∑

k,l6M
κλ=δ0

|α(k, l)|
[k, l]

(κλ)3/4

× sin

(

2πκκ

δ0
+ argα(k, l) − π

δ0
+

4πt

Mδ
1/2
0

− π

4

)

+R1, (3.8)where R1 is the error term satisfying the estimate (2.6). It is easy to see thatthe main term on the right-hand side of the above is equal to the main termon the right-hand side of (2.5) if (1.9) holds. Thus, the assertion of Lemma 1follows.4. On 
ondition (1.9)In this �nal se
tion we dis
uss when 
ondition (1.9) of Theorem 1 holds, ordoes not hold. Hereafter we assume that M is a positive integer (> 2), and�rst we prove the following simple 
riterion.Lemma 2. If α(M − 1,M) 6= 0, then Csin(M) 6= 0, and hen
e (1.9) holds.Proof. If α(M −1,M) 6= 0, then also α(M,M −1) 6= 0. For (k, l) = (M−
1,M) we have κ = M −1, λ = M , and κ = −1, while for (k, l) = (M,M −1)we have κ = M , λ = M −1, and κ = 1. Only these two pairs of (κ, λ) satisfy
κλ = δ0 = M(M − 1). Sin
e |α(M − 1,M)| = |α(M,M − 1)|, we see that
Csin(M) 6= 0 is equivalent to

sin

(−2π

M
+ argα(M − 1,M)

)

+

sin

(

2π

M − 1
+ argα(M,M − 1)

)

6= 0. (4.1)Sin
e argα(M − 1,M) = ±π
2 and argα(M,M − 1) = ∓π

2 , we see that thereis no M (> 2) for whi
h both of the terms on the left-hand side of (4.1) are0. (In fa
t, the �rst term is 0 only when M = 4, while the se
ond term is 0



12 H. Ishikawa, K. Matsumotoonly when M = 5.) Moreover, sin
e 2M−1
M(M−1) is not an integer for any M > 2,

(−2π

M
+ argα(M − 1,M)

)

−
(

2π

M − 1
+ argα(M,M − 1)

)

= −2π
2M − 1

M(M − 1)
± πis not 
ongruent to π (mod 2π). Therefore, (4.1) holds for any M > 2.Remark 3. Under the assumption α(M − 1,M) 6= 0, we see similarly that

Ccos(M) 6= 0 is equivalent to
cos

(−2π

M
+ argα(M − 1,M)

)

+cos

(

2π

M − 1
+ argα(M,M − 1)

)

6= 0. (4.2)But when M = 2, this does not hold; in fa
t, both of the terms on the right-hand side of (4.2) are 0. For M > 3, we 
an show Ccos(M) 6= 0 similarly asabove.We dis
uss some examples for small values of M .Example 1. When M = 2, the assumption of the existen
e of δ0 impliesthat α(1, 2) 6= 0. Therefore, from Lemma 2 we see that (1.9) holds.Example 2. When M = 3, the existen
e of δ0 implies that at least oneof α(2, 3), α(1, 3), or α(1, 2) is not 0. If α(2, 3) 6= 0, then by Lemma 2 itfollows that (1.9) holds. If α(2, 3) = 0 but α(1, 3) 6= 0, then δ0 = 3 andthe pairs of (k, l) whi
h attains κλ = δ0 are (k, l) = (1, 3) and (3, 1). Bysimple 
al
ulations, we see that Ccos(3) 6= 0, Csin(3) 6= 0, and so (1.9) holds.Lastly, if α(2, 3) = α(1, 3) = 0 but α(1, 2) 6= 0, then δ0 = 2, and Ccos(3) = 0but Csin(3) 6= 0. Therefore, when M = 3, 
ondition (1.9) always holds if δ0exists.Example 3. Finally, we 
onsider the 
ase M = 4. In this 
ase, we 
an
onstru
t an example for whi
h δ0 exists but (1.9) does not hold. Let a(1) =
1, a(2) = −2i, a(3) = 0, and a(4) = 2. Then, obviously, α(1, 3) = α(2, 3) =
α(3, 4) = 0. Also we have α(1, 4) = 0. However, α(1, 2) = 4i and α(2, 4) =
−8i, both are not 0, hen
e δ0 exists. The value of δ0 is 2, and the pairs of
(k, l) whi
h attains κλ = δ0 are (k, l) = (1, 2), (2, 4) (with (κ, λ) = (1, 2)),and (k, l) = (2, 1), (4, 2) (with (κ, λ) = (2, 1)). Using these data, we 
an
al
ulate

Csin(4) = 4−3/223/4
{ |4i|

2
sin

3π

2
+

| − 8i|
4

sin
π

2
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+

| − 4i|
2

sin
3π

2
+

|8i|
4

sin
5π

2

}

= 4−3/223/4 {2 · (−1) + 2 · 1 + 2 · (−1) + 2 · 1} = 0,and, more obviously, Ccos(4) = 0. Therefore, (1.9) does not hold.Referen
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