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LATTICE SUMS OF HYPERPLANE ARRANGEMENTS

YASUSHI KOMORI, KOHJI MATSUMOTO AND HIROFUMI TSUMURA

ABSTRACT. We introduce certain lattice sums associated with hyperplane arrangements, which are (multiple)
sums running over integers, and can be regarded as generalizations of certain linear combinations of zeta-
functions of root systems. We also introduce generating functions of special values of those lattice sums, and
study their properties by virtue of the theory of convex polytopes. Consequently we evaluate special values of
those lattice sums, especially certain special values of zeta-functions of root systems and their affine analogues.
In some special cases it is possible to treat sums running over positive integers, which may be regarded as
zeta-functions associated with hyperplane arrangements.

1. INTRODUCTION

The notion of Witten zeta-functions associated with semisimple Lie algebras was introduced by Zagier
[12], inspired by the work of Witten [11] in quantum gauge theory. Recently the authors have developed
the theory of zeta-functions of root systems (e.g. [4, 5, 6, 7]), which are multi-variable generalizations of
Witten zeta-functions. In particular, the “Weyl group symmetric” linear combinations of zeta-functions of
root systems S(s,y; A) (where s is a complex multi-variable, y is a certain vector and A is a finite reduced
root system) and the generating functions of special values of those linear combinations were introduced
and studied in [4, 6, 7].

In the present paper, we will introduce certain lattice sums of hyperplane arrangements, which are gen-
eralizations of the above linear combinations of zeta-functions of root systems. We will also introduce
the generating functions of special values of those lattice sums. It is to be stressed that those generating
functions can describe not only values but also functional relations among zeta-functions of root systems.
Furthermore if they are combined with Poincaré polynomials of Weyl groups, we obtain explicit formulas
for special odd values of zeta-functions of root systems. These results will be treated in the forthcoming
paper [8].

Another application is to calculate special values of affine analogue of zeta-functions of root systems.
Although in the cases of affine root systems it is natural to work with the character formulas instead of the
dimension formulas, a straightforward generalization is also interesting. We will present some examples in
Section 3.

In the present paper, our consideration is not restricted to the case in the domain of absolute convergence;
we will study the values of lattice sums outside the domain of absolute convergence. Here we explain this
point by simple examples.

Let N be the set of positive integers, Ny = N U {0}, Z the ring of rational integers, R the field of real
numbers, and C the field of complex numbers. For any set S, the symbol S denotes the cardinality of S.

Let k € N, and let y € R with y ¢ Z if k = 1. It is well-known (cf. [1, Theorem 12.19]) that

(27T\/j)k . e27r\/—1my

(1.1) —TBk({?/}) —A}gnoo Z T E
|m|<N
m#0

where {y} =y — [y] is the fractional part of y and By(-) is the k-th Bernoulli polynomial defined by

tet{v} > tk
(1.2) i ;Bk({y})k!-
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In the case k = 0, then (1.1) does not hold straightforward. However this formula still holds in some sense
via the following regularization. We see that the right-hand side of (1.1) is analytically continued to the
whole space C in the variable k£ and then it is evaluated as —1 at k = 0. This effect is (formally) realized in
the series by replacing the condition m # 0 by m = 0 and Zm?éo by — >, with 0° = 1. Hence the sum
consists of only one term. As a result, we may understand the case k = 0 as

(13) (271'\/7) Bk({y}) _ ]\}lm Z eQﬂﬁmy — _€2Wﬁmy‘mzo _ _1’

|m|<N
m=0
where By({y}) = 1.
This interpretation works well in the multi-dimensional cases. For example, let «, 8,7 € C and k1, ko, k3 €
Ng, and consider the sum

4 S((ky, ko, k l ot e
1. =
( ) (( 1, 2, 3),(3/1,3/2)) gnm m;ez (m+a)k1(n+ﬁ)k2(m+n+’}/)k3
m—i—a,n-{—é,m-{-n-‘r’y#o
[m|,|n|<N

This is convergent if ki, ks, ks > 1. If some of k;’s are 0, then we modify the series. In the case when only
k1 = 0, we replace the condition m + « # 0 by m 4+ a = 0 in the sum with the minus sign and 0° = 1, that
is,

e27r\/jl(my1+ny2)
1.5 S((0, ko, k =— 1
(15) (ko k), 9 == lim - > e
m,ne”
Iml,|n|<N
n+B,m+n+y#£0
m—+a=0

By the restriction m + « = 0, this sum is 0 if « ¢ Z. If « € Z, then the sum reduces to the one-dimensional
sum

(1'6) S((07k27k3)7 (y1,y2)) = — lim Z

N—o0
nel

In|<N
n+pB,n+v—a#0

62w¢?1(—ay1 +ny2)
(n+B)f2(n +7 — a)ks

In the other cases, the sum is similarly modified. Then the special values S((k1, k2, k3), (y1,y2)) for all
k1, ko, k3 € Ny are explicitly given by coeflicients of a generating function, which will be given in Example
3.1.

In the above arguments the sums are taken over all integers. However in some special cases, it is possible to
treat sums running over only positive integers (Examples 3.2, 3.3), which may be regarded as zeta-functions
associated with hyperplane arrangements.

In the next section we will introduce more general lattice sums, and their generating functions.

2. NOTATIONS AND STATEMENT OF MAIN RESULTS
We fix a positive mteger r. Let V =R" be a real vector space equipped with the standard inner product
(-,-). We regard f = (f. f) € V xC with f € V and f € C as an affine linear functional on V by
fv)={(f,v)+ fforveV.
We use the following notation: For X C V, put (X) = > xZv. For Y CV xC,put Y = {f | f =

(fifevy.
Let A C (Z"\ {0}) x C with A < oo such that rank(A) = r. Put A = {f € A | rank(A\ {f}) # r}. For

each f € A we associate a number kf € Ng, and put k = (kf)ren € NgA. For k € Ny, define
Ap = Ap(k) ={f € A| ky =k},
A=A (k)= {f € A | ky >0},
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Obviously

Ay =|JA and A=A, UA,.
k>1

For H C A such that rank<ﬁ> =r—1,let Hyg = deH R 7 be the hyperplane passing through H U {0}.
The following is the main object in the present paper, a lattice sum over the hyperplane arrangement
given by linear functionals belonging to A.

Definition 2.1. For k = (ky)fep € NgA and y € V\ Uz, (Da\(s} +Z7), we define

(2.1) S(k,y;A) = lim Z(N;k,y; A),
—00
where
1
(2.2) Z(N;k,y;A) = (—1)#o Z 2™V =1(y.v) H 5
V=(v1,y0r) EZT FeAL f(v)

lvj|<SN - (1<j<r)
fv)#0 (feAy)
f(v)=0  (feho)

for N > 0.
This S(k,y; A) is a generalization of the notion of ”Weyl group symmetric” linear combinations of zeta-

functions of root systems S(s,y;A) mentioned in the Introduction (in the case s = k); cf. [6, (3.3)], [7,
(110)]. The first main result in the present paper is as follows.

Theorem 2.2. The series S(k,y;A) converges and is continuous in'y on V '\ UfeKmAl Oy +Z7).

In order to define the generating function of S(k,y;A), we need some more notations. Let 8 = HB(A) be
the set of all subsets B = {f1,..., fr} C A such that B forms a basis of V. For B € &, let B* = {f_lB, ol fZB}
be the dual basis of B = {fi,..., fr} in V. It should be noted that for each B € %, we have

(2.3) A C B,

because all elements of A are indispensable for constructing a basis.
Next we define a multi-dimensional generalization of fractional part {-} for real numbers, which was first
introduced in [6, Section 4]. Let #Z = Z(A) be the set of all subsets R = {g1,...,9,—1} C A such that

R= {1, -.,Gr—1} is linearly independent set. We need to fix a vector
(2.4) peV\ | 9r
Rez

so that <¢,f73> # 0 for all B € # and f € B (because if (¢, fBY = 0 for some B € & and f € B, then
¢ € Hr with R= B\ {f} € Z).
Fory e V, Be€ % and f € B, we define the multi-dimensional fractional part by

~{y, By (6, fB) > 0),
25 Wvhs.s = {1 S (e <o)
It should be noted that
(2.6) {a} =1—{-a}
fora € R\ Z.

Now we define the generating function of S(k,y;A) and state its properties.
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Definition 2.3. For y € V and t = (t7)ep € C*, we define

Fit.y: A Z ( H e tg )

BeB(A) geA\B U9 Y ety — 2ny/=1f)(g, fB)

1 trexp((t; — 2mv/—1f){y + w}gs)
4(2r /(B)) We%@) (fl;IB exp(ty — 2my/—1f) — 1 )

Theorem 2.4. (i) The function F(t,y;A) has one-sided continuity in'y € V in the direction ¢, that is
2. lim F A)=F i A).
(2.8) Jim F(t,y +cg; A) = F(t,y; )

(2.7)

(ii) F(t,y;A) is continuous iny on V' \ Ufef\(ﬁf\\{f} +7Z"). In particular if A is empty, then F(t,y;A)
s continuous on the whole V' and is independent of the choice of ¢.
(iii) F(t,y;A) is holomorphic in the neighborhood of the origin in t.

Write the Taylor expansion of F(t,y;A) around the origin in t as

(2.9) F(t,y;A)= > Clky;A H

kENﬁA fEA
Theorem 2.5. We have
o (2my/—1)ks '
€

for k= (kf)sen € NEY and 'y € V\ U cxon, Oavisy +27).-

The above results are again generalizations of the results proved in [6], [7]. In fact, the form of F(t,y;A)
in Definition 2.3 is the generalization of [6, Theorem 4.1], Theorem 2.4 is the generalization of the facts
mentioned in [7, p.252], and Theorem 2.5 is the generalization of [6, (3.10)].

Before going into the proofs of the main theorems, in the next section we will give several examples. Then
we will start the proofs of main theorems from Section 4. Sections 4 is devoted to the proof of Theorem 2.2.
Then from Section 5 to Section 8 we will describe the proof of Theorem 2.4 and Theorem 2.5. In the final
section we will mention that there is some hierarchy among generating functions.

3. EXAMPLES

In this section we apply our theorems to some special cases, and to state explicit expressions of F'(t,y; A),
C(k,y;A) and S(k,y; A) for those examples.

Example 3.1. Let V = R2. Let a, 3,7 € C,
(3'1) A= {fl = ((1’0)aa)af2 = ((Oa 1)7ﬁ)7f3 = ((1’ 1)’7)}7
(3.2) B ={{f1, fo}, {f1, [3}: { f2, f3} 1,

which corresponds to the series in (1.4), (1.5) and so on. Then the generating function is given by
F((t1,t2,t3), (y1,92); A) =

ts tyeti=2mV=Ta){y1} tze(tr?ﬂﬁﬁ){w}
ty — 2m/—1y — (t1 — 2mv/—1a) — (t2 — 2my/—183) eli—2nV=1a) _ 1 elt2—2mV=1B)
(3.3) to t1eti=2mv=Ta){y1—y2} t3e(t3—2WF7){92}
to —2myV/—=1B + (t1 — 2mv/—1a) — (t3 — 2m/—1y) elti=2mV=la) _ 1  elts=2mv=17) ]
t toelt2=2mV=18)(1—{y1=y2}) 4,0 (ts—2mv/=T7){y1}

+ .
t1 — 2my/—la+ (ta — 2w/ —15) — (t3 — 2mv/—17) elt2=2mv/=18) _ 1 elta=2mv=17) _ ]
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In particular, if o, 8,y ¢ Z with a + 8 # 7, we have

16/ —1m3{y; — yo }e2V-Imla—afy—y2}—r{12})
(—1 + e2ﬁﬂa)2 (—1 + e*QE’”) (a+8—-1)
16y/—1m3{y; — yo }e2V-1m(a—afyi—y2}—7{12})
(—1 + 62\/?1770‘)2 (—1 + e—%ﬂm) (a+B—7)
16+/—1m3e2V—Im(a—a{yi—y2}—{y2})
(14 o) (D14 e /) (at 5 )
8r2e2V—1n(=f+B{y1—y2}—7{y1})
- (<14 eV (<14 e V7T ) (a4 B - 4)2
16+/— 173 {y, Y2V~ Inla—a{yi}-5{y2})

C((2,1,1), (y1,92); A) = —

(34 ’ (—1 + ezﬁm)z (—1 + 6—25”5) (a+B8-7)
16y/—1m3{y; }e2V~Im2a—a{yi}~p{se})
(—1 + eQﬁm)Q (—1 + e—2ﬁ”5) (a+B—7)
16/ Trde2v Trla—aly)—Blua))
(—1 + e2ﬁm)2 (—1 + e*Q\E’Tﬂ) (a+8—7)
822V "Tr(af{yi}+B{y2)
+
(—1 + 6—2\/?1”0‘> (—1 + e—Q\E”ﬁ) (a+pB—7)?
822V —Im(a{y1—y2}+v{y2})
- (<14 e2vTTm0) (<14 e V7T ) (a4 B — )2
and

_ e2mV/=1(my1+nyz2)
S((27171)7(y17y2);A) = lim Z

N—o0 (m + a)?(n+ B)(m+n+7)!
m,nEL

(3.5) Iml,|n|<N

—(2mV/=1)%2 =27/ 1)t —(27/—1)!
If « =0 and 8,7 ¢ Z with 8 # v, we have

1 e~ 2V—Tm{y2} “Te2vV-Imy(1+{y2})
C((0.1,2), (. o)s ) =— Y122 - 2
2 (—1 + 6‘2m”) T(B=7) 2 <—1 + e—%ﬁm) (8 =)

3.6
(3.6) o2V —1mB{y2} e~ 2vV—1my{y2}

_l’_

4 (*1 + G*QH”B) R824 (*1 + G*QH’”) (8 —7)?
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A 1 32”\/jl(my1+ny2)
i) == zn:ez (n+B) (m+n+)?
iml,In[<N
m=0
2w/ —1ny2
= — lim Z € T 5
Nooo 2= (n+ fB)H(n+7)
In|<N
—2nv/—=1)0 — (27— —(27/—1)?
- ( Ol ) ( 1! ) ( 21 ) C((07172)7(y17y2)7A)

Example 3.2. Let V =R. Let

(3.8)
(3.9)

A= e = (1= (L) fo = (1LO) /i = (L)),
P = {{f—1}7 {f0}7 {fl}}7

where o € C\ {0}, which corresponds to the series

(3.10)

where k_1, kg, k1 € N.

e27r\/—1my

(—m + a)F—1mko(m + o)k’

S(kyiAa) = lim )
meZ\{0,+a}
Im|<N

Then the generating function is given by

F((t-1,t0,t1),y; Aa) =

to t t_ elt—1=2mv/=Ta)(1—{y})

to+ (t—1 — 2mv/—1a) t1 — 2nv/—=la + (t_1 — 2my/—1la)  et-1-2mvV=la ]

(3.11)

t 4 t toeto{y}

_|_

t_1—2nv—la+tgt; — 2nv/—1a — 1y eto — 1

_|_

tq to tyelti=2mv=Ta){y}

Then for a ¢ Z,

(3.12)

C((Qv 2, 2)> Y3 Aoz) =

t_y —2mv/—la+ (t; — 2mv/—1a) tg — (t1 — 2my/—1a) et—2nv=Ta _ 1

NS SR SR ) S () S 3y/—Te2mrV-lody}
476l 247tat  Artat  4mtad 167505 (_1 + 62#\/_—1002
3/ TTe2mV/Tall-{}) 3/ TTe2m/Ta~{u}) 3/ TTe2m/ Tal{y}+1)
167507 (~1+ 627“/?10‘>2 167507 (=1 + eQWﬁa>2 167907 (=1 + 627“/?10‘>2
{y}e2w¢?1a{y} N {y}e2WJ?1a(1—{y}) B {y}€2W¢jla(2—{y})

B 2 2 2
Smdad (—1 + €2W\/j1a> Smdal (—1 + 62”ma> Smdat (—1 + e2wﬁa)

+

{y}e2mvTa{u}+) 2y —Ta(1—{y}) 2mv/=Ta({y}+1)

2
{mdal <71 + eZﬂ\/jloz>2 {mdal (71 + 6271'\/?1&)2 St (71 + eZﬂ\/jla)
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and for a € Z,

C((2,2,2),y; Ag) = — 1 1 . {y} {y}? . 3v _l{y}eizﬂﬁa{y}
b 4766 24mtat  4ntat  4Anmtot 16m5a®
N 3 /—l{y}€2ﬂ\/ja{y} 3 /_le—QNlea{y} B 3 /_1627r\/?104{y}
(3.13) 1675ab 32moad 32moa’
{y}2e—2WJT1a{y} {y}QGQWlea{y} {y}€—2ﬂ¢j1a{y} {y}GQWlea{y}
* 1674t 167t B 167t B 167t
236—2wﬁa{y} 23627r\/—71a{y} 6—27n/ja{y} e27rﬁa{y}
T 13808 1287%a® 96ntal | 96riad
For example, setting y = 0 and o = 1, 2, 3, we obtain
1 1 39
S((27272)70aA1) = Z 2,9 2 = 771-2_77
e o1} (—m +1)2m2(m+1) 2 8
1 1 39
S5((2,2,2),0; Ag) = =y
((2,2,2),0:A2) n&gégi%(—nr+2pnﬂ0n4—%2 32" 512
1 1 13
5((2,2,2),0;A3) = = -
(( » 4 )7 ) 3) ez%is} (—m—|—3)2m2(m—|—3)2 1627T 1944

Similarly, computing C((2k, 2k, 2k),0; A,), we can obtain

1 35 3075

S((4’4)4),0,A1): EW4+T67T2 m7
s 21 4 3003 , 137067

e T + T 2 _137067_

20643840 2097152 16777216 268435456

S((67 6’ 6)7 0; AQ)

43 367 581
S((8,8,8),0; A3) = ° ’ )
((8.8.8).0:83) = So7ga18053600" T 7810397058240 | 1083592003680 "
16189 ) 2864587

21422803359744 " 1028294561267712"

Here we define the zeta-function associated with A, by

> 1
(3.14) ) = % (—=m + a)s1ms2(m + «)®3’

which can be regarded as a Hurwitz-type analogue of the Riemann zeta-function, that is, with a shifting
parameter . We can easily check that S((2k, 2k, 2k),0; Ao) = 2(((2k, 2k, 2k); Ay) for k € N. Therefore we
obtain from the above results that, for example,

1 39
2.2.2):A{) = -2 — =
C(( 5 4y )a 1) 47T 167

1 35 3075

4.4.4)Ay) = —qgd 4 2252 22

C((4,4,4); M) 50" T32™ " o567

1 21 3003 137067
6,6,6); Ay) = 6 ! - ~
C((6,6.60:A2) = Tro7eR0™ T 4104304" | 33554432 536870912

Example 3.3. Let V =R? and a € C\ {0}. Let

(3.15) A= Ao ={{frj}j {foi}j{f3i}i}
={{(-1,0,x),(1,0,0),(1,0,0)}, {(0,-1,),(0,1,0),(0,1,0)}, {(-1,—-1,c),(1,1,0),(1,1,x)}},

(3.16)
B = {{f1j, fa}tji {fijs fai}jo {f25, fai}in}
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Set y =0 and
1
S ({kj}1<j<9,0;Aq) = lim Z L k
N—o00 m,n€Z\{0,+a} (_m + a) im Q(m + Oé) 3
m+n£0,+a

[m|,|n|<N
1
% (—n + a)kanks (n + a)ks (—(m + n) + o)k (m + n)ks(m +n + a)ko
Then, computing C({k;},0; Ay), we obtain, for example,
g TOL_, 1841 , 2822557

890" 21607 _ 108 " ' 20736 ’
1L o, 4901, 26747 , = 20643217

15482880 © 70778880 28311552 | 10871635968
2 4220, 14183

205245 6377292 ' 459165024
Similarly to Example 3.2, we define the zeta-function associated with A by

1
(—m + a)s1ms2(m + «)3

S((1,2,2,2,1,1,1,2,2),0; A1) =

5((2,2,2,2,2,2,2,2,2),0; Ay) =

$((1,1,1,2,2,2,1,1,1),0; A3) =

[e.9]

(3.17) G({sjhigj<o; Aa) = Z

m,n=1

m#+a

n#ta
m4n#£ta

1
% (—n + a)%4n®(n + )% (—(m +n) + a)¥7(m + n)%8(m +n + a)%’

which can be regarded as a Hurwitz-type analogue of the zeta-function of the root system of type As defined
by

oo

1
(3.18) CQ((SleQaS?));A?): Z mSlnSQ(m+n)33

m,n=1
(see [5, Section 2] [7, Section 11.7, Example 2]). Note that (3.18) is also called the Tornheim double sum or
the Mordell-Tornheim double zeta-function (see, for example, [9, 10]). We already studied certain Hurwitz-
type analogues of zeta-functions of root systems in [6, Section 8]. From the viewpoint of root systems, we
can regard S ({2k}1<j<9,0;Ay) is the sum of zeta values (2({2k}1<j<9; Aq) under the action of the Weyl
group of type Az (~ S3). This implies that

S ({2k}1<j<9,0;An) = 602 ({2k}1<j<0; Aa) (K €N).
Therefore, as an analogue of (5((2,2,2); Ay) = 7%/2835, we obtain from the above result that
1L g, 4901, 6TAT 20643217

02807280 ' 424673280 169869312 65229815808
Remark 3.4. We give another interpretation of the series (3.14) and (3.17), that is, we regard each term of

CQ((27 2) 27 27 27 27 27 27 2) AQ)

these series as a product of positive roots of affine root system Agl) and Agl) respectively (for the theory
of affine root systems, see [3]). Since there are infinitely many positive roots in affine root systems, the
product consists of infinitely many factors. In order for the infinite product to make sense, we understand
that infinitely many variables are set to be zero and hence the product is truncated.

4. PROOF OF THEOREM 2.2

Now we start the proofs of the main theorems. First of all, in this section, we prove Theorem 2.2. The
main body of the argument is the proof of an evaluation formula (Proposition 4.1) for S(k,y;A).
For t,b € C and y € R let

te(t QWFb > k

(4.1) F(t,y;b)—m kZ_OCky, R



LATTICE SUMS OF HYPERPLANE ARRANGEMENTS 9

where the right-hand side converges when |t is sufficiently small.
It is to be noted that F(t,{y};b) (resp. C(k,{y};b)) is just the special case r = 1, A = {(1,b)} = B of
F(t,y;A) defined by (2.7) (resp. C'(k,y;A) defined by (2.9)).

Proposition 4.1. For k = (ky)fea € NgA, Y € VAUjseinn, Onvgsy +Z7), the series (2.1) converges. For
a fized decomposition A = By U Ly with By = {f1,..., fr} € B, we have

Sk,y;A) = % H (—(27“2? Z / / H Clkg,xg4; ) d:cg>

(4.2) HZ7/(Bo)) jen ' weZ"/(Bo) g&Lo
< 1] (C(k:f,{y+w - xgﬁ}Bo,f;f))-
feBy g&€Llo

This is a generalization of [7, Theorem 6] (for integral values of k). Only the case in the domain of
absolute convergence was considered in [7, Theorem 6], so there was no problem of convergence. In our
present situation, if ky > 2 for all f € B with some fixed B € %, then the matter of convergence is again
obvious, so it is easy to prove our claims. However if k; = 1 for sufficiently many f € A, then there are
subtle problems on convergence, and the proof becomes much more complicated. It should be remarked
that the key of the convergence of S(k,y;A) is the condition rank(A) = r.

Since it is difficult to treat (2.1) directly, in the following we consider a little modified sum

(4.3) Si(k,y; s Bo) = lim Zy(N;k,y; A; Bo),
where
1
(4.4) Z1(N;k,y; A; Bg) = (—1) > VI T =
VEZT f€A+ f(v) f

|Re f(v)|[SN  (f€Bo)
F(v)#0  (feAy)
F(v)=0 (f€ho)
That is, the condition |vj| < N for 1 < j < r in the definition of S(k,y;A) is replaced by |Re f(v)| < N for
f € By. At the last stage of the proof we will show that S(k,y;A) = S1(k,y; A; Bp). In particular, we will
find that S1(k,y; A; Bp) actually does not depend on the choice of By.
The proof of Proposition 4.1 consists of three steps.

The first step. We first consider the simplest case of (4.3), which corresponds to r =1 and A = {(1,b)} =
B with # = {B}, in Lemmas 4.2 and 4.4.

Lemma 4.2. Forbe C, y € R and k € N with k > 2, we have

. e27n/jny (QW\/jl)k
(4.5) ngnoo< ;E% (”‘f‘b)k> =——— Ok {yhd),
|[n+Reb|<N
n—+b#£0
(4.6) lim <_ > e%ﬁ"y) = —C(0, {y}:b).
N—o00 e
|[n+Reb|<N
n+b=0

(Actually the sum on the left-hand side of (4.6) consists of at most one term.) The series above converge
absolutely uniformly in y and hence C(k,{y};b) and C(0,{y};b) are continuous in y.

Proof. Let vxy be the counterclockwise rectangle contour with vertices at £X £ 27v/—1Y. Applying the
Cauchy theorem to the integral

(4.7) lim lim / F(t,{yy;b)t™*tat  (k>2)
YM,N+e

N—00 M—00
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with a sufficiently small € > 0, we see that the sum of all the residues vanishes, namely,

C(k,{y};b) 1 : e?mV -1y
4. 1 e
(48) B @r/oD)F N 2% Oy
[n+Reb|<N
n+b#0

and hence (4.5).
The left-hand side of (4.6) consists of only one term e 2716y if h ¢ 7. and vanishes if b ¢ Z, while

I ez
4.9 C(0,{y};b) = F(0,{y};b) = ’
(1.9 (0, {w}:8) = F(0, {y}:b) {0 ver
and hence (4.6).
Both in (4.5) and (4.6), the absolute uniform convergence of the series in y is clear. O

The case k =1 is more subtle. We first prepare the following
Lemma 4.3. For p > 0 there exists K > 0 such that for a,z >0

oo e~ Tz 1
4.10 / ————dx < K(az) »+1.
(4.10) ) Vil <K

Proof. Rewrite

(4.11)

o0 e—:Bz [e.9] e—fE
——dr = / —dx.
/o Va? + a? 0 72+ (az)?

By the inequality of weighted arithmetic and geometric means

(4.12) HA+ B> (u+ D)(AB)A (1, A, B > 0),
we have
(4.13) Va4 (az)? >/ + 1/1_2(#‘:-1) xﬁ(az)ﬁ
and
o e " dr < ,LLQ“‘P‘L*” ( )7L /Oo e~ g
x az) wtl e “xr rtlax
(4.14) 0 Vatdle)t Vit ’
: M
2t 1 _ 1
(A
“\Vp+1 \p+1 (a2)
O
Let
1 (N <0< M),

4.15 0 =
( ) N<o<M {0 otherwise.
Lemma 4.4. For b e C and y € R\ Z we have

eQﬂ\/jlny
4.1 i - == — .
(4.16) ngn@( > o 21/ =1C(1,{y}; b)

nez
[n+Reb|<N
n+b#0

and C(1,{y};b) is continuous in y. Moreover for any p > 0 there exists K > 0 such that for ally € R\ Z
and all M, N € R with sufficiently large |M|,|N| and M > |N|

e27r\/jlery e e e
(4.17) ‘ Z “nxh S KN #T((L=A{y}) #1 +{y} »1) + dncocm K.
N<niReb<n

n+b#0
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Proof. From (4.1) we can easily see that

(- g)e ™0 ez,
(4.18) CL{y}b) = ,~2rv=Tb{y}
p— 0¢2)

from which the continuity of C(1, {y};b) follows.
Let vy be the horizontal path from —oo + 27/ —1Y to oo + 27y/—1Y. Then for all y € R\ Z, we have

1 <_ [YM+6 Bt A b)t_th * / . {y); b)t_2dt> — In<o<mC(1,{y};b)

27r\/jl TN —e
(4.19) _ 1 3 e2mV=1ny
21/ —1 = n+b
N<n+Reb<M
n-+b£0
On the other hand, for L € Z
’ F(t {y}: b)t_th‘ < / i i A L dx
viie v T Joool e t2nV =LA —2mV=Tb g 4 27 /—1(L £ €)
(4.20) - /00 et{v} o2 Imb{y} dx
T Jooo er2mV10%) | |z + 27/ 1(L £ €)|
00 ey} 2r|Imb d
- /_oo |ex—2mV=1(bke) — 1|\ /22 + 472(L + 62
It is easy to see that there exists K’/ > 0 independent of y such that
eT{y}2m| Imb| K'ex{y} z < 0),
(4.21) o2/ 10E0) _ 7 <g(x,y) = {K’e“?({y}_l) EI‘ - 0;
Applying (4.21) and Lemma 4.3 to (4.20), we have
Y2 = 9(z,y)
(4.22) ‘/YL:EE Flts ks byt dt‘ = /—oo Vo2 +4r2(L £ e)zdx

< KL (1= {y}) 77+ {y) )

for some K” > 0. Therefore, choosing N = —L and M = L in (4.19) and taking the limit L — oo, we
obtain (4.16). Moreover, since C(1, {y};b) is bounded in y, we obtain (4.17). O

The second step. Secondly we consider the higher rank case of (4.3) under the special condition A = B
with # = {B} in Lemmas 4.7, 4.8 and 4.10. We first prepare the following algebraic lemma. This statement
is included in [2, Chapitre 6, Section 1, 9], but here we supply a proof.

Lemma 4.5. Let Q, P be free Z-modules of rank r with Q@ C P so that P/Q is a finite abelian group. Then

(4.23) Hom(P/Q,Q/Z) ~ Hom(Q,Z)/ Hom(P, Z)
and for A € P/Q, we have

1 20V If(N) _ 5.
(4.24) ) > e 85.0-

feHom(Q,Z)/ Hom(P,Z)

where the right-hand side denotes Kronecker’s delta.

Proof. First we note that an element of Hom(P,Z) can be naturally regarded as an element of Hom(Q), Z).
Denote this injection by ¢. Next, let f € Hom(Q,Z). It is well-known that there exist a basis {\;}/_; of P
and a basis {\;}!_; of @ such that A\, = k;\; with k; € N and hence

(4.25) P/Q =)@ ®(\),
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where each ();) is a cyclic group of order k; with \; € P/Q. Define ¢(f) by the linear extension of

(4.26) e(f)N) = p(fF(X)/ ki),
where p denotes the natural projection Q — Q/Z. Then ¢(f) € Hom(P/Q,Q/Z) is well-defined.

We show that the sequence
(4.27) 0 — Hom(P,Z) % Hom(Q, Z) % Hom(P/Q,Q/Z) — 0
is exact. First show the surjectivity of ¢. Let g € Hom(P/Q,Q/Z). Then choose a representative a; € Q of
g(Ai). Since kig(Ai) = g(A;) = g(0) = 0, we have k;a; € Z. Define f € Hom(Q,Z) by the linear extension of
f(A)) = kiai. Then o(f)(Ni) = plai) = g(\i), so g = ©(f). Therefore ¢ is surjective. Next, let f € ker.
Then ¢(f)(N\i) = p(f(X,)/ki) = 0 and so f(ki\;) € kiZ, that is, f()\;) € Z. This implies f € Hom(P,Z),
and hence the exactness at Hom(Q,Z) is proved. The assertion (4.23) immediately follows from (4.27), and
(4.24) follows from the orthogonality relations of group characters (cf. Apostol [1, Theorem 6.13]). O
Lemma 4.6. Let B € % and f € B. Then
(4.28) g\ +2" ={yeV| (y +w, fP) € Z for some w € Z}.

Proof. We denote the left-hand side by P and the right-hand side by @ respectively. If y € P, then
Yy = yo + wo with (yo, f_B> =0 and wg € Z". By setting w = —w( we have

(4.29) y+w, /%) = (v, /*) =0€Z,

and y € Q. Conversely, if y € @, then

(4.30) y+w€.V)B\{f}+ZfC fJB\{f}—f—Zr

because Hp\ (s is orthogonal to fB Hence we have y € P. O

Lemma 4.7. Assume A = B with 8 = {B}. Fork = (kf)ren € Nj andy € V\ U, (Da\(sy +Z7), the
limit (4.3) (with By = B) converges, and we have

1 27r\/ .
Sik,y;A;B) = ———— kg, W ; .
(4.31) 1(k,y; A; B) ﬁ(Zr/<B>)W€%< >fl;[A( Clhy Ay +whs,si )

Proof. Let A =*(f ) feB be a regular matrix, where f are regarded as column vectors. Then A1 = ( fB )feB-
For v € Z", write u = (uf) fep = Av so that uy = (fiv) and v =A"tu = Zfer uyg. We have

1
Zi(Nik,yi A B) = (~1 e A |
VEZ:T fl_/\[+ (<f,V> +f)kf
[Re f(V)ISN  (feB)
F(v)#0  (feAy)
f(v)=0 (f€ho)
(432) _ (_1)ﬁAo Z L(u)eQﬂ—\/?l(y’Ailw 1 —,
=/ feA (ug + f)™
lus+Re fI<N - (f€B)
Uerf.?éO (feAy)
up+f=0 (f€Ao)

where
(4:39) (n) = {0 (Al ¢ 7).
We prove

1 1
4.34 () = —— e2mV/=1(w,A" u)
. ) 8(2r/(B)) 2
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In fact, using Lemma 4.5 with Q = Z", P = (B*) and noting Hom(Z",Z) ~ Z", Hom((B*),Z) ~ (B) and
H(B*)/2Z") = W@ J(B)), we have

827 /(B))

wezr/(B)

for X € (B*)/Z". Since A~'u = > feB f_BUf € (B*), choosing A = A—Tu € (B*)/Z" in the above, we obtain
(4.34).
Using (4.34) we find that (4.32) is equal to

1 _ 1\fAo 627r\/—71<y+w,A’1u> 1
I T 2 (I )

wezr/(B) urel sen, (us +f
jup+Re flEN  (feB)
uptfA0 (ens)
uptf=0  (reho)

1 2/~ (y+w, 7B )uy
S X M X e
(4.35) jj(Zr/<B>) wezr/(B) fEAo( ufEZ. >
lus+Re f|<N
Uf-i-f.:O
o2V =1(y+w,fP)u; )

XH( 2.

F\k
feAt ufGZ (Uf + f) !
lus+Re fI<N
Uf+f7é0

where we have used A~lu = > feB fBUf. (Note that at present A = Ag UA; = B.)
By Lemma 4.6 we see that the assumption y € V' \ Uep, (9a\(r} +Z") implies that (y +w, fB) ¢ 7 for

all f € Ay and w € Z". Therefore the condition of Lemma 4.4 is satisfied (for y = (y + w, f5)). Therefore
letting N — oo on the right-hand side of (4.35) and applying Lemmas 4.2 and 4.4, we obtain

1 27‘(’\/ By s
4.36 Sik,y;A;B) = ——— kg, w, ; .
(436) (k,y:A: B) ﬁ(ZT/<B>)w€; fGHA( Cliy, ALy +w, ) )

Lastly we note that the factor {{y + w, fB )} on the right-hand side of the above can be replaced by
{y + w}p, . This is because C(k,{y};b) = C(k,1 — {—y};b) for k > 2 or k =0, while y ¢ Z when k =1
(cf. (2.6)). This completes the proof of the lemma. O

Lemma 4.7 gives the right-hand side of (4.2) in the special case A = B and % = { B}, but for S;(k,y; A; B)
instead of S(k,y;A). In order to use Lemma 4.7 in the proof of the general case, we need the following
inequality.

Lemma 4.8. Assume A = B with # = {B}. For i > 0 and k = (ky)ren € Nj there exists K > 0 such
that for ally € V '\ Uen, (Da\(sy +Z") and all sufficiently large N > 0,

wan AW yABISE 3T TT0+0 - {y+w. /M) 5 4 {ly 4w 7)),

wezr /(B) feM
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Proof. From the proof of Lemma 4.7, we have

1
ANkyAB < S [ X en ey
ﬁ(Zr/<B>) WEZT/(E) feAg ufe%
Ju+Re fI<N
’Mf-i-f:o

(438) 627TX/T1<Y+W:J?B>UJ‘

B ITEDY

F\k
feEAL upEL (uf + f) !
lus+Re fl<N
Uf+]:750
On the right-hand side of (4.38), each sum corresponding to f € Ag consists of just one term, and each sum

corresponding to ky > 2 is convergent absolutely as N — oo, so all of them are bounded. For f € A, we
apply Lemma 4.4 to obtain that the right-hand side of (4.38) is

(4.39) <k S JLO+0—{y+w N5 +{{y +w, /F)} ),

wezr /(B) feM

O

To evaluate the difference between Z(N;k,y;A; B) and Z;(N;k,y; A; B) in the final step of the proof,
the following two lemmas are necessary. For B € & and R > 0, let

(4.40) Up=Ugr(B)={xeR"||Ref(x)|]<R (fe€B)}
(4.41) Wr={xeR"||z;] <R (1<j<nr)}

Lemma 4.9. There exist positive numbers c,d with ¢ > d > 0 such that

(4.42) Uir(B) C Wr C Uc.r(B)

for all sufficiently large R > 0.

Proof. We show the first inclusion. Each vertex x of the parallelotope Ugr(B) satisfies one of the following
equations

(4.43) Ax+ Ref)rep = (Rp)jep (Ry € {R,—R}),

where we regard (Re f Jrens (Rf)fep and f as column vectors respectively and A = !(f)fep- Hence we see
that the Euclid norm ||x|| of each vertex x = A™1(R; — Re f) fep satisfies

Il = 1AM (By = Re fgesll < A7 max Vr|R£Re f|

(4.44) Re f

< RVF|A7 | max|1 &+ =22 | < 20747 IR

< RVFIA a1 = 2oL | < 2vmpa
for all sufficiently large R > 0, where || A|| denotes the matrix norm of A. Thus choosing
(4.45) d=(2vr|A7)™

we find that the vertex x of Ugr(B) satisfies ||x|| < R, so Ugr(B) C Wg.
We show the second inclusion. Denote by K(R) the ball of radius R whose center is the origin. The
|R£Re f|

Re f| g
T

distance between the origin and the hyperplane {x € V | (f.x) + Re f = £R} is given by

1 +Ref
(4.46) Rmin —— < min FERES]
reB2(fll — reB | fll

holds for all sufficiently large R > 0, we find that K (Rmin(2||f])~!) C Ur(B). Therefore, choosing
1
-1

(447) = min _—,
€8 2y/r|| f]]
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we obtain
(4.48) Wg C K(VrR) = K(cRmin(2||f])~") € U.r(B).
O

Lemma 4.10. Assume A = B ={f1,..., fr} with Z ={B}. Let ¢,d be as in Lemma 4.9. For u > 0 and
k = (ky)ren € N there exists K > 0 such that for ally € V '\ Uca, (Da\(sy +Z") and all sufficiently large
N e N,

e2mV=1{yv) 1
> T ]

T
v S
(4.49) F(V=0  (feho)

< KN (ogN) (14 3 3 (A= {ly+w, )77 + {ly +w, )} 7)),

weZr /(B) feM

Proof. For brevity, we put

4.50 Gy, = 2™V -1yv) _,;.
(4.50) (y,v)=e fl_[\{ (Fv) + )

We rearrange {fi,..., fi} = At and {fi1+1,..., fr} = Ao and decompose

. fv)#0 (f eAy), :
(451) {V €z N (WN \ UdN(B)) f(V) -0 (f c AO) } :]L_JIX](N)
with
[Re fi(v)],...,[Re fi-1(v)] < dN,[Re f;(v)| > dN,
(4.52) X;(N)=dvez | fv)£0 A<i<l), i(v)=0 (+1<i<r),

lug] < N (1<k<r)

—

for 1 < j < 1. Let A ="(f)sep with f regarded as column vectors. We rewrite the series in terms of
u= Av. Let

|u1—|—Ref1|,...,\uj,1+Refj.,1|§dN,|uj+Refj|>dN,
(4.53) Vi(N)=queZ |+ fi#0 Q<i<l),wi+fi=0 (+1<i<r),

leach entry of A~lu| < N

for 1 < j <1 InYj(N) for a fixed (u1,...,uj—1,uj41,...,u,) with sufficiently large N € N, we see that
u; runs over all integers such that dN — Re fj < uj < Hj and —H; <wu < —dN — Re fj for some
H;E = H;E(ul, e Ui, Ujg, - -, Up) > 0, where HJjE are determined by the intersection point of the half
line {(u1,...,uj—1,2,%js1,...,ur) | £ > 0} and the boundaries OWyx = ;< {AV | |x| < N (k #
l),vy = £N} of Wy. If there is no intersection point, then we put Hji =0 acc_o;dingly. See Figure 1 for
these sets and parameters.

From the proof of Lemma 4.7 we evaluate

L eenv/=T(y+w.fP)u; ) ‘

(4.54) ‘ > G(%V)K* > ‘ > (H

vex; (V) W2 J(B)) iy wevyvy imt (wit fi)®
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FIGURE 1

Further for each j and w, we have

‘ Z (H o2/ =1y +w,fP)u; )\

uey;(N) i=1 (ui + fi)"

w€L, u+fi#0  (1<i<l)

|u1+Refl\<dN (1<i<j—1)
dN— Ref]<uJ<HJr
—Hj <uj<—dN-Re f;

:‘ Z <ﬁ o2V =Ly +w,fP)u; ) Z

. =1 (u; + fz) . i
w€Z, uitfi#0  (1<i<lizj) j2; dN—Re fj<u;<H] or
uitRe fi|<dN - (1<i<j-1) —H; <uj<—dN-Re f;

oLy +w,fB)u;
< > I—-) y ==

s + fil* . w; 4 fi)ki
u; €Z, ui+f; 70 (1§z§l 175]) 7‘7&} | Us fl| dN*R,efj<U,j<Hf or ( 7 + f])

lui+Re fil <dN (1<i<j—1) —Hj <uj<—dN-Re f;
luitRe fi|<eN  (j+1<i<l)

1 (w4 fi)ki

(uj + f5)b

~

where in the last member, we added the extra conditions |u; + Re f2| < ¢N for j+1 <4 <, which comes
from Lemma 4.9. If k; = 1, then by Lemma 4.4, and if k; > 2, then directly we obtain

‘ Z o2V Ly +w [P )u;
dN—Refj<uj<H;r (U/] + f]) ’
—H; <uj<—dN-Re f;
1 7B 1 7B 1
< JENTEH( =y +w, 7)) 4 {ly +w f7)) ) (F;
T\ KN < KN (k
= Qj( >Y7W)

(4.56)

vV
[N
~
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for some K > 0. Hence

QWF y+w,f l 1
> (H T )(_Q] Y W) ) <HW>
ueY;(N) =1 v wiEZ, url-fﬁéo (1<i<l,i]) 2#; i i
(4.57) lui+Re fi|<dN  (1<i<j—1)

lui+Re fi|<eN  (j+1<i<l)
< K'Q;(N,y,w)(logdN)~!(log cN)' ™7
< K"Q;j(N,y,w)(log N)"
for some K', K" > 0. Substituting (4.57) into (4.54), we complete the proof. O

The third step. Lastly we consider the general case. First we prove several preparatory lemmas.

Lemma 4.11. Fiz a decomposition A = BoU Lo with By € . Lety € V and f € By. If f ¢ K, then there
exists g € Lo such that (g, fBO) #0. If fe A andy ¢ Hp,\(sy +Z", then there exists c € R\ Z such that

(4.58) (y— > zd, f7) =c
g€Lo
for all x = (24) ger, € R*0.

Proof. The first assertion directly follows from the definition. Assume that f € A. Then (d, f_B0> =0 for all
g € Ly and we have

(459) <y - Z xgga f_BO> = <y) fB()))
g€Lo

which is a constant function in x. By Lemma 4.6, we find (y, f—BO) ¢ Z. This implies the second assertion. [

For y € V', a decomposition A = By U Lo with By € #Z and f € By, let

(4.60) H(f,y) = {x = (2))gero € B9 | (y = > wy f7) € 2},
g€Lo

Lemma 4.12. Lety € V, f € By, and assume that'y ¢ sy + 2" if f € A. Then the set H(f,y) is
empty, or a collection of equally spaced parallel hyperplanes.

Proof. Let U = (§)g4er, be an r x Lo matrix and x = (24)gecr, be a column vector. Consider the equation
(461) = 3 2, ) = n
g€Lo

for n € Z, which is equivalent to
(4.62) (Ux, f%) = (y, %) —n.

Assume that f ¢ A. Then there exists g € Lo such that (7, f5°) # 0. We see that (4.62) has a solution
X = Xg — na with

’_Bo —’7_30 h: 1 —*’_Bo h:
(4.63) (x0) = (y, 70 /4G, F7°) (h=9) (a), = (g, ) (h=g)
0 (h # g)

and so the equation (4.62) is rewritten as
(4.64) (U(x — xq + na), f7°) = 0.

The condition (7, f50) # 0 also implies that dimker % = #Lg—1 for the linear functional % (v) = (Uv, f50),
and

(4.65) H(f,y) = (ker% + x¢) + Za

is a collection of equally spaced parallel hyperplanes.
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Assume that f € A. Then by Lemma 4.11,
(4.66) (y = Y 2,4, f%) eR\ Z,

g€Lo
and hence H(f,y) = 0. O

Lemma 4.13. Fiz a decomposition A = By U Ly with By € #. Assume D C By. For a fized y €
VAUscrnpn\(ry +2Z7), the measure of

(4.67) M(y) = {(xg)geLo S ( y— 2 wde |J@aan+ Z’")}
g€Lg febD
18 zero.
Proof. By Lemma 4.6, we have M(y) = U;cp Uyez- H(f,y + w). Further by (2.3) we have
(4.68) U Oy +727) = U (DBo\(y +Z7),
feAnD feAnD

so from the assumption y € V' \ Ufeij(ﬁA\{f} + Z") we see that y +w ¢ Ufeme(ﬁBo\{f} + 7Z") for any
w € Z". Therefore we can apply Lemma 4.12 to find that for each f € D and w € Z" the measure of
H(f,y +w) is zero. O

Lemma 4.14. Let n € N and P,Q € Ng with P > Q. Let ai; € R for 1 <k < P and 0 < i <n such that
for each k =1,..., P there exists i > 1 such that ag; # 0. If u > P, then

Q n . P n .
(4.69) /01 day - - - /01 dz,, (kljl(l —{ako + ;akixi})wl) < H {aro + ;akiﬂcz‘}wl> < o0.

k=Q+1
Proof. For 1 < k < P put

(4.70) Li(x) = ap;.
=1

Since [0, 1]™ is compact, by considering a neighborhood of each point x¢ in [0, 1]" and shifting the point xg
to the origin, we see that it is sufficient to show that

E __1 d __1
(4.71) 1= [ dweda,(TT0 - (LuGo) 7) (] {206} 77)
[—ee” k=1 k=q+1
is finite for a sufficiently small € > 0, where 0 < ¢ < @ and g < p < P. This is estimated as
P
(4.72) Jg/ d:gl.-.dxn<H\Lk(x)|—ﬁ).
[—ee]” k=1
For this integral, we decompose the region
P
(4.73) [—e.d" = Us,
k=1
where
(4.74) Up ={x € [—€€" | |Lp(x)| < |Lm(x)| for any m # k}.
We show that the integral on each Uy is finite. Since on Uy
(4.75) L ()] < | Ly(x)| 7
for any m # k, we have
d _1 __p_
(4.76) (TT 1Em ol ) < a0l 7757,
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Fix i such that ay; # 0. Then by changing variables as y; = Ly(x) and y; = z; for j # i, we obtain

(4.77)

for some r > 0. By the assumption g > P, the right-hand side is finite because

P P >
p+1 P+1

(4.78)

Lemma 4.15. For k € No, m € Z and b € C,

-1 (m+b=0,k=0),
=i 0 (m+b+#0,k=0)
27'(' o/ —1Im ) ’
1
b# 0,k #0).
g (mEbA0E£0)
Proof. By definition (4.1), for 0 < z < 1, we have
1 (t—2wﬁ(m+b))m
(4.80) L Ok, a3 b)e2mvTTme — tF Lt

k! 277\/7 It]=e et—2mv/=1b _

for sufficiently small € > 0. By integrating the both sides in the region 0 < x < 1, we obtain

1 ! 1 t
4.81 — | Ck,z:b)e2V-Imegy — R4z,
(4.81) k!/o (h,;b)e "7 9/ e t — 20/ —1(m + b)
Since
; 1 (’I?’L +b= 0)7
(4.82) t—2my/—1 b) Z (m+b+#0)
—2my—1(m +0) C (2ry/—1 (m+b)) :

we obtain the assertion.
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Proof of Proposition 4.1. Applying Lemma 4.15 with m = (g, v) and b = ¢ (for g € Ly) to (4.4), for N > 0
we have

T — v 1
Z1(N; K, y; A; By) = (— 1) 2. Ve ] F)kr
VvEZ"NUn(Bo) feA+nBo

f(v)#0  (feA4+nDBo)
f(v)=0 (feAonBo)

< (- ﬁ(AoﬂLo) QWV / Clhy, 2y §)e 2™V T <gv>xgdx)

g€Llo
— H ( QWF / / H Clkg, g3 4 dacg>
(4.83) 9€Lo geLo
X (—1)F(Ron o) > VI ey xgg,">< 11 : )

ky
vEZ"NUn (Bo) FeANBo fv)

f(v)#0  (feA+nBo)
F(v)=0 (feAonBo)

:ggo< 27rf’“9/ / Hokg,xg, )da, )

x Zy(N;k(Bo),y — Y mgg,Bo,Bo)
g€Lo

where k(BQ) = (kf)fEBO'
We want to take the limit N — co. First we claim that it is possible to exchange the limit and the
integrals. By Lemma 4.8 with . = §By = r, we have

(IT Ctpag) > &0 Zmni (] )

g€Lg VEZTHUN(Bo) f€A+ﬂBO

f(v)#0  (feA4NBo)
f(v)=0 (f€AonBo)

K Y I G+Q—{y+w= 2d P07 +{ly +w— > 2,9, fP)} 77)

weZr /(By) fFeANBo g€Lo g€Lg

K > I %

WEZT/<§O) feA1NBy

(4.84)

IN

say. When f € A, then under the condition y ¢ UfeKmAmBg (HBo\gsy +Z7), we see that X is just a

constant because of the second assertion of Lemma 4.11. When f ¢ /N\, by the first assertion of Lemma
4.11 we see that Xy fulfills the assumption of Lemma 4.14, and hence by the lemma it is integrable since
r > #(A1 N By). Therefore our claim follows form Lebesgue’s dominated convergence theorem. Note that
AN A NBy= AN Ay because of (2.3).

Therefore from (4.83) we now obtain

lim Z;(N;k,y; A; BO)

N—oo
277\/
gGL
x lim Z1(N:k(By),y Z ,7; Bo; Bo)-
g€Lo

By Lemma 4.13 with D = Ay N By the measure of M (y) is 0, and if (x4)4er, ¢ M(y), then by Lemma 4.7
with B = By we see that Z1(N;k(Bo),y — >_ e, 299 Bo; Bo) converges as N — oco. That is, the integrand
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on the right-hand side of (4.85) converges almost everywhere, and (4.31) of Lemma 4.7 implies
Si(k,y; As Bo) = lim Z1(N; K, y; A; Bo)

—H( 27rf’“9/ / [1 Clkg, 9z

g€Lo
1 271'\/7 . .
= ks, W — T o.f
(4.86) " |27 /{Bo)] weg:/(Bo) fle!o< v ggL:o o7bons f))
_ ! _@mvEDY Clh 2 )
s L w} A IT Cttrors; )ty
T (€t = 3 ot )
feBo g€Lo

The right-hand side of this equation coincides with that of (4.2). Therefore, to complete the proof of the
proposition, the only remaining task is to show that Si(k,y;A; Bg) = S(k,y; A).

The sum Z(N;k,y;A) has the expression which is almost the same as (4.83), only the condition v €
Z" N Un(DBy) is replaced by v € Z" N Wy. Therefore, by using Lemmas 4.9 and 4.10, we see that the
difference Z(N;k,y;A) — Z1(dN; k,y; A; Bp) is evaluated as

(4.87)
|Z(N;k,y; A) — Z1(dN; k, y; A; Bo)|

— ‘(—1)11(/\0030) H < 27“/7 kg / / H Clkg,zg; dxg)

g€Llo g€Lg
2V =1y =3 e TgGoV) 1 ’
R DR ()
veZ"N(Wn\Uqgn (Bo)) feEALNBy

f(v)#0  (feAynDBo)
f(v)=0 (feAonBo)

. 01'” /01 e > O | | f(vl)kfﬂ

gE€Lg VGZTIAI(WN\UC[N(B())) feALNBy
F(v)#0  (feA+NBo)
F(v)=0 (f€AonBo)

<K'N™ r+1 (log N)" / / Hdmg

g€Llo

1+ X Y (A-Ay+w= 3 g PN 7+ {y+w— > g, [P} 7))

weZr /(Bo) feANBo g€Lo 9€Lo
for some K, K’ > 0. Again by Lemmas 4.11 and 4.14, we obtain
(4.88) |Z(N;k,y; A) — Z1(dN; k,y; A; By)| < K”Nﬁﬁ (log N)"
for some K” > 0. Hence we have
(4.89) S(k,y;A) = lim Z(N:k,y;A) = lim Z(N;k,y; A; Bo) = Si(k, y; A; Bo).
([l

We have shown the convergence of S(k,y;A) in Proposition 4.1. Therefore to complete the proof of
Theorem 2.2, we have only to show the continuity of S(k,y;A) iny on V'\ UfeKmAl Oy +27).
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Let yo € V\ Ujeira, Oavgyy +2Z7), and let G(y, (z4)) be the integrand of (4.2). Since G(y, (zy)) is
bounded, we have

(4.90) Jim [ Gy () [] doy = [ tim 6. (o) ] doo.
g€Llo g€l

Thus it is sufficient to show that

(4.91) lim G(y, (z4)) = G(yo, (zg4))

y—yo

almost everywhere in (z4). By Lemmas 4.2 and 4.4, we see that C(k, {y};b) is continuous in y on R if k£ # 1,
and on R\ Z if kK = 1. Hence if (z,) satisfies

(4.92) (Yot+w— > w44, [™) ¢ 2
g€Lo

for all f € Ay N By, then (4.91) holds. Therefore it is sufficient to show that (z4) satisfies (4.92) almost
everywhere. Since yg+w € V'\ Ufef\m\l(ﬁ/\\{f} + Z"), we see that the measure of M (yo + w) is zero by
Lemma 4.13 with D = A1 N By.

The proof of Theorem 2.2 is thus complete.

5. THE STRUCTURE OF THE PROOF OF THEOREM 2.4 AND THEOREM 2.5

Now we start the proof of Theorem 2.4 and Theorem 2.5. We first prove the assertion (i) of Theorem 2.4.
Let

(5.1) 97 = Or+7).
ReZ#

Lemma 5.1. The set $H4 is a locally finite collection of hyperplanes, that is, for any 'y € V there exists a
neighborhood U of y such that U intersects only finitely many hyperplanes.

Proof. Let ng be a normal vector of Hz. We may assume that np € Z", because ¢i,...,G,_1 € Z". Then
the hyperplane
(5.2) Hr+v={y+v|(y,ng) =0}
with v € Z" can be rewritten as
(5.3) {y | {y,ng) = (v,ngr) =0} ={y | (y —mer,ng) = 0},
where m = (v,ng) € Z and eg = ngr/(ng,ng). Therefore
(5.4) AR+ Vv =9Hr + meg,
and so
(5.5) 92 C | (9r + Zer).
Rex
Hence the assertion follows from this expression and §# < oco. O

Lemma 5.2.
(5.6) c_lggr{y +cotpr =1{y}Bys
foryeV.

Proof. By Lemma 5.1, for any y € V', we see that y + c¢ & $H and so (y + co, f_B) ¢ 7 for all sufficiently
small ¢ > 0. Therefore, if (y, f_B> ¢ 7, then

(5.7) Jim {y +co}py = lim {(y +co, %)} = {{y, ")} = {y}Bs
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by (2.6). If (y, fB) € Z, then

(5.8) Cl_1>I(1]a+{y + C¢}B,f

B Jm {{y + cg, B} = Jim {c(o, Ay =0={ 1"} (¢, fB) > 0),
Vi 1 (o0 ) =t L (el0, ) = 1= 1 {5 7)) (0 7) <O)
Hence we have the assertion. ]

By this lemma we immediately obtain

(5.9) lim Pty +cgih) = Flt,yi A).

This shows the assertion (i) of Theorem 2.4.
Next, observe that the right-hand side of (4.2) can be defined for any y € V' (though (4.2) itself is valid

only under the assumption of Proposition 4.1). Therefore, we can define C'(k,y;A) for any y € V as the

k!

(H —W) multiple of the right-hand side of (4.2), and we introduce the generating function of
T —

feA

5(k, y; A) of the form
ty
(5.10) F(t,y;A)= > Cky:A)[] ol
kENﬁA AN

where t = (t)fea € CH#\. A more explicit form of the generating function can be deduced by substituting
the formula of Proposition 4.1 into (5.10). In fact,

Lemma 5.3. For any 'y € V, the series on the right-hand side of (5.10) is absolutely and uniformly
convergent in the neighborhood of the origin with respect to t € CH. Furthermore we have

Flt.v: A) — ty 1 .
F<t’y’A)_<£[Ae><p<tf—2wmf>—1><r/< Z / /Hdg

(5.11) wezr/{ geto
X exp( Z (tg —2mvV—=1G)xy + Z (tr — 27r\/71f){y +w— Z :Ugg'}BO’f).
g€Lo fEBy g€Lo

Proof. The following proof is similar to that of [7, Lemma 7]. By (4.80) we see that, for b € C, there exists
a sufficiently small Ry > 0 such that

(5.12) C(k,y;0) 1 Lelz—2my/=Iby g,
‘ k! N 27’(’\/7 |2|=Rs ez 2m/—1b _ 1zk+1

holds for y € R. Thus we have for 0 <y <1

(5.13) ’C(’“yb)‘ < 1/ zelz—2mV/ 1)y ) |dz|
k! — 27 |2|=Ry 62*27‘(‘\/77[]_ Réﬂ—i—l — Ré;’
where
ze (z 27y/—1b)y
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Fix r such that 0 < r < minfeAR-. Then for |t;| <r (f € A),

‘ Ck,y; A H kf ’ W Z H |tf|kf / / ) kgvxgvg)dxg)

WEZT/< feA

y H (C(kf7{y+w—deLoxgg}Bo,f;f))‘

(5.15) feBo g8
K
I cy(gf) f
Since
k Ce
(5.16) kg;Ang<]%> " = fI;[A<1—?”J;Rf> < oo,

we have the uniform and absolute convergence of F (t,y; A), which implies the holomorphy of F (t,y;A) in
the neighborhood of the origin with respect to t € C#,
Furthermore by exchanging the sum and the integral and using (4.1) we obtain

_ 1 tg exp((ty — 2mv/—1§)z,)
ey = S B wezrz / / q " EL cnltyon 1) 1)
5.17
(5.17) e exp((ty — 2V TPy + W — X yer wgﬁ}Bo,f>)
feBo exp(ty —2mV/=1f) — 1 |
which yields (5.11). =

Lemma 5.4. F(t,y; ) is continuous in'y on V\Ufefx('ﬁl\\{f} +Z") and has one-sided continuity iny € V
in the direction ¢.

Proof. The proof is almost the same as that of the continuity of S(k,y;A) in (4.90). Let G(y, (x4)) be the
integrand of the last expression of (5.11). In this case, the continuity comes from (4.92) for all f € By.
Hence the first assertion follows from Lemma 4.13 with D = By. The second assertion immediately follows
from Lemma 5.2.

0

We have obtained the assertions, corresponding to (i), (ii) and (iii) of Theorem 2.4, for F(t,y;A). In the
following sections, we will prove

(5.18) F(t,y;A) = F(t,y; A)

for y € V\ $5. Then F(t,y;A) = F(t,y;A) on the whole V by the one-sided continuity of F(t,y;A) and
F(t,y;A) which we have already shown. Thus automatically the assertions (ii) and (iii) of Theorem 2.4 will

follow.
Also, comparing (2.9) with (5.10), we find that

(5.19) C(k,y;A) = C(k,y; A).
By the definition of 6’(k, y;A) and Proposition 4.1, we have
- k¢!
Clk,y;A) = ———S(k,y; A
Geysd) = (I - oo ) Stewsd)

fea
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fory e V'\ Ufej\m\l(f)/\\{f} + Z"). Combining this with (5.19), we obtain the assertion of Theorem 2.5.
Therefore the only remaining task is to show (5.18) for y € V'\ H4.

6. THE GENERATING FUNCTION AND CONVEX POLYTOPES

The aim of the following three sections is to prove (5.18), which will be shown in Section 8. The present
and the next sections are devoted to the preparations for the proof of (5.18), which are connected with the
theory of convex polytopes.

First, we summarize some definitions and facts about convex polytopes (see [6, 7, 13]). For a subset
X c RY, we denote by Conv(X) the convex hull of X. A subset P C RY is called a convex polytope if
P = Conv(X) for some finite subset X C R". Let P be a d-dimensional polytope. Let H be a hyperplane in
RY. Then H divides R into two half-spaces. If P is entirely contained in one of the two closed half-spaces
and PNH # (), then H is called a supporting hyperplane of P. For a supporting hyperplane H and a subset
F =PNH+#D, the subset F is called a face of the polytope P and H a supporting hyperplane associated
with F. If the dimension of a face F is j, then we call it a j-face F. A 0-face is called a vertex, a 1-face an
edge and a (d — 1)-face a facet. For convenience, we regard P itself as its unique d-face. Let Vert(P) be the
set, of all vertices of P. Then

(6.1) F = Conv(Vert(P) N F),

for a face F. A d-dimensional simple polytope is a polytope whose vertices are adjacent to exactly d edges.

For a = *(ay,...,an),b = *(b1,...,by) € RY we define a-b = ayb; + --- + ayby. The definition
of polytopes above is that of “V-polytopes”. We mainly deal with another representation of polytopes,
“H-polytopes” instead, that is, a bounded subset of the form

(6.2) P=(H cRY,
el
where #1 < 0o and H; = {x € RY | a; - x > h;} with a; € RY and h; € R. It is known (Weyl-Minkowski)

that H-polytopes are V-polytopes and vice versa.
We have an expression of k-faces in terms of hyperplanes H; = {x € R" | a; - x = h;}.

Proposition 6.1 ([7, Proposition 2.7]). Let J C I. Assume that F =P N ﬂjeJ H; # 0. Then F is a face.

Proposition 6.2 ([7, Proposition 2.8]). Let H be a supporting hyperplane and F = PNH is a k-face. Then
there exists a set of indices J C I such that §J = (dimP) — k and F =P N(;c; H;-

Lemma 6.3 ([6, Lemma 6.5]). Let P be a simple polytope and {po,...,px} be the vertices of P. Let
(6.3) Er={j | Conv({pk,p;}) is an edge}.
Then we have
K
(6.4) / 2 Xdx = Z | det(pr — Pj)jcE,|

ea'pk

jeE, &- (P — Pj)'

Now we present a fundamental proposition, which gives an expression of F (t,y; A) involving integrals
over certain convex polytopes. This proposition is a generalization of [7, Theorem 7].
Proposition 6.4.
~ t 1
Ft,y;n) = (]] L ) —
ox explty — 2my/=1f) — 1/ 42/ (By))

(6.5) < 3 exp( Xty — 20/ Ty +m, )

mezZ" fE€By

X /P(m;y) exp(Z t2x9> H dxg,

g€Lo g€Lo
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where

(6.6) ty = (tg —2mV/=19) = Y (ty — 2nV/=1f)(g, ™)
f€Bo

and

0<z,<1 (g€ Lo

67)  Pomy) = (x= oot | (y+m—F /™) < 3 2,(d /%) < (y+m, /™) (/€ Bo)
g€Lo

s a convex polytope or an empty set.

Proof. We fix a representative of each w € Z"/(By) in Z". Let m = (mf)teB, € Z", and denote by Q(w, m)
the set of all x = (24)ger, satisfying the conditions 0 <z, <1 (g € Lo) and

(6.8) —mys < <y +w — Z xg§’7 fBO> < -—mys+ 1.
g€Lo
This condition is equivalent to

(6.9) <y+w+ > mph— ﬁf?0> <D wglg, f50) < <y+w+ > myh, f?0>,

heBy gELQ heBy

because <ZheBo muh, f_B0> = my. Also we have

{<y+w— nggg”f_730>}:<y+w— ngg’,fB°>+mf

(6.10) g€k oho " y
= (y+w+ Dk, [7) = 37wy (g 7).
heBy g€Lo

Denote the multiple integral on the right-hand side of (5.11) by I(w), and divide it as

1w =2, /Q(w,m) '

mezZr

Applying (6.10), we obtain
I(w) = 3 exp( Y (ty = 2mV/ =Ly + w+ Y mah, 7))

meZzZr f€Bo heBy
(6.11)
></ exp(Z t;xg> H dxg.
Qw,m) g€Lo g€Lo

Note that w + > ;g mph runs over Z", when w € Z"/(By) and m € Z" run. Therefore, rewriting

W+ e B, Mrh as m, we obtain the assertion of the proposition. ]

Remark 6.5. For readers’ convenience, we give typical pictures of P(m;y) in the casesy € 5 and y ¢ H,
which will be treated below in Lemmas 7.1, 7.2, 7.3 and 7.4.

Let V=R2? (r =2). Let e; = <é> , €3 = (2) and

(6.12) A={f1=(e1,m), f2 = (e2,2),g = (aey + bey, og), h = (ce1 + dez, o)} = By U Lo,
(6.13) By ={(e1, 1), (e2,2)},

(6.14) Lo = {(ae1 + bez, ay), (cer + dez, o)},

(6.15) N7 = (Rey +Z*) U (Rey + Z%) U (R(ae; + beg) + Z%) U (R(ce; + dey) + Z2),
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where a, b, ¢, d are positive integers, which corresponds to the series

S A e2mV=1(niy1+nay2)
( ) ( 24 ) RIZ;Q (m + al)kl (n2 + ag)kQ (am + bng + Oég)kg (cm + dng + ah)kh ’

where a1, a2, oy, ap € C, k1, ko, kg, kp, > 2 and nq,n2 run over all integers such that the denominator does
not vanishes. Then we have

0<zy<1,

0 < Th < 17

1 y)={x=

y2 +mo — 1 < bry + drp < yo + me

In the case a = b =c =1, d = 2, the polytope P(m;y) is drawn as in Figure 2 if y € 4 and in Figure 3
if y ¢ 9. In the former case, there are more than 2 (= §A — r) hyperplanes at some vertices while in the
latter case, there are only 2 hyperplanes at each vertex, which ensures that P(m;y) is a simple polytope in
higher dimensions.

AN N

FIGURE 2. y € H» FIGURE 3. y ¢ 9

7. PROPERTIES OF THE POLYTOPES P(m;y)

The argument developed in this and the next sections is a generalization of that in [6, Section 6].

Let o7 = {0, 1}#A~". Let 4’ be the set of all subsets of A which have r elements, and define #' = %' x o/
and # = % x /. Obviously # C #". For an element W = (B, A) € #, we number A = (ag)gen\p.- We
fix a decomposition A = By U Ly with By € £, and for f € A, a € {0,1}, m € Z" and y € V, we define
u(f,a) € R0 by

(=1)'7g, fP)  if f € By,
7. =
-y il {(—1)“ o it f ¢ By,
where g runs over Ly, and define v(f,a;m;y) € R by
ooy JEDT y rm—af fP) i f € By,
(72) U(f’ a; m?Y) - {(_1)aa - —a lf f ¢ BO

Further we define the hyperplanes

(7.3) H(f,a;m;y) = {x = (24)ger, € R | u(f,a) - x = v(f,a;m;y)},
and the half-spaces

(74) H+(fa CL; ma Y) = {X = (xg)geLo € RﬁLO | U(f, a’) X Z U(fa a; m; Y)}a
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where for w = (w,),x = (z,) € C*0 we have set
(7.5) WX = Z Wyy.
g9€Lo
Then we have
(7.6) Pmyy)= () H'(f,a;m;y).

feA
ac{0,1}

Lemma 7.1. All vertices of P(m;y) are of the form
(7.7) () H(f.apmy),
ferl’
where L' C A with §L' = §Lo = A —r and (af)fers € .
Proof. By Proposition 6.2, we see that any vertex of P(m;y) is obtained as the intersection of (§Lg) hyper-

planes. Since for f € A, two hyperplanes H(f,a; m;y) (a = 0,1) are parallel and hence their intersection is
empty, we see that a vertex must be of the form (7.7). O

Since L/ = $A — r, we have B = A\ L' € #’. Therefore Lemma 7.1 implies that any vertex of P(m;y)
determines an element (B, A) € #’. The next lemma is a kind of converse assertion.

Lemma 7.2. Let (B,A) € #' and L' = A\ B. The set
(7.8) () H(g, ag;m;y)
gel’
consists of only one point, which we denote by p(m;y; W), if and only if W = (B, A) € #'.

Proof. Let B ={f1,...,fr} € & and ay € {0,1} for f € L' = A\ B. Consider the intersection of (§A — )
hyperplanes (7.8). Then this set consists of the solutions of the system of the (§Lg) linear equations

(7.9) Yger, @old [P = (y +m—asf. f%)  for f € By\ B,
Ty =ay fOI‘fELo\B.
The system of the linear equations (7.9) has a unique solution if and only if
~ B\B
(7.10) det((, 7)) pog # 0,

and hence if and only if B € 4, since
- B\B S B\B
aet (@ TPD1eps (@ 7)1y
(G, fPN e (G )

(PRS- )|
0

(7.11) Ey(BnBo)
- B\ B
= |det((g, F7))|ch ),
where E), is the p X p identity matrix. O
Lemma 7.3. Let W = (B, A) € #'. The point p(m;y; W) is a vertex of P(m;y) if and only if
(7.12) pm;y;W)e () H'(f,a;m;y).
feB
ac{0,1}

Proof. By (7.6), we see that P(m;y) is defined by (§A) pairs of inequalities. By Proposition 6.1, the point
p(m;y; W) is a vertex of P(m;y) if and only if all of these inequalities hold. We see that (§Lg) pairs among
them are automatically satisfied, because

(7.13) {p(m;y; W)} = (| Hg,agmiy)C (] H'(g.am;y).
gEA\B geA\B
ac{0,1}
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Therefore p(m;y; W) is a vertex of P(m;y) if and only if the remaining r pairs of inequalities are satisfied,
which implies (7.12). O

Lemma 7.4. Ify € V\ 9% and P(m;y) is not empty, then P(m;y) is a simple polytope.

Proof. By Lemmas 7.1 and 7.2, it is sufficient to check the following claim: If for W = (B, A) € #', the point
p(m;y; W) lies on some other hyperplanes of the form (7.3) than the defining hyperplanes {H(g, ag; m;y)}gen\ B
then'y € $%. Because this claim implies that if y € V'\ 4, we can uniquely determine the (§Lg) hyperplanes
on which the point p(m;y; W) lies, and hence it implies the simplicity of the polytope P(m;y).

Since

(7.14) pm;y; W) ¢ ) Hlg,1—agm;y)
geA\B

always holds, it is sufficient to check that

(7.15) pm;y;W)e | H(f,a;m;y)

feB
ac{0,1}

implies y € $H2.
First we show the claim when

(7.16) p(m;y; W) € H(h, ap; m;y)
holds for some h € BN By and a;, € {0,1}. For x = p(m;y; W), condition (7.16) is equivalent to
(7.17) > w5 = (v +m = ah, 57).

g€Lo

Let p =#(By \ B) = (B \ Bp). Divide the left-hand side of (the first formula of) (7.9) and (7.17) into two
parts according to the conditions g € B\ By and g € Lo \ B (with noting Ly = (B \ Bo) U (Lo \ B)). Then
we obtain an overdetermined system with the p variables x4, for g € B\ By and the (p + 1) equations

(7.18) > (@, ) = (y + m—ay f, f) + ¢
geB\Bo
for f € (Bp \ B) U{h}, where
(7.19) cr=— Y agg ).
9€Lo\B

Hence we have

(7.20) ((xg)geB\Bo _1) M(y) = (O 0) )
where (74)4ep\B, i a row vector and M(y) is a (p + 1) X (p + 1) matrix defined by
- B gEB\BO
(7.21) M) _< (@ 7)o )
((y +m—ayf, f7°) + cf) reBo\B)U{R}

As the consistency for these equations, we get det M (y) = 0. We may rewrite

(7.22) (y+m—asf, fP) +¢; = <y—|—m— Z agg',f_BO>,
ge(A\B)U{h}

because

E , agg — E , ag§+aff = E , agg
g€(A\B)U{h} g€Lo\B gG(Bo\#Bf)U{h}
g

and (7, fBo) = 0 for all § on the right-hand side.
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Since the row vectors ((g, f_BO>)f€(BO\B)U{h} for ¢ € B\ By are linearly independent, det M(y) = 0
implies that the last row vector is written as a linear combination of the other row vectors. That is, for
f € (Bo\ B)U{h} we have

(7.23) (yem— > g )= Y el ™),
ge(A\B)U{h} g€B\ By
with some ¢4 € R, and so

(7.24) <Y+m_ Z agg — Z QanfBO>:0-

g€(A\B)U{h} g€B\By

Vectors which are orthogonal to all f50 (f € (By\B)U{h}) are spanned by § (g € (BNBoy)\{h}). Therefore,
since m — >\ gyugn} 99 € Z", we have

(7.25) ye Y RG+Z'+ > Rj= > RG+Z CHa,
g€B\Bo gE€(BNBo)\{h} g€B\{h}

which implies the desired claim.
Next we consider the condition p(m;y; W) € H(h,ap;m;y) for some h € B\ By and a;, € {0,1}. Then
similarly as above, we see that y lies in £ because

780\ 19€B\(BoU{h))
(7.26) det( (9. f 0>ng§0\30 ) 0,
((y +m —ayf, f7°) +dy) repo\B

where
(7.27) dp=— Y agld. f).
g€(Lo\B)u{h}
This completes the proof of the lemma. O

Remark 7.5. We draw the picture of a vertex of P(m;y) in the same setting as in Figure 3. For example, for
W = (B,A) € # with B={fs,h} € B and A= (as,,aq9) = (1,0) (A\ B = {f1,9}), the associated vertex is
p(m;y; W) = p(m;y; ({f2, h}, (1,0))), which is uniquely determined by the hyperplanes H(f1, 1;m;y) and
H(g,0;m;y). See Figure 4.

Th

H(g,0;m;y)

p(m;y; ({f2, R}, (1,0)))

[

H(f1,1;m;y) Plm;y)
H(f2, 1;m3y)
H(h,0;m;y)

FIGURE 4. vertices and hyperplanes
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Lemma 7.6. Lety € V\ Hy and W € #'. Then we have

(7.28) D (ty —2mV/=1f)(y + m, f%) + t* - p(m;y; W)

feBo

= Y g2V gy + Yty -2V =1f)(y +m = Y a5 fF),

geA\B feB geA\B
where t* = (t7)4eL, with t,, defined by (6.6).

Proof. By (7.8), the point p(m;y; W) = (z4)4cr, satisfies

(7.29) {ZgELo z4(7, F0) = (y + m — as f, f50) for f € By \ B,

Tf=ay fOl“fELO\B.

By Lemma 7.2, the system of these equations has a unique solution.
In the case f € By \ B, we have

ST wn(h, ) =y +m—arf, ) — Y ag(g, f50)

heB\ By g€Lo\B

= <y—|—m— Z agg’,fB0>.

geA\B

(7.30)

On the other hand, in the case f € By N B we have

(7.31) fP=fP— N~ hB(h, ).

heB\ By

In fact, since

(7.32) z = Z hP(h,z)

heB

holds for any z € V, we have

(7.33) o= 3 RBP4 Y RBGL P =P Y BB ).

heBNBy heB\Bo heB\Bo

Here we note that for h € B\ By,

(7.34) T = <y+m— Z agd, EB>

geA\B

holds. Because, using (7.32), for f € By \ B we obtain

> <y+m— > agﬁ,ﬁB>(ﬁ,Jmo>=Z<y+m— > ag§753><57f?°>

heB\B A\B heB A\B
(7.35) €B\Bo geEA\ € gEA\ Ny
:<y+m— Z aqg, f °>.
geA\B

Comparing (7.30) with (7.35), we obtain (7.34) due to the uniqueness of the solution.
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Noting Lo = (Lo \ B) U (B \ Byp), we have

(7.36) > (ty —2mV/=1f){y + m, f%) +t* - p(m;y; W)

f€Bo

= Y (tr =21y +m, ) + 3 ((tg = 20v/=19) = Y (¢ — 20/ =1)(G. 1) )

f€Bo g€Lo feBo
= Z (tg — 27T\/jl§)£g + Z (tr — QWﬁf) <<y +m, fBO> - Z z4(7, f_BO>>
g€Lo f€Bo g€Lo
— Z (tg — 27n/j§)a§ + Z (tn, — QW\/jlil)xh
g€Lo\B heB\ By
+ > -2V (am P = Y g S - Y k)
f€BoNB g€Lo\B heB\By
+ Z (tf_QTr\/jlf.)(<Y+m7f_Bo>_ Z ag<§>f80>_ Z xh<}_i>fB0>>'
f€Bo\B g€Lo\B h€B\By

By the first equality of (7.30), the last term on the last member of (7.36) is equal to

(737) S (- 2mV=Ih (v +m ) = Y ag@ SR - Y anlh )

feBo\B gELo\B heB\ By
= > -2V i ) = Y (b - 2nV =1 )y
feBo\B feB\B

On the other hand, for f € By N B, we have

(7.38) (y+m, f™) = > ag(@ f™) — > anlh f™)

g€Lo\B heB\Bo
:<y+m_ Z aggaf_B0>_ Z <y+m_ Z agg"}_iB><}_i7f_‘B0>
g€Lo\B heB\Bo geEA\B
=(y+m— > ag [P Y R )
geA\B hEB\BO
= <Y+m_ Z aggvf_B>7
geA\B
by (7.34) and (7.31). Therefore we finally obtain (7.28). O
Lemma 7.7. Lety € V\$H4 and W € #. Then the point p(m;y; W) is a vertex of P(m;y) if and only if
(7.39) 0< <y+ m-— > ag, f?> <1

geA\B
for all f € B.

Proof. By Lemma 7.3, the point p(m;y; W) = (z4)4er, is indeed a vertex if and only if
(y +m— f, fB0) <3 xg(d, FP0) < (y +m, fP0), for f € BN By,
0<az;<1, for f € B\ By.
For f € BN By, applying (7.29) (the second equality) and (7.34), we have

> agl@ )y = > (@ )+ > anlh, )

g€eLg geLo\B heB\ By

= (3 ad )+ (yrm— Y g Y BRI,

geA\B geA\B heB\Boy

(7.40)

(7.41)
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Therefore, noting (7.31), we see that the first pair of inequalities of (7.40) is
(yem—F= Y ag /™)< (y+m— 3 aif®-7")<(y+m- > ag.f™).
gEA\B geA\B geA\B
which is equivalent to
(7.42) 0<(y+m- Y ag/f) <1
geA\B

For f € B\ By, noting (7.34) we see that the second pair of inequalities of (7.40) is again of the same form
as (7.42). Therefore the desired assertion follows. O

Fix W = (B,A) € #. Let U be the (§Lo) x (§Lo) matrix whose f-th column consists of u(f,ays) for
f € A\ B and U(h,v) be the matrix U with only the h-th column replaced by v. Then we have the following
two lemmas.

Lemma 7.8.

(7.43) |det U| = M.
4(Z" /(Bo))

Proof. By rearranging rows and columns we see that

|det U] = |det(u(f, a7)y)%k8 5|
€B\B €B\B
— |get ulj,ar ?EEE\BE (u(f’af)g)?efg\]é)
Ve 0\ f af)g)?ELg\\B

(7.44)

(u(/f,
(( )g
(u(f,ar)g) feBo\B (u(
(( )
(g,

by (7.11). Further

(7.45) det((7, [70))J<5, | = [det(@)em det(7%) e, | =

Lemma 7.9. For f € A\ B, we have

(7.46) W = (-1)¥ ((tf —omV/=1f) = (tg — 2Wﬁ§)<ﬁ§3>>.
geB
Proof. We show that x = () yep\ g defined by
(7.47) v = (<1 ((ty = 20v/=Th) = Y (1, — 20/ =T5)(F.5%))
geB

is a unique solution of the linear equation
(7.48) Ux =t".

Then the statement follows from Cramer’s rule.
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Now we show that (7.47) satisfies (7.48). First observe
Uxn = > (=10 (B, ) (~1) (1 — 20V =1f) = Y (1 — 20V =19)(.57))

f€Bo\B geB
+ >0 (a1 ((t — 201 = ot — 27V =19) (1157
(7'49) f€Lo\B geB
== 3 R —2mV 1) = St — 20T )
f€Bo\B geB
+ 3 5hf((th —2my/=1h) = Y (ty — 2/~ 14) (R, gB>).
f€Lo\B geB

Assume h € B\ By. Then 6,5 =0 for all f € Lo\ B, and hence
Uxn=— Y (B FP)((tr = 2nV/=1f) = (2, = 20v/=19)(F.57))

(7 50) f€Bo\B geB
=— Y ()t —2mV=1f) Y D (g - 2mV=19) (B, V(L 5.
feBo\B feBo\BgeB

From (7.32) we have
2= Y fa e Y P,

f€Bo\B feEBoNB

and hence

(7.51) (hz)= > (b ) foz)+ Y (b fP)f.2)
feBo\B feBoNB

Putting z = 3 (ty — 2mv/—1§)g” in (7.51), we obtain
>ty —2mV/=19)(h, PN 57)

(7 52) fEBo\B geB
= (tg—20V=19)0ng — > Y _(tg — 2V =1)(h, FP)F, G5).
geB feBoNB geB
Substituting this into the right-hand side of (7.50), we obtain
(7.53)
Ux)h ==Y (b, )ty —2mV/=1f) + (tn — 20vV=Th) — D > (tg —2mv/=1§)(h, f)(f. 5"
feBo\B fE€EBoNB geB
= (th —2nvV=1h) = > (b, ) (ts — 2nv/=1f) = Y (ty = 2nV/=1f)(h, f™) = t;.
fEB()\B feBoNB

Assume h € Ly \ B. Then again using (7.52), we have
Ux)n =~ D (b )ty =20V =1f) + Y Y (g — 20/~ 19) (b ) F157)

fEB()\B fEBo\B geB
+ (tn — 20/ —1h) = (ty — 20V~ 19) (R, §7)
(7.54) <
' =— > (Nt —2ev=1f) = YD D (g — 20V =19) (R, FPNFL 57)
feBo\B feBoNB geB

+ (th — QW\/jlil)

—

)
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8. COMPLETION OF THE PROOF OF THEOREM 2.4 AND THEOREM 2.5

In this section we prove (5.18) to complete the proof of Theorems 2.4 and 2.5. First we show an elementary
lemma. ‘

Let n € N and let {ey,...,e,} be a standard basis of R". Let M = (mm)}%éﬁl be an n x n matrix. For
1<j<n,and veR" let M(j,v) be the matrix M with only the j-th column replaced by v. Let

mii ... Mij—1 €1 Mijt1 ... Mig "
(8.1)  u(j) = det M(j, (ei)1<icn) =det | = .. : : : [ =) byeiery,
Mpl oo Mpj—1 €5 Mpjfl ... Mpp i=1

where b;; is the cofactor of (i, j)-entry of M. The following lemma (properties of cofactor matrices) is shown
by elementary linear algebra, and we omit the proof.
Lemma 8.1. (1) For v € R", we have
(8.2) u(y)-v=det M(j,v).

(2) Let U = (u(j))1<j<n be the n x n matriz whose j-th column consists of u(j). Then

(8.3) det U = (det M)" L.

Now we start the proof of (5.18), that is F(t,y;A) = F(t,y;A) fory € V \ H%.

Since all the polytopes P(m;y) for y € V' \ % are empty or simple by Lemma 7.4, we may apply Lemma
6.3 to the right-hand side of Proposition 6.4. In the present case the vertices are of the form p(m;y; W),
satisfying (7.39) by Lemma 7.7. Therefore we have

[ ty 1
F(t,y;A) = _ _
(t,y;A) (flg\ eXp(tf_2W\/j1f)—1)ﬁ(Zr/<BO>) n%%%:
(8-4) X exp (f%;o(tf — 27/ =1f)(y +m, %) + t* - p(m;y; W))

| det (p(m;y; W) — P y: W)y g )|
X J
[Twrepma t* - (Pm;y; W) — p(m;y; W)
where E(m; W) is the set of all indices W’ such that Conv({p(m;y; W), p(m;y; W’)}) is an edge of P(m;Yy),
and for each m = (my,...,m,) € Z", W = (B, A) € # runs over those satisfying

(8.5) 0< <y—|—m— Z aqd, f_B> <1.

geA\B

Recall that a vertex p(m;y; W) satisfies (fA — r) equations of the form

(8.6) u(f,ayz) - p(m;y; W) = v(f,ap;m;y)

for f € A\ B with W = (B, A) (see (7.13)). For W = (B, A") € E(m; W), we see that the two distinct
vertices p(m;y; W) and p(m;y; W’) share common (fA —r — 1) hyperplanes, that is, there exists h € A\ B
such that A\ (BU{h}) C A\ B' and ay = @) for f € A\ (BU{h}), which implies

®7) u(f,ar) pm;y; W) = o(f,ap;m;y),

u(f,az) p(m;y; W) =v(f,ap;m;y)

for fe A\ (BU{h}) and

(8.8) u(h, ap) - p(m;y; W) = v(h, ap; m;y),
‘ u(h,ap) - p(m;y; W) > v(h, ap; myy).

This h is unique because otherwise we have p(m;y; W) = p(m;y; W’). Since {E(m; W) = §(A\B) = A —r
(because P(m;y) is simple), we find that there is a one-to-one corresponding between E(m; W) and A\ B.
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By (8.7), we see that the set of the equations and the inequality with respect to v

(8.9) {u<fv a) v=0  (fEA\(BU{L}).
u(h, ah) -v<0

has a solution v = p(m;y; W) — p(m;y; W’').

We construct another vector e(m; W, W) satisfying (8.9) so that
(8.10) p(m;y; W) — p(msy; W) = c(m; y; W, We(m; W, W),
where ¢(m;y; W, W’) > 0. Then it follows that

| det(p(m;y; W) — p(m;y; W)wre Bmw)|
[Twepm t* - (Pm;y; W) — p(m;y; W)
_ ‘HW’eE(m;W) (W, W'im;y)|| det(e(m; W, W) w e pimw)|
HW’GE(m;W) c(m;y; W, W)t* - e(m; W, W)
_ | det(e(ma W7 W/))W’EE(m;W)|
[Twepmw) t* - e(m; W, W)

The construction of e(m; W, W) is as follows. Let e, for g € Ly be the standard orthonormal basis of
RfLo. Let U be the ($A — ) x (#A — 7) matrix whose f-th column consists of u(f,ay) for f € A\ B with
W = (B,A). For h € A\ B, let U(h,v) be the matrix U with only the h-th column replaced by v. Note
that det U # 0 by Lemma 7.8. Define
(8.12) e(m; W, W') = —(sgndet U) det U (h, (€g)4er,) = —(sgndet U) Z bgheq

g€Lo
(the second equality is due to (8.1)), where W' = (B, A’) such that A\ (BU{h}) C A\ B’ and by, is the
cofactor of (g h)—entry of U. Then by Lemma 8.1(1), we have
(m W'y -u u(f,ar) = (sgndetU)detU( (f,af)) 0,
e(m W, W) u(h,a;) = —(sgndet U) det U (h,u(h,ap)) = —(sgndet U)det U = —|det U| < 0
for f € A\ (BU{h}) as required.

We observed that h runs over A\ B when W’ runs over E(m;W). Therefore by Lemma 8.1(2) we see
that (8.12) implies | det(e(m; W, W)y c pmw)| = | det U|pA-——1,

Also, from (8.12) we have

t* - e(m; W, W') = —(sgndet U) Z bgnt, = —(sgndet U) det U (h,t").

(8.11)

813 o

g€Lo
Therefore
| det(e(m; W, W)y pmw)| _ (—1)ﬁA—T(sgndet U)ﬁA_T | det U[#A—"—1
(8.14) [Tw ey t* - e(m; W, W7) [Tren\pdet U(h, t)
1 (det U)#A—T

= () -
| det U[ [Tjep 5 det U(h, t¥)

Substituting this into the right-hand side of (8.4) and using Lemmas 7.6, 7.8 and 7.9, we have

Fey:n) = ()" (] i ) > > @

feAeXp(tf—Qm/— f ) =17 i

(8.15) X exp< D (tg —2mvV=1§)ag + > (tf - 27r\/—71f)<y +m— > a,q, f?>)
geA\B feB geA\B
(-pen

< 1] . .
heA\B (tn — 2mV/—~1h) — deB( 277\/79)( g5)
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We rewrite the double sum on the first line of the above so as to exchange the order of the sums with
respect to W € # and m € Z". For each W € #', we see that

(8.16) m-— Y agg
geA\B

runs over Z" when m runs over Z". Thus (8.5) can be rewritten in terms of v € Z", that is, v runs over
those satisfying

(8.17) 0<(y+v,fB)<1

for all f € B. If there exist f € B and v € Z" such that ¢ = (y + V,fB> € Z, then we can write
Y +V =2 crcd+cf, where R = B\ {f} € #Z and ¢; € R. Therefore we have y + v — cf € g, hence
y € 4, which contradicts with the assumption. Thus condition (8.17) can be replaced by

(8.18) 0<({y+v,fP) <1

Let G={veZ |0< (y+v,fB) <1forall f e B}. Weshow that the natural projection g : G — Z" /(B)
is bijective. If g(v) = g(v') for v,v' € G, then v = v/ + x for some x € (B). Since (x, fB) = (y +v, fB) —
(y + V',fB>, we have —1 < (x ,f_B> < 1 for all f € B, which implies x = 0. Conversely, for any v € Z",
putting x =3 pcyG € (B) with cg = —|{y +v,3P)] € Z, we have

(y+v+x f2) =y +v.fB) —c; = {{y + v, fP)}

and so 0 < (y + v +x, fB ) < 1 because y ¢ $5. This implies the assertion. Hence replacing (y + v, fB ) by
{{y + v, fB)}, we see that v runs over all representatives of Z" /(B).

Therefore by exchanging the order of the sums with respect to W = (B, A) € # = # x & and m € 7",
and summing with respect to v, we have

(8.19)

F(t,y; A) = (—1)F7 I e
(t,y; A) = (=1) <J[€1_[Aexp(tf_2m/?1f)_1)er:Wﬁ(Z’”MBW

x Y exp( 3 (tg—27r\/jlg'])ag+Z(tf—QW\/jlf)ﬂerv,f_B)})

vezr /(B) geMB feB

< 10 I
heA\B (tn — 2mV/—=1h) — deB( 27ng)<h B)
= (11 i ) S S (T v espl(tn — 2nv~Thyar))

fen exp(ty — 2my/— 1f) =1/ (o i heA\B
1
- X tr— 2V {(ly +v, /P
) #(Zr /(B)) vezzr/:@e P(}é( ! ey >})

< H !
neamp (th = 2my/=Th) — > genlly —2m/~19)(h, §B)

Since
(8.20) (—1)% exp((ty — 27v/—Th)ay) = {1— exp(tn — 2mv/—1h) i Zz i (1):
we have

ST IT 0™ esp((tn —2nv=Th)an)) = [ (1 - exp(tn — 20v/=1h))
(8.21) Aeo/ heN\B heA\B

= (=D T (exp(ty — 2nv/=1h) — 1).

heA\B
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Therefore the rightmost side of (8.19) is finally equal to

(H by . ) Z ( H (exp(tp, — 27T\/jlil) — 1))

rea exp(ty = 2mv=1f) =17 g2 N i

1 .
X ——s— ex tr —2mv—1 v, FB
(8.22) T B ve%@ p(g s =2V =IH{ly + v, /P)})

< II : !
heA\B (th — 2mv/=1h) — deB( 27"\/79)<h §B>

and coincides with (2.7) for y € V'\ $%. This completes the proof of (5.18), and hence the proof of Theorems
2.4 and 2.5.

9. A HIERARCHY AND DIFFERENTIAL EQUATIONS

We conclude this paper with a theorem which asserts that the family of our generating functions has a
hierarchy. Let

(9.1) A, ={A C (Z"\{0}) x C | A < oo, rank(A) = r}.
For v = (v1,...,v,) € V, let
(9.2) Oy = 10y, + -+ + 0,0y,

where d,, is the j-th partial differential operator acting ony = (y;)1<j<r € V. For g = (g,9) € (Z7\{0}) x
define

ty — 2w/ —1§ 1
(9.3) D=2V 5
tg tg
Theorem 9.1. Let A, A € A, with A" C A, and t = (tg)gen, t' = (tg)gen. We have
(9.4) ( 11 Dg)F(t,y;A) =F(t',y; A'),
geEA\N/

where on the left-hand side Dy is understood to act at' y € V \ $p) and the resulting function, to be
continuously extended by the one-sided limit along ¢.

Proof. Tt is sufficient to show the assertion in the case A\ A’ = {g} and y € V' \ $5(»). For B € #(A) and
w € Z" /(B), we put

tyexp((ty = 20/~ L){y + w}p)
(9.5) Fpw(t,y; A) (helA_I\BKth )(flgg exp(ty — 2my/~1f) — 1 >’

where for h € A,

tp — 277\/?1}.1 - ZfeB(tf - 2W\/j1f)<ﬁa f_B>

(9.6) K(t,h) = - ,
so that
1
(9.7) Fle.yid)= > ———— > Fpulty:d).
peam HE B Lo

By simple computations we obtain
(9.8) DyFpw(t,y;A) = K(t,9)Fpw(t,y; A).
If g € A\ B, then the factor K(t,g) cancels with the factor K(t,g)~! appearing on the right-hand side of
(9.5), and so the variable t, disappears. Thus we have
(9.9) DyFpw(t,y;A) = Fpw(t',y; A\ {g}).
In this case B € B(N).
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If g € B, then
(9.10) >ty 20V IPG ) =ty — 20/
feB
and hence K(t,g) = 0 and
(9.11) DyFpw(t,y;A) =0.
Thus the sum runs over all B(A’) and
(9.12) DyF(t,y; A) = F(t,y; A\ {g})-
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