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Abstract

We study analytic properties of multiple zeta-functions of generalized Hurwitz-Lerch type.

First, as a special type of them, we consider multiple zeta-functions of generalized Euler-

Zagier-Lerch type and investigate their analytic properties which were already announced in

our previous paper. Next we give ‘desingularization’ of multiple zeta-functions of generalized

Hurwitz-Lerch type, which include those of generalized Euler-Zagier-Lerch type, the Mordell-

Tornheim type, and so on. As a result, the desingularized multiple zeta-function turns out to

be an entire function and can be expressed as a finite sum of ordinary multiple zeta-functions

of the same type. As applications, we explicitly compute special values of desingularized

double zeta-functions of Euler-Zagier type. We also extend our previous results concerning

a relationship between p-adic multiple L-functions and p-adic multiple star polylogarithms to

more general indices with arbitrary (not necessarily all positive) integers.

Contents

§ 0. Introduction

Received April 10, 2014. Revised October 23, 2015.
2000 Mathematics Subject Classification(s): 11M32, 11S40, 11G55
Key Words: multiple zeta-function, multiple polylogarithm, desingularization, p-adic multiple L-
function, p-adic multiple polylogarithm
Research of the authors is supported by Grants-in-Aid for Science Research
(no. 24684001 for HF, no. 25400026 for YK, no. 25287002 for KM, no. 15K04788 for HT,
respectively), JSPS.

∗Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
e-mail: furusho@math.nagoya-u.ac.jp

∗∗Department of Mathematics, Rikkyo University, Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501,
Japan.
e-mail: komori@rikkyo.ac.jp

∗∗∗Graduate School of Mathematics, Nagoya University, Chikusa-ku, Nagoya 464-8602, Japan.
e-mail: kohjimat@math.nagoya-u.ac.jp

†Department of Mathematics and Information Sciences, Tokyo Metropolitan University, 1-1,
Minami-Ohsawa, Hachioji, Tokyo 192-0397, Japan.
e-mail: tsumura@tmu.ac.jp

c⃝ 201x Research Institute for Mathematical Sciences, Kyoto University. All rights reserved.



2 Furusho, Komori, Matsumoto and Tsumura
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§ 0. Introduction

In the present paper we continue our study developed in our previous papers [6, 7],

with supplying some proofs of results in [6] which were stated with no proof. In [6], we

studied multiple zeta-functions of generalized Euler-Zagier-Lerch type (see below) and

considered their analytic properties. Based on those considerations, we introduced the

method of desingularization of multiple zeta-functions, which is to resolve all singular-

ities of them. By this method we constructed the desingularized multiple zeta-function

which is entire and can be expressed as a finite sum of ordinary multiple zeta-functions.

The first main purpose of the present paper is to extend our theory of desingular-

ization to the following more general situation.

Let ξk, γjk, βj (1 ⩽ j ⩽ d, 1 ⩽ k ⩽ r) be complex parameters with |ξk| ⩽ 1, real

parts ℜγjk ⩾ 0, ℜβj > 0, and let sj (1 ⩽ j ⩽ d) be complex variables. We assume

that for each k (1 ⩽ k ⩽ r), at least one of ℜγjk > 0. We define the multiple

zeta-functions of generalized Hurwitz-Lerch type by

ζr((sj); (ξk); (γjk); (βj))(0.1)

=
∞∑

m1=0

· · ·
∞∑

mr=0

ξm1
1 · · · ξmr

r

(β1 + γ11m1 + · · ·+ γ1rmr)s1 · · · (βd + γd1m1 + · · ·+ γdrmr)sd

=

∞∑
m1=0

· · ·
∞∑

mr=0

∏r
k=1 ξ

mk

k∏d
j=1(βj +

∑r
k=1 γjkmk)sj

.

Obviously this is convergent absolutely when ℜsj > r for 1 ⩽ j ⩽ d, and it is known

that this can be continued meromorphically to the whole space Cd (see [12]).

In the present paper we will construct desingularized multiple zeta-functions, which

will be expressed as a finite sum of ζr((sj); (ξk); (γjk); (βj)).

The multiple zeta-function of generalized Euler-Zagier-Lerch type defined

by

ζr((sj); (ξj); (γj)) =
∞∑

m1=1

· · ·
∞∑

mr=1

r∏
j=1

ξ
mj

j (m1γ1 + · · ·+mjγj)
−sj(0.2)
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for parameters ξj , γj ∈ C (1 ⩽ j ⩽ r) with |ξj | = 1 and ℜγj > 0, is a special case of

(0.1). In fact, putting d = r, γjk = γk (j ⩾ k), γjk = 0 (j < k), and βj = γ1 + · · ·+ γj ,

(0.1) reduces to (0.2). This (0.2) was the main actor of the previous paper [6].

When ξj = γj = 1 for all j, (0.2) is the famous Euler-Zagier multiple sum (Hoffman

[10], Zagier [20]):

ζr(s1, . . . , sr) =

∞∑
m1=1

· · ·
∞∑

mr=1

r∏
j=1

(m1 + · · ·+mj)
−sj .(0.3)

Singularities of (0.3) have been determined explicitly (see Akiyama, Egami and Tani-

gawa [1]).

On the other hand, when r = 1 and γ1 = 1, then the above series coincides with

the Lerch zeta-function

ϕ(s1, ξ1) =

∞∑
m1=1

ξm1
1 m−s1

1 .(0.4)

It is known that ϕ(s1, ξ1) is entire if ξ1 ̸= 1, while if ξ1 = 1 then ϕ(s1, 1) is nothing but

the Riemann zeta-function ζ(s1) and has a simple pole at s1 = 1.

The plan of the present paper is as follows.

In Section 1 we prove that ζr((sj); (ξj); (γj)) can be continued meromorphically

to the whole space Cr, and its singularities can be explicitly given (Theorems 1.1 and

1.4). This result was announced in [6, Section 2] without proof. The assertion of the

meromorphic continuation is, as mentioned above, already given in [12]. However in

Section 1 we give an alternative argument, based on Mellin-Barnes integrals, which is

probably more suitable to obtain explicit information on singularities.

In Section 2, we give desingularization of the multiple zeta-functions of generalized

Hurwitz-Lerch type (see (0.1)), which include those of generalized Euler-Zagier-Lerch

type, the Mordell-Tornheim type, and so on. In fact, we will show that these desingular-

ized multiple zeta-functions are entire (see Theorem 2.2), which was already announced

in [6, Remark 4.5]. Actually this includes our previous result shown in [6, Theorem 3.4].

We further show that these desingularized multiple zeta-functions can be expressed as

finite sums of ordinary multiple zeta-functions (see Theorem 2.7).

In Section 3, we give some examples of desingularization of various multiple zeta-

functions. The main technique is a certain generalization of ours used in the proof of [6,

Theorem 3.8]. In particular, we give desingularization of multiple zeta-functions of root

systems introduced by the second, the third and the fourth authors (see, for example,

[13]).

In Section 4, we study special values of desingularized double zeta-functions of

Euler-Zagier type. More generally, we give some functional relations for desingular-

ized double zeta-functions and ordinary double zeta-functions of Euler-Zagier type (see
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Propositions 4.3, 4.5 and 4.7). By marvelous cancellations among singularities of ordi-

nary double zeta-functions, we can explicitly compute special values of desingularized

double zeta-functions of Euler-Zagier type at any integer points (see Examples 4.4, 4.6,

4.8 and Proposition 4.9).

An important aspect of [7] is the construction of the theory of p-adic multiple L-

functions. The second main purpose of the present paper is to give a certain extension

of our result on special values of p-adic multiple L-functions.

In [14], the second, the third and the fourth authors introduced p-adic double L-

functions, as the double analogue of the classical Kubota-Leopoldt p-adic L-functions.

In [7], we generalized the argument in [14] to define p-adic multiple L-functions. On the

other hand, the first author [4] [5] developed the theory of p-adic multiple polylogarithms

under a very different motivation. A remarkable discovery in [7] is that there is a

connection between these two multiple notions. In fact, we proved that the values of

p-adic multiple L-functions at positive integer points can be described in terms of p-adic

multiple star polylogarithms ([7, Theorem 3.41]).

In Section 5 of the present paper, we extend this result to obtain the description

of the values of p-adic multiple L-functions at arbitrary (not necessarily all positive)

integer points in terms of p-adic multiple star polylogarithms (Theorem 5.8).

§ 1. The meromorphic continuation and the location of singularities

The purpose of this section is to prove the following result which was announced

in [6, Theorem 2.3].

Theorem 1.1. The function ζr((sj); (ξj); (γj)) can be continued meromorphi-

cally to the whole space Cr. Moreover,

(i) If ξj ̸= 1 for all j (1 ⩽ j ⩽ r), then ζr((sj); (ξj); (γj)) is entire.

(ii) If ξj ̸= 1 for all j (1 ⩽ j ⩽ r − 1) and ξr = 1, then ζr((sj); (ξj); (γj)) has a

unique simple singular hyperplane sr = 1.

(iii) If ξj = 1 for some j (1 ⩽ j ⩽ r − 1), then ζr((sj); (ξj); (γj)) has infinitely

many simple singular hyperplanes.

Actually the location of the singular hyperplanes will be more explicitly described

in Theorem 1.4.

Remark 1. The multiple polylogarithm is defined by

Lin1,...,nr (z1, . . . , zr) =
∑

0<k1<···<kr

zk1
1 · · · zkr

r

kn1
1 · · · knr

r
(1.1)

=
∞∑

m1=1

· · ·
∞∑

mr=1

r∏
j=1

(zj · · · zr)mj (m1 + · · ·+mj)
−nj ,
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where (nj) ∈ Nr and (zj) ∈ Cr with |zj | = 1 (1 ⩽ j ⩽ r) (see Goncharov [9]). Inspired

by this definition, we generally define

(1.2) Lis1,...,sr (z1, . . . , zr) = ζr((sj); (
r∏

ν=j

zν); (1))

for (sj) ∈ Cr and (zj) ∈ Cr with |zj | = 1 (1 ⩽ j ⩽ r) (see (0.2)). In fact, it follows

from Theorem 1.1 that the right-hand side of (1.2) can be meromorphically continued

to (sj) ∈ Cr. Moreover, when
∏r

ν=j zν ̸= 1 for all j, the right-hand side is entire. In

particular, setting ξj =
∏r

ν=j zν (1 ⩽ j ⩽ r) and ξr+1 = 1, we obtain

(1.3) ζr((nj); (ξj); (1)) = Lin1,...,nr

(
ξ1
ξ2

,
ξ2
ξ3

, . . . ,
ξr

ξr+1

)
for all (nj) ∈ Zr when ξj ̸= 1 (1 ⩽ j ⩽ r). In Section 5, we will show a p-adic version

of (1.3) (see Theorem 5.8 and Remark 7).

Now we start the proof of Theorem 1.1. Let C(j, r) be the number of h (j ⩽ h ⩽ r)

for which ξh = 1 holds. We first prove the following lemma.

Lemma 1.2. The function ζr((sj); (ξj); (γj)) can be continued meromorphically

to the whole space Cr, and its possible singularities can be listed as follows, where ℓ ∈
N0 := N ∪ {0}.

• If ξj = 1, then sj + sj+1 + · · ·+ sr = C(j, r)− ℓ (1 ⩽ j ⩽ r − 1),

• If ξr = 1, then sr = 1,

• If ξj ̸= 1 for all j (1 ⩽ j ⩽ r), then ζr((sj); (ξj); (γj)) is entire.

Proof. We prove the theorem by induction on r. In the case r = 1, our zeta-

function is essentially the Lerch zeta-function (0.4), so the assertion of the lemma is

classical.

Now let r ⩾ 2, and assume that the assertion of the lemma is true for r − 1. The

proof is based on the Mellin-Barnes integral formula

(1 + λ)−s =
1

2πi

∫
(c)

Γ(s+ z)Γ(−z)

Γ(s)
λzdz,(1.4)

where s, λ ∈ C, ℜs > 0, | arg λ| < π, λ ̸= 0, −ℜs < c < 0 and the path of integration is

the vertical line ℜz = c. This formula has been frequently used to show the meromorphic

continuation of various multiple zeta-functions (e.g. [15], [16], [17]). In particular,

the following argument is quite similar to that in [17]. In what follows, ε denotes an

arbitrarily small positive number, not necessarily the same at each occurrence.
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First of all, using [15, Theorem 3], we see that series (0.2) is absolutely convergent

in the region

{(s1, . . . , sr) | σr−j+1 + · · ·+ σr > j (1 ⩽ j ⩽ r)},(1.5)

where σj = ℜsj (1 ⩽ j ⩽ r). At first we assume that (s1, . . . , sr) is in this region.

Divide

(m1γ1 + · · ·+mrγr)
−sr

= (m1γ1 + · · ·+mr−1γr−1)
−sr

(
1 +

mrγr
m1γ1 + · · ·+mr−1γr−1

)−sr

,

and apply (1.4) to the second factor on the right-hand side with λ = mrγr/(m1γ1 +

· · ·+mr−1γr−1) to obtain

ζr((sj); (ξj); (γj))

(1.6)

=
1

2πi

∫
(c)

Γ(sr + z)Γ(−z)

Γ(sr)

∞∑
m1=1

· · ·
∞∑

mr=1

ξm1
1

(m1γ1)s1
× · · · ×

ξ
mr−1

r−1

(m1γ1 + · · ·+mr−1γr−1)sr−1

× ξmr
r

(m1γ1 + · · ·+mr−1γr−1)sr

(
mrγr

m1γ1 + · · ·+mr−1γr−1

)z

dz

=
1

2πi

∫
(c)

Γ(sr + z)Γ(−z)

Γ(sr)
ζr−1((s1, . . . , sr−2, sr−1 + sr + z); (ξ1, . . . , ξr−1); (γ1, . . . , γr−1))

× γz
rϕ(−z, ξr)dz,

where −σr < c < −1. (To apply (1.4) it is enough to assume c < 0, but to ensure the

convergence of the above multiple series it is necessary to assume c < −1.)

Next we shift the path of integration from ℜz = c to ℜz = M − ε, where M is a

large positive integer, and ε is a small positive number. This is possible because, by

virtue of Stirling’s formula, we see that the integrand is of rapid decay when ℑz → ∞.

Relevant poles are z = 0, 1, 2, . . . (coming from Γ(−z)) and z = −1 if ξr = 1 (coming

from ϕ(−z, ξr)). Counting the residues of those poles, we obtain

ζr((sj); (ξj); (γj))(1.7)

= δ(r)
γ−1
r

sr − 1
ζr−1((s1, . . . , sr−2, sr−1 + sr − 1); (ξ1, . . . , ξr−1); (γ1, . . . , γr−1))

+

M−1∑
k=0

(
−sr
k

)
ζr−1((s1, . . . , sr−2, sr−1 + sr + k); (ξ1, . . . , ξr−1); (γ1, . . . , γr−1))

× γk
rϕ(−k, ξr)
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+
1

2πi

∫
(M−ε)

Γ(sr + z)Γ(−z)

Γ(sr)

× ζr−1((s1, . . . , sr−2, sr−1 + sr + z); (ξ1, . . . , ξr−1); (γ1, . . . , γr−1))

× γz
rϕ(−z, ξr)dz

= X +

M−1∑
k=0

Y (k) + Z,

say, where

(1.8) δ(r) =

1 (ξr = 1),

0 (ξr ̸= 1).

From (1.5) we see that

ζr−1((s1, . . . , sr−2, sr−1 + sr + z); (ξ1, . . . , ξr−1); (γ1, . . . , γr−1))

is absolutely convergent if

σr−j + · · ·+ σr + ℜz > j (1 ⩽ j ⩽ r − 1),

so the integral Z is convergent (and hence holomorphic) in the region

{(s1, . . . , sr) | σr−j + · · ·+ σr > j −M + ε (0 ⩽ j ⩽ r − 1)}.(1.9)

(Here, the condition corresponding to j = 0 is necessary to assure that the factor

Γ(sr + z) in the integrand does not encounter the poles.) Therefore by (1.7) and the

assumption of induction we can continue ζr((sj); (ξj); (γj)) meromorphically to region

(1.9). SinceM is arbitrary, we can now conclude that ζr((sj); (ξj); (γj)) can be continued

meromorphically to the whole space Cr.

Next we examine the possible singularities on the right-hand side of (1.7). By the

assumption of induction, we see that the possible singularities of Y (k) are

sj + · · ·+ sr−2 + sr−1 + sr + k = C(j, r − 1)− ℓ if ξj = 1 (1 ⩽ j ⩽ r − 2)(1.10)

and

sr−1 + sr + k = 1 if ξr−1 = 1.(1.11)

If ξj ̸= 1 for all j (1 ⩽ j ⩽ r− 1), then Y (k) is entire. The term X appears only in case

ξr = 1, and in this case, sr = 1 is a possible singularity. Moreover, by the assumption

of induction we find the following possible singularities of X:

sj + · · ·+ sr−2 + sr−1 + sr − 1 = C(j, r − 1)− ℓ if ξj = 1 (1 ⩽ j ⩽ r − 2, j = r)

(1.12)
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and

sr−1 + sr − 1 = 1 if ξr−1 = 1 and ξr = 1.(1.13)

If ξj ̸= 1 for all j (1 ⩽ j ⩽ r− 1), then X is entire. Since k also runs over N0, renaming

k + ℓ in (1.10) and k in (1.11) as ℓ, we find that the above list of possible singularities

can be rewritten as follows (where ℓ ∈ N0).

• sj + · · · + sr = (C(j, r − 1) + 1) − ℓ and sr = 1 if ξj = 1 (1 ⩽ j ⩽ r − 2) and

ξr = 1,

• sr−1 + sr = 2− ℓ and sr = 1 if ξr−1 = 1 and ξr = 1 (given by (1.11) and (1.13)),

• sj + · · ·+ sr = C(j, r − 1)− ℓ if ξj = 1 (1 ⩽ j ⩽ r − 2) and ξr ̸= 1,

• sr−1 + sr = 1− ℓ if ξr−1 = 1 and ξr ̸= 1.

Since C(j, r) = C(j, r − 1) + 1 when ξr = 1 and C(j, r) = C(j, r − 1) when ξr ̸= 1,

the factors C(j, r − 1) + 1 and C(j, r − 1) in the above list are all equal to C(j, r).

This completes the proof of the lemma, because we also notice that C(r − 1, r) = 2 if

ξr−1 = ξr = 1 and C(r − 1, r) = 1 if ξr−1 = 1 and ξr ̸= 1.

Next we discuss whether the possible singularities listed in Lemma 1.2 are indeed

singularities, or not. For this purpose, we first prepare the following

Lemma 1.3. Let ξ ∈ C with |ξ| = 1. If ξ ̸= ±1, then ϕ(−k, ξ) ̸= 0 for all

k ∈ N0. If ξ = ±1, then ϕ(−k, ξ) ̸= 0 for all odd k ∈ N and k = 0, and ϕ(−k, ξ) = 0

for all even k ∈ N.

Proof. If ξ = ±1, then we have

ϕ(−k, 1) = ζ(−k),

ϕ(−k,−1) = (21+k − 1)ζ(−k),

which reduces to the well-known cases. In the following we assume that ξ ̸= ±1. Put

ξ = e2πiθ with 0 < θ < 1 and θ ̸= 1/2. It is known that

(1.14)
1

1− ξet
=

∞∑
k=0

ϕ(−k, ξ)
tk

k!

(cf. [6, Section 1]). If k = 0, then we have

ϕ(0, ξ) =
1

1− ξ
̸= 0.

Assume k ⩾ 1. For any sufficiently small ε > 0, we have

ϕ(−k, ξ)

k!
=

1

2πi

∫
|t|=ε

t−k−1dt

1− ξet

=
1

2πi

∫
|t|=ε

t−k−1dt

1− et+2πiθ
= −

∑
n∈Z

1

(2πi(n− θ))k+1
,
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where the last equality follows by counting residues at the poles t = 2πi(n−θ). Therefore

it is sufficient to show that

(1.15)
∑
n∈Z

1

(n− θ)k+1
̸= 0.

If k is odd, then the left-hand side is clearly positive. If k is even, then

∑
n∈Z

1

(n− θ)k+1
=

∞∑
n=0

(
1

(n+ 1− θ)k+1
− 1

(n+ θ)k+1

)
̸= 0,

because for all n ⩾ 0,

1

(n+ 1− θ)k+1
− 1

(n+ θ)k+1

< 0 (0 < θ < 1/2)

> 0 (1/2 < θ < 1).

The lemma is proved.

Now our aim is to prove the following theorem, from which Theorem 1.1 immedi-

ately follows.

Theorem 1.4. Among the list of possible singularities of ζr((sj); (ξj); (γj)) given

in Lemma 1.2, the “true” singularities are listed up as follows, where ℓ ∈ N0.

(I) If ξj = 1, then sj + · · ·+ sr = C(j, r)− ℓ (1 ⩽ j ⩽ r − 2),

(II) If ξr−1 = 1 and ξr = 1, then sr−1 + sr = 2, 1,−2ℓ,

(III) If ξr−1 = 1 and ξr = −1, then sr−1 + sr = 1,−2ℓ,

(IV) If ξr−1 = 1 and ξr ̸= ±1, then sr−1 + sr = 1− ℓ,

(V) If ξr = 1, then sr = 1.

Remark 2. When ξj = γj = 1 (1 ⩽ j ⩽ r), this theorem recovers [1, Theorem 1].

Proof. The proof is by induction on r. The case r = 1 is obvious, so we assume

r ⩾ 2 and the theorem is true for r − 1.

First we put sr−1+sr = u, and regard (1.7) as a formula in variables s1, . . . , sr−2, u, sr.

This idea of “changing variables” is originally due to Akiyama, Egami and Tanigawa

[1]. We have

X = δ(r)
γ−1
r

sr − 1
ζr−1((s1, . . . , sr−2, u− 1); (ξ1, . . . , ξr−1); (γ1, . . . , γr−1)),

Y (k) =

(
−sr
k

)
ζr−1((s1, . . . , sr−2, u+ k); (ξ1, . . . , ξr−1); (γ1, . . . , γr−1))γ

k
rϕ(−k, ξr).

Consider Y (k). The singularities (1.10) and (1.11) are coming from the ζr−1 factor.

These singularities do not be canceled by the factor
(−sr

k

)
, because the ζr−1 factor
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(after the above “changing variables”) does not include the variable sr. Also, if k′ ̸= k,

then the singularities of Y (k′) and of Y (k) do not cancel with each other, because Y (k′)

and Y (k) is of different order with respect to sr.

When ξr = 1, the term X appears. The possible singularities coming from X are

(1.12), (1.13), and sr = 1. These singularities do not cancel with each other. Also,

these singularities do not cancel the singularities coming from Y (k), which can be seen

again by observing the order with respect to sr.

Therefore now we can say:

(i) The possible singularities of Y (k) are “true” if they are “true” singularities of

ζr−1 and ϕ(−k, ξr) ̸= 0,

(ii) When ξr = 1, the hyperplane sr = 1 is a “true” singularity, while the other

possible singularities of X are “true” if they are “true” singularities of ζr−1.

Consider (i). By the assumption of induction, the “true” singularities of

ζr−1((s1, . . . , sr−2, sr−1 + sr + k); (ξ1, . . . , ξr−1); (γ1, . . . , γr−1))

are

(i-1) sj + · · ·+ sr + k = C(j, r − 1)− ℓ if ξj = 1 (1 ⩽ j ⩽ r − 3),

(i-2) sr−2 + sr−1 + sr + k = 2, 1,−2ℓ if ξr−2 = 1, ξr−1 = 1,

(i-3) sr−2 + sr−1 + sr + k = 1,−2ℓ if ξr−2 = 1, ξr−1 = −1,

(i-4) sr−2 + sr−1 + sr + k = 1− ℓ if ξr−2 = 1, ξr−1 ̸= ±1,

(i-5) sr−1 + sr + k = 1 if ξr−1 = 1.

Here, by Lemma 1.3 we see that k ∈ N0 if ξr ̸= ±1, while k is 0 or an odd positive

integer if ξr = ±1. Renaming k + ℓ in (i-1) as ℓ, we can rewrite (i-1) as

(i-1’) sj + · · ·+ sr = C(j, r − 1)− ℓ if ξj = 1 (1 ⩽ j ⩽ r − 3).

Next, the equality in (i-2) is sr−2+ sr−1+ sr = 2−k, 1−k,−2ℓ−k, and the right-hand

side exhausts all integers ⩽ 2 even in the case when k is 0 or an odd positive integer.

Therefore (i-2) can be rewritten as

(i-2’) sr−2 + sr−1 + sr = 2− ℓ if ξr−2 = 1, ξr−1 = 1.

Similarly we rewrite (i-3) and (i-4) as

(i-3’) sr−2 + sr−1 + sr = 1− ℓ if ξr−2 = 1, ξr−1 = −1,

(i-4’) sr−2 + sr−1 + sr = 1− ℓ if ξr−2 = 1, ξr−1 ̸= ±1.

These (i-1’)–(i-4’) and (i-5) give the list of “true” singularities coming from the case (i).

Next consider (ii). By the assumption of induction, the “true” singularities of

δ(r)
1

sr − 1
ζr−1((s1, . . . , sr−2, sr−1 + sr − 1); (ξ1, . . . , ξr−1); (γ1, . . . , γr−1))

are

(ii-1) sj + · · ·+ sr − 1 = C(j, r − 1)− ℓ if ξj = 1 (1 ⩽ j ⩽ r − 3), ξr = 1,

(ii-2) sr−2 + sr−1 + sr − 1 = 2, 1,−2ℓ if ξr−2 = 1, ξr−1 = 1, ξr = 1,
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(ii-3) sr−2 + sr−1 + sr − 1 = 1,−2ℓ if ξr−2 = 1, ξr−1 = −1, ξr = 1,

(ii-4) sr−2 + sr−1 + sr − 1 = 1− ℓ if ξr−2 = 1, ξr−1 ̸= ±1, ξr = 1,

(ii-5) sr−1 + sr − 1 = 1 if ξr−1 = 1, ξr = 1,

and

(ii-6) sr = 1 if ξr = 1.

The last (ii-6) is singularity (V) in the statement of Theorem 1.4.

From (i-1’), (ii-1) and the definition of C(j, r) we obtain sj + · · ·+ sr = C(j, r)− ℓ

if ξj = 1 (1 ⩽ j ⩽ r − 3). This gives singularity (I) for 1 ⩽ j ⩽ r − 3.

Consider the case j = r−2. From (i-2’) and (ii-2) we find that sr−2+sr−1+sr = 3−ℓ

are singularities if ξr−2 = 1, ξr−1 = 1, ξr = 1. From (i-3’), (i-4’), (ii-3) and (ii-4) we

find that sr−2 + sr−1 + sr = 2 − ℓ are singularities if ξr−2 = 1, ξr−1 ̸= 1, ξr = 1.

These observations and (i-2’)–(i-4’) imply that sr−2 + sr−1 + sr = C(r − 2, r) − ℓ are

singularities if ξr−2 = 1. This is singularity (I) for j = r − 2.

Finally, from (i-5) we obtain the singularities sr−1+sr = 1−ℓ if ξr−1 = 1, ξr ̸= ±1,

and sr−1 + sr = 1,−2ℓ if ξr−1 = 1, ξr = ±1. The former case gives singularity (IV).

The latter case, combined with (ii-5), gives singularities (II) and (III). This completes

the proof of the theorem.

Remark 3. In the above proof, an important fact is that there are infinitely many

k ∈ N with ϕ(−k, ξ) ̸= 0. Actually, Lemma 1.3 ensures this fact. We can give another

approach to ensure this fact. The number defined by

Hk(ξ
−1) := (1− ξ)ϕ(−k, ξ) (k ∈ N0)(1.16)

is called the kth Frobenius-Euler number studied by Frobenius in [8]. He showed that,

if ξ is the primitive cth root of unity with c > 1 and p is an odd prime number with

p ∤ c, then
Hk(ξ

−1) ≡ 1

ξ−1 − 1
(mod p)

for any k ∈ N0 with k ≡ 1 (mod p− 1). Thus there are infinitely many k ∈ N with

ϕ(−k, ξ) =
1

1− ξ
Hk(ξ

−1) ̸= 0.

Remark 4. It is desirable to generalize the results proved in this section to more

general multiple zeta-functions defined by (0.1), but it seems not easy, because the

argument based on Mellin-Barnes integrals will become more complicated (see [18]).

§ 2. Desingularization of Multiple zeta-functions

In this section, we define desingularization of multiple zeta-functions of generalized

Hurwitz-Lerch type (0.1), which includes those of generalized Euler-Zagier-Lerch type
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(0.2).

Combining the integral representation of gamma function

(2.1) Γ(s) = as
∫ ∞

0

e−axxs−1dx

for a ∈ C with ℜa > 0, and

(2.2)
1

ey − ξ
=

∞∑
n=0

ξne−(n+1)y

for |ξ| ⩽ 1 and y > 0, the multiple zeta-function of generalized Hurwitz-Lerch type

defined by (0.1) is rewritten in the integral form as

(2.3) ζr((sj); (ξk); (γjk); (βj)) =
1

Γ(s1) · · ·Γ(sd)

×
∫
[0,∞)d

e(γ11+···+γ1r−β1)x1 · · · e(γd1+···+γdr−βd)xdxs1−1
1 · · ·xsd−1

d

(ex1γ11+···+xdγd1 − ξ1) · · · (ex1γ1r+···+xdγdr − ξr)
dx1 · · · dxd

=
1∏d

j=1 Γ(sj)

∫
[0,∞)d

d∏
j=1

x
sj−1
j exp

(
(

r∑
k=1

γjk−βj)xj

)
dxj

r∏
k=1

1

exp
(∑d

j=1 γjkxj

)
− ξk

.

If ξk ̸= 1 for all k, then, as was shown in [12], it can be analytically continued to the

whole space in (sj) as an entire function via the integral representation:

(2.4) ζr((sj); (ξk); (γjk); (βj)) =
1∏d

j=1(e
2πisj − 1)Γ(sj)

×
∫
Cd

d∏
j=1

x
sj−1
j exp

(
(

r∑
k=1

γjk − βj)xj

)
dxj

r∏
k=1

1

exp
(∑d

j=1 γjkxj

)
− ξk

,

where C is the Hankel contour, that is, the path consisting of the positive real axis (top

side), a circle around the origin of radius ε (sufficiently small), and the positive real axis

(bottom side). The replacement of [0,∞)d by the contour Cd can be checked directly

(for the details, see [12], where, more generally, the cases ξj = 1 for some j are treated).

Motivated as in [6], we introduce the notion of desingularization.

Definition 2.1. Let ξk, γjk, βj ∈ C with |ξk| ⩽ 1, ℜγjk ⩾ 0, ℜβj > 0, and for

each j, at least one of ℜγjk > 0. Define the desingularized multiple zeta-function,
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which we also call the desingularization of ζr((sj); (ξk); (γjk); (βj)), by

ζdesr ((sj); (ξk); (γjk); (βj))

:= lim
c→1

1∏r
k=1(1− δ(k)c)

× 1∏d
j=1(e

2πisj − 1)Γ(sj)

∫
Cd

d∏
j=1

x
sj−1
j exp

(
(

r∑
k=1

γjk − βj)xj

)
dxj

×
r∏

k=1

(
1

exp
(∑d

j=1 γjkxj

)
− ξk

− δ(k)
c

exp
(
c
∑d

j=1 γjkxj

)
− 1

)
(2.5)

for (sj) ∈ Cr, where the limit is taken for c ∈ R and δ(k) is as in (1.8).

Remark 5. If ξk ̸= 1 for all k, then ζr((sj); (ξk); (γjk); (βj)) is already entire as

we mentioned above, so there is no need of desingularization. In fact, since in this case

δ(k) = 0 for all k, (2.5) coincides with (2.4).

For c ∈ R, y, ξ ∈ C, δ ∈ {0, 1} with δ = 1 if ξ = 1, and δ = 0 otherwise, let

Fc,δ(y, ξ) =


1

1− δc

( 1

ey − ξ
− δ

c

(ecy − 1)

)
(c ̸= 1),

1

ey − ξ
− δ

yey

(ey − 1)2
(c = 1),

and further we write Fδ(y, ξ) = F1,δ(y, ξ).

Theorem 2.2. For ξk, γjk, βj ∈ C as in Definition 2.1, we have

ζdesr ((sj); (ξk); (γjk); (βj))

=
1∏d

j=1(e
2πisj − 1)Γ(sj)

∫
Cd

d∏
j=1

x
sj−1
j exp

(
(

r∑
k=1

γjk − βj)xj

)
dxj

×
r∏

k=1

Fδ(k)

 d∑
j=1

γjkxj , ξk

 ,

(2.6)

and is analytically continued to Cr as an entire function in (sj).

Theorem 2.2 can be shown in almost the same way as in [6, Theorem 3.4]. We first

use Lemma 2.4 below in place of [6, Lemma 3.6] to find that the limit and the multiple

integrals on the right-hand side of (2.5) can be interchanged. Then we use the following

Lemma 2.3 to obtain the assertion of Theorem 2.2.
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Lemma 2.3.

F1,δ(y, ξ) = lim
c→1

Fc,δ(y, ξ).

Proof. If ξ = δ = 1, then

lim
c→1

1

1− δc

( 1

ey − ξ
− δ

c

ecy − 1

)
= lim

c→1

1

1− c

( 1

ey − 1
− c

ecy − 1

)
= −1− ey + yey

(ey − 1)2

=
1

ey − 1
− yey

(ey − 1)2
,

(2.7)

while if δ = 0 and ξ ̸= 1, the assertion is obvious.

Let N (ε) = {z ∈ C | |z| ⩽ ε} and S(θ) = {z ∈ C | | arg z| ⩽ θ}.

Lemma 2.4. Let 0 < θ < π/2. Assume |ξ| ⩽ 1. Then there exist A > 0 and

sufficiently small ε > 0 such that for all c ∈ R with sufficiently small |1− c|,

(2.8) |Fc,δ(y, ξ)| < Ae−ℜy/2

for any y ∈ N (ε) ∪ S(θ).

Proof. (1) Assume δ = 0 and ξ ̸= 1. Then there exist ε, C > 0 such that for all

y ∈ N (ε),

|Fc,δ(y, ξ)| =
∣∣∣ 1

ey − ξ

∣∣∣ < C.

Further for y ∈ S(θ) \ N (ε), we have

|Fc,δ(y, ξ)| ⩽
1

|ey| − 1
=

e−ℜy

1− e−ℜy
⩽ C ′e−ℜy.

(2) Assume δ = ξ = 1. Then this case reduces to [6, Lemma 3.6].

It is to be noted that the following continuity properties hold.

Theorem 2.5. The desingularization ζdesr ((sj); (ξk); (γjk); (βj)) is continuous in

both (sj) and (ξk). In particular, if ξk ̸= 1 for all k, then ζr((sj); (ξk); (γjk); (βj)) is

continuous in both (sj) and (ξk).

Proof. The first statement follows easily from Lemma 2.4 by using the dominated

convergence theorem. The second statement is just a special case of the first statement

in view of Remark 5.
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Next we give a generating function of special values of ζr((sj); (ξk); (γjk); (βj)) at

non-positive integers. Write the Taylor expansion of Fδ(y, ξ) with respect to y as

(2.9) Fδ(y, ξ) =
1

ey − ξ
− δ

yey

(ey − 1)2
=

∞∑
n=0

Fn
δ (ξ)

yn

n!
.

Then

(2.10) Fn
δ (ξ) =


Bn+1 (ξ = 1, δ = 1),

Hn(ξ)

1− ξ
(ξ ̸= 1, δ = 0),

where Bn+1 denotes the (n + 1)-th Bernoulli number. The first formula of (2.10) can

be shown by differentiating the definition of Bernoulli numbers

(2.11)
y

ey − 1
=

∞∑
n=0

Bn
yn

n!
,

while the second formula follows from (1.14) and (1.16).

Theorem 2.6. Let λ1, . . . , λd ∈ N0. Then we have

(2.12) ζdesr ((−λj); (ξk); (γjk); (βj)) =

d∏
j=1

(−1)λjλj !
∑

mj+νj1+···+νjr=λj

(1⩽j⩽d)

( r∏
k=1

F ν1k+···+νdk

δ(k) (ξk)
)

×
( d∏
j=1

(
∑r

k=1 γjk − βj)
mj

mj !

)( d∏
j=1

r∏
k=1

γ
νjk

jk

νjk!

)
.

Proof. Let Dj =
∑r

k=1 γjk − βj . It is sufficient to calculate the Taylor expansion

with respect to xj ’s of the integrand on the right-hand side of (2.6). Using (2.9) we

have

(2.13)
d∏

j=1

exp
(
(

r∑
k=1

γjk − βj)xj

) r∏
k=1

Fδ(k)

( d∑
j=1

γjkxj , ξk

)
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=

∞∑
m1,...,md=0

 d∏
j=1

D
mj

j

mj !
x
mj

j

 ∞∑
n1,...,nr=0

r∏
k=1

Fnk

δ(k)(ξk)

nk!

( d∑
j=1

γjkxj

)nk

=
∞∑

m1,...,md=0

 d∏
j=1

D
mj

j

mj !
x
mj

j

 ∞∑
n1,...,nr=0

r∏
k=1

Fnk

δ(k)(ξk)

nk!

×
∑

ν1k+···+νdk=nk

(
nk

ν1k, . . . , νdk

) d∏
j=1

γ
νjk

jk x
νjk

j

=
∞∑

m1,...,md=0

 d∏
j=1

D
mj

j

mj !
x
mj

j

 ∞∑
n1,...,nr=0

r∏
k=1

∑
ν1k+···+νdk=nk

Fnk

δ(k)(ξk)

ν1k! · · · νdk!

d∏
j=1

γ
νjk

jk x
νjk

j

=
∞∑

m1,...,md=0

∞∑
n1,...,nr=0

∑
ν1k+···+νdk=nk

(1⩽k⩽r)

( r∏
k=1

Fnk

δ(k)(ξk)
)( d∏

j=1

D
mj

j

mj !

)( d∏
j=1

r∏
k=1

γ
νjk

jk

νjk!

)

×
d∏

j=1

x
mj+νj1+···+νjr

j ,

which gives the formula (2.12).

Remark 6. Since Dj = 0 for all j = 1, . . . , d in the case of multiple zeta-functions

of generalized Euler-Zagier-Lerch type, only terms with mj = 0 with j = 1, . . . , d

contributes to the sum in the formula (2.12), which recovers [6, Theorem 3.7].

Lastly, we give a formula which expresses the desingularized zeta-function as a linear

combination of ordinary zeta-functions of the same type, which is a generalization of

[6, Theorem 3.8]. To this end, we prepare some notation and assume the following

condition: There exists a set of constants cmj (1 ⩽ k,m ⩽ r) such that

(2.14)
d∑

j=1

cmjγjk = δmk

for all k,m, where δmk is the Kronecker delta. Under this assumption, for indeterminates

u = (uj),v = (vj) (j = 1, . . . , d), we define the generating function

(2.15) G(u,v) =

r∏
k=1

{
1− δ(k)

(
1 +

d∑
j=1

ckj(v
−1
j − βj)

)( d∑
j=1

γjkujvj

)}
,

and also define constants αl,m as the coefficients of the expansion

(2.16) G(u,v) =
∑
l,m

αl,m

d∏
j=1

u
lj
j v

mj

j with l = (l1, . . . , ld), m = (m1, . . . ,md).
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We define the Pochhammer symbol (s)k = s(s + 1) · · · (s + k − 1) as usual. Then we

have the following theorem, which is a generalization of [6, Theorem 3.8].

Theorem 2.7. Under the assumption (2.14), we have

(2.17) ζdesr ((sj); (ξk); (γjk); (βj))

=
∑
l,m

αl,m

( d∏
j=1

(sj)lj

)
ζr((sj +mj); (ξk); (γjk); (βj)).

Proof. First note that it is sufficient to show the statement with sufficiently large

ℜsj due to the analytic continuation. Then we can write

(2.18) ζdesr ((sj); (ξk); (γjk); (βj)) = lim
c→1

Ic((sj); (ξk); (γjk); (βj))∏r
k=1(1− δ(k)c)

,

where

(2.19)

Ic((sj); (ξk); (γjk); (βj)) :=
1∏d

j=1 Γ(sj)

∫
[0,∞)d

d∏
j=1

x
sj−1
j exp

(
(

r∑
k=1

γjk − βj)xj

)
dxj

×
r∏

k=1

(
1

exp
(∑d

j=1 γjkxj

)
− ξk

− δ(k)
c

exp
(
c
∑d

j=1 γjkxj

)
− 1

)
.

We obtain

(2.20) lim
c→1

Ic((sj); (ξk); (γjk); (βj))∏r
k=1(1− δ(k)c)

= lim
c→1

1∏d
j=1 Γ(sj)

∫
[0,∞)d

d∏
j=1

x
sj−1
j exp

(
(

r∑
k=1

γjk − βj)xj

)
dxj

×
r∏

k=1

Fc,δ(k)

( d∑
j=1

γjkxj , ξk

)

=
1∏d

j=1 Γ(sj)

∫
[0,∞)d

d∏
j=1

x
sj−1
j exp

(
(

r∑
k=1

γjk − βj)xj

)
dxj

×
r∏

k=1

Fδ(k)

( d∑
j=1

γjkxj , ξk

)
.

For |ξ| ⩽ 1 and y > 0, equation (2.2) and

(2.21)
ey

(ey − 1)2
=

∞∑
n=0

(n+ 1)e−(n+1)y
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holds. Using these formulas, for any K ⊂ {1, . . . , r} we have

(2.22)

∫
[0,∞)d

d∏
j=1

x
sj−1
j exp

(
(

r∑
k=1

γjk − βj)xj

)
dxj

×
∏
k/∈K

1

exp
(∑d

j=1 γjkxj

)
− ξk

∏
k∈K

δ(k)

(∑d
j=1 γjkxj

)
exp
(∑d

j=1 γjkxj

)
(
exp
(∑d

j=1 γjkxj

)
− 1
)2

=

∫
[0,∞)d

d∏
j=1

x
sj−1
j exp

(
(

r∑
k=1

γjk − βj)xj

)
dxj

∏
k∈K

δ(k)
( d∑
j=1

γjkxj

)

×
∏
k/∈K

( ∞∑
hk=0

ξhk

k exp
(
−(hk + 1)

d∑
j=1

γjkxj

))

×
∏
k∈K

( ∞∑
hk=0

(hk + 1) exp
(
−(hk + 1)

d∑
j=1

γjkxj

))

=
∑
hk⩾0
1⩽k⩽r

(∏
k∈K

(hk + 1)
)∫

[0,∞)d

d∏
j=1

x
sj−1
j exp

(
−(

r∑
k=1

γjkhk + βj)xj

)
dxj

×
∏
k/∈K

ξhk

k

∏
k∈K

δ(k)
( d∑
j=1

γjkxj

)
.

(When K = ∅, the empty product is to be regarded as 1.) Since δ(k) = δ(k)ξhk

k , we

have

(2.23)
∏
k∈K

δ(k)
∏
k/∈K

ξhk

k =
∏
k∈K

δ(k)

r∏
k=1

ξhk

k .

Also, since we assume (2.14), we can write

(2.24)
∏
k∈K

(hk + 1) =
∏
l∈K

( d∑
j=1

clj(βj +
r∑

k=1

γjkhk − βj) + 1
)
.

Therefore, introducing constants BK,l with l = (l1, . . . , ld) ∈ Nd
0 as the coefficients of

the expansion

(2.25)
∏
k∈K

δ(k)
( d∑
j=1

γjkxj

)
=
∑
l

BK,l

d∏
j=1

x
lj
j ,

we find that (2.22) is equal to∑
l

BK,l

∑
hk⩾0
1⩽k⩽r

( ∏
m∈K

( d∑
j=1

cmj(βj +
r∑

k=1

γjkhk − βj) + 1
)) r∏

k=1

ξhk

k(2.26)
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×
∫
[0,∞)d

d∏
j=1

x
sj+lj−1
j exp

(
−(

r∑
k=1

γjkhk + βj)xj

)
dxj

=
∑
l

BK,l

∑
hk⩾0
1⩽k⩽r

( ∏
m∈K

( d∑
j=1

cmj(βj +
r∑

k=1

γjkhk) + cm0

)) r∏
k=1

ξhk

k

×
d∏

j=1

Γ(sj + lj)
1(

βj +
∑r

k=1 γjkhk

)sj+lj
,

where cm0 := 1−
∑d

j=1 cmjβj . Consider the factor

∏
m∈K

( d∑
j=1

cmj(βj +
r∑

k=1

γjkhk) + cm0

)
(=: Q, say)

on the right-hand side of (2.26). Putting

αj :=

{
βj +

∑r
k=1 γjkhk (1 ⩽ j ⩽ d),

1 (j = 0),
(2.27)

we find that

Q =
∏
m∈K

d∑
j=0

cmjαj =
∑

0⩽jm⩽d
m∈K

( ∏
m∈K

cmjm

)( ∏
m∈K

αjm

)
.

For each {jm | m ∈ K}, define

J(j) = J(j; {jm}) := |{m ∈ K | jm = j}| =
∑
m∈K

δj,jm (1 ⩽ j ⩽ d).

Then we see that ∏
m∈K

αjm =

d∏
j=1

α
J(j)
j .

Therefore we obtain

Q =
∑

0⩽jm⩽d
m∈K

( ∏
m∈K

cmjm

) d∏
j=1

(βj +

r∑
k=1

γjkhk)
J(j).(2.28)

Using (2.28) we find that (2.26) can be rewritten as

∑
l

BK,l

( d∏
j=1

Γ(sj + lj)
)
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×
∑
hk⩾0
1⩽k⩽r

( ∑
0⩽jm⩽d
m∈K

( ∏
m∈K

cmjm

) ∏r
k=1 ξ

hk

k∏d
j=1

(
βj +

∑r
k=1 γjkhk

)sj+lj−J(j)

)

=
∑
l

BK,l

( d∏
j=1

Γ(sj + lj)
) ∑

0⩽jm⩽d
m∈K

( ∏
m∈K

cmjm

)
ζr

(
(sj + lj − J(j)); (ξk); (γjk); (βj)

)
.

Therefore from (2.18) we obtain

(2.29) ζdesr ((sj); (ξk); (γjk); (βj))

=
∑

K⊂{1,...,r}

(−1)|K|
∑
l

BK,l

( d∏
j=1

(sj)lj

)
×

∑
0⩽jm⩽d
m∈K

( ∏
m∈K

cmjm

)
ζr

(
(sj + lj − J(j)); (ξk); (γjk); (βj)

)
.

Put

(2.30) H(u,v) :=
∑

K⊂{1,...,r}

(−1)|K|
∑
l

BK,l

∑
0⩽jm⩽d
m∈K

( ∏
m∈K

cmjm

) d∏
j=1

u
lj
j v

lj−J(j)
j .

Our last task is to show that

(2.31) G(u,v) = H(u,v).

From (2.25), we have

H(u,v) =
∑

K⊂{1,...,r}

(−1)|K|
∑

0⩽jm⩽d
m∈K

( ∏
m∈K

cmjm

)( d∏
j=1

v
−J(j)
j

)∑
l

BK,l

d∏
j=1

u
lj
j v

lj
j

(2.32)

=
∑

K⊂{1,...,r}

(−1)|K|
∑

0⩽jm⩽d
m∈K

( ∏
m∈K

cmjm

)( ∏
m∈K

d∏
j=1

v
−δj,jm
j

) ∏
k∈K

δ(k)
( d∑
j=1

γjkujvj

)
.

Since we see that

d∏
j=1

v
−δj,jm
j =

{
v−1
jm

(jm ⩾ 1),

1 (jm = 0),

under the convention v0 = 1, we find that the right-hand side of (2.32) is equal to∑
K⊂{1,...,r}

(−1)|K|
∑

0⩽jm⩽d
m∈K

( ∏
m∈K

cmjmv−1
jm

) ∏
k∈K

δ(k)
( d∑
j=1

γjkujvj

)
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=
∑

K⊂{1,...,r}

(−1)|K|
( ∏
m∈K

( d∑
j=1

cmjv
−1
j + 1−

d∑
j=1

cmjβj

))

×
∏
k∈K

δ(k)
( d∑
j=1

γjkujvj

)

=
∑

K⊂{1,...,r}

(−1)|K|
{∏
k∈K

δ(k)
(
1 +

d∑
j=1

ckj(v
−1
j − βj)

)( d∑
j=1

γjkujvj

)}

=

r∏
k=1

{
1− δ(k)

(
1 +

d∑
j=1

ckj(v
−1
j − βj)

)( d∑
j=1

γjkujvj

)}
= G(u,v),

hence (2.31). Therefore, regarding (sj)lj and ζr

(
(sj + lj − J(j)); (ξk); (γjk); (βj)

)
as

indeterminates u
lj
j and v

lj−J(j)
j , respectively, we arrive at the assertion of the theorem.

§ 3. Examples of desingularization

Our Theorem 2.7 in the preceding section requires the assumption (2.14). In this

section we see how this assumption is satisfied in examples.

Example 3.1. In the case of the triple zeta-function of generalized Euler-Zagier-

Lerch type (d = r = 3), we have

(ξk) =
(
1 1 1

)
, (βj) =

(
γ1 γ1 + γ2 γ1 + γ2 + γ3

)
,(3.1)

(cmj) =

 γ−1
1 0 0

−γ−1
2 γ−1

2 0

0 −γ−1
3 γ−1

3

 , (γjk) =

γ1 0 0

γ1 γ2 0

γ1 γ2 γ3

 .(3.2)

The generating function constructed by using these data coincides with G(u,v) in [6,

Example 4.4].

Example 3.2. Consider the case of the Mordell-Tornheim double zeta-function,

which is defined by the double series

(3.3) ζMT,2(s1, s2, s3) =

∞∑
m1=1

∞∑
m2=1

1

ms1
1 ms2

2 (m1 +m2)s3

(cf. [15] [18]), corresponding to d = 3 and r = 2. In this case, constants cmj are not

uniquely determined. For any a, b ∈ C, we have

(ξk) =
(
1 1
)
, (βj) =

(
1 1 2

)
,(3.4)
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(cmj) =

(
a+ 1 a −a

b b+ 1 −b

)
, (γjk) =

1 0

0 1

1 1

 .(3.5)

Therefore we have

G(u,v) = (1− v−1
1 (u1v1 + u3v3))(1− v−1

2 (u2v2 + u3v3))

− (1− v−1
2 (u2v2 + u3v3))(v

−1
1 + v−1

2 − v−1
3 )(u1v1 + u3v3)a

− (1− v−1
1 (u1v1 + u3v3))(v

−1
1 + v−1

2 − v−1
3 )(u2v2 + u3v3)b

+ (v−1
1 + v−1

2 − v−1
3 )2(u1v1 + u3v3)(u2v2 + u3v3)ab

= (u1 − 1)(u2 − 1) + u3(u1 − 1)v−1
2 v3 + u3(u2 − 1)v−1

1 v3 + u2
3v

−1
1 v−1

2 v23

+
{
(u2 − 1)(u1 − u3)− u3(1− u1 − u2 + u3)v

−1
2 v3 + u2

3v
−2
2 v23

+ u1(u2 − u3 − 1)v1v
−1
2 − u1(u2 − 1)v1v

−1
3 + u1u3v1v

−2
2 v3

+ (u2 − 1)u3v
−1
1 v3 + u2

3v
−1
1 v−1

2 v23

}
a

+
{
(u1 − 1)(u2 − u3)− u3(1− u1 − u2 + u3)v

−1
1 v3 + u2

3v
−2
1 v23

+ u2(u1 − u3 − 1)v−1
1 v2 − u2(u1 − 1)v2v

−1
3 + u2u3v

−2
1 v2v3

+ (u1 − 1)u3v
−1
2 v3 + u2

3v
−1
1 v−1

2 v23

}
b

+
{
u2
3 − 2u1u3 − 2u2u3 + 2u1u2

+ u3(u1 + 2u2 − 2u3)v
−1
1 v3 + u3(2u1 + u2 − 2u3)v

−1
2 v3

+ u1u3v1v
−2
2 v3 + u2u3v

−2
1 v2v3

+ u1(u2 − 2u3)v1v
−1
2 + u2(u1 − 2u3)v

−1
1 v2

− u1(2u2 − u3)v1v
−1
3 − u2(2u1 − u3)v2v

−1
3

+ u2
3v

−2
1 v23 + u2

3v
−2
2 v23

+ u1u2v1v2v
−2
3 + 2u2

3v
−1
1 v−1

2 v23

}
ab.

From the constant part of this expression with respect to a and b, we obtain the following

identity, which is an example of Theorem 2.7.

(3.6)

ζdesMT,2(s1, s2, s3) = (s1−1)(s2−1)ζMT,2(s1, s2, s3)+ s3(s1−1)ζMT,2(s1, s2−1, s3+1)

+ s3(s2 − 1)ζMT,2(s1 − 1, s2, s3 + 1) + s3(s3 + 1)ζMT,2(s1 − 1, s2 − 1, s3 + 2).
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On the other hand, coefficients of a, b, and ab give rise to the following identities1:

(s2 − 1)(s1 − s3)ζMT,2(s1, s2, s3)− s3(2− s1 − s2 + s3)ζMT,2(s1, s2 − 1, s3 + 1)

+ s3(s3 + 1)ζMT,2(s1, s2 − 2, s3 + 2) + s1(s2 − s3 − 1)ζMT,2(s1 + 1, s2 − 1, s3)

− s1(s2 − 1)ζMT,2(s1 + 1, s2, s3 − 1) + s1s3ζMT,2(s1 + 1, s2 − 2, s3 + 1)

+ (s2 − 1)s3ζMT,2(s1 − 1, s2, s3 + 1) + s3(s3 + 1)ζMT,2(s1 − 1, s2 − 1, s3 + 2) = 0,

(3.7)

(s3(s3 + 1)− 2s1s3 − 2s2s3 + 2s1s2)ζMT,2(s1, s2, s3)

+ s3(s1 + 2s2 − 2s3 − 2)ζMT,2(s1 − 1, s2, s3 + 1)

+ s3(2s1 + s2 − 2s3 − 2)ζMT,2(s1, s2 − 1, s3 + 1)

+ s1s3ζMT,2(s1 + 1, s2 − 2, s3 + 1) + s2s3ζMT,2(s1 − 2, s2 + 1, s3 + 1)

+ s1(s2 − 2s3)ζMT,2(s1 + 1, s2 − 1, s3) + s2(s1 − 2s3)ζMT,2(s1 − 1, s2 + 1, s3)

− s1(2s2 − s3)ζMT,2(s1 + 1, s2, s3 − 1)− s2(2s1 − s3)ζMT,2(s1, s2 + 1, s3 − 1)

+ s3(s3 + 1)ζMT,2(s1 − 2, s2, s3 + 2) + s3(s3 + 1)ζMT,2(s1, s2 − 2, s3 + 2)

+ s1s2ζMT,2(s1 + 1, s2 + 1, s3 − 2) + 2s3(s3 + 1)ζMT,2(s1 − 1, s2 − 1, s3 + 2) = 0.

(3.8)

The coefficients of a and of b give the same identity (3.7) (because of the symmetry of

s1 and s2 in (3.3)), while (3.8) follows from the coefficient of ab.

However it should be noted that each coefficient of sj in (3.7) and (3.8) can be

shown to be equal to 0 by partial fractional decompositions. Hence these equations do

not yield new relations. Similarly in general cases, it may be expected that only the

constant term will give a non-trivial result.

The following example can be regarded as a root-theoretic generalization of Exam-

ple 3.2, because ζMT,2(s1, s2, s3) is the zeta-function of the root system of type A2.

Example 3.3. In the case of zeta-functions of root systems (cf. [13]), we have

(ξk) = (ξk)1⩽k⩽r, (βα) = (⟨α∨, ρ⟩)α∈∆+ ,(3.9)

(cmα) =
(
Ir 0
)
, (γαk) = (⟨α∨, λk⟩)α∈∆+,1⩽k⩽r,(3.10)

where Ir is the r × r identity matrix, ∆+ = {α1, . . . , αr, . . .} is the set of all positive

roots in a given root system, whose first r elements α1, . . . , αr are fundamental roots,

1Here, the second term of (3.7) is not s3(1 − s1 − s2 + s3), but s3(2 − s1 − s2 + s3), because the
factor corresponding to u3(1 + u3) = u3 + u2

3 is not s3(1 + s3), but s3 + s3(s3 + 1) = s3(2 + s3).
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d = |∆+|, ρ is the Weyl vector, and λ1, · · · , λr are fundamental weights. Thus

G(u,v) =
r∏

k=1

(
1− δ(k)

(
1 +

∑
α∈∆+

ckα(v
−1
α − βα)

)( ∑
α∈∆+

γαkuαvα

))
=

r∏
k=1

(
1− δ(k)

(
1 + v−1

αk
− ⟨α∨

k , ρ⟩
)( ∑

α∈∆+

⟨α∨, λk⟩uαvα

))
=

r∏
k=1

(
1− δ(k)

∑
α∈∆+

⟨α∨, λk⟩uαvαv
−1
αk

)
.

(3.11)

In particular, if ξk = 1 (1 ⩽ k ⩽ r), then

(3.12) G(u,v) =
r∏

k=1

(
1−

∑
α∈∆+

⟨α∨, λk⟩uαvαv
−1
αk

)
.

§ 4. Special values of ζdes2 at any integer points

The multiple zeta-function of Euler-Zagier type defined by (0.3) can be meromor-

phically continued to the whole complex space with many singularities (see [1]). In the

case r = 2, the singularities of ζ2(s1, s2) are located on

s2 = 1, s1 + s2 = 2, 1, 0,−2,−4,−6, . . .

([1, Theorem 1]), which implies that its special values of many integer points cannot be

determined.

Here we consider the desingularized double zeta-function of Euler-Zagier type de-

fined by

ζdes2 (s1, s2) = ζdes2 (s1, s2; 1, 1; 1, 0, 1, 1; 1, 1)

in (2.1) with (r, d) = (2, 2). We showed in [6, (4.3)] that

ζdes2 (s1, s2) = (s1 − 1)(s2 − 1)ζ2(s1, s2)(4.1)

+ s2(s2 + 1− s1)ζ2(s1 − 1, s2 + 1)− s2(s2 + 1)ζ2(s1 − 2, s2 + 2),

which is entire. Therefore its special values of all integer points can be determined,

though each term on the right-hand side has singularities. We give their explicit ex-

pressions as follows. Note that a part of the examples mentioned below were already

introduced in [6, Examples 4.7 and 4.9] with no proof.

First we consider the case s2 ∈ Z⩽0. We prepare the following lemma.
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Lemma 4.1. For N ∈ N0,

ζ2(s,−N) = − 1

N + 1
ζ(s−N − 1) +

N∑
k=0

(
N

k

)
ζ(s−N + k)ζ(−k),(4.2)

ζ2(−N, s) =
1

N + 1
ζ(s−N − 1)−

N∑
k=0

(
N

k

)
ζ(s−N + k)ζ(−k)(4.3)

+ ζ(s)ζ(−N)− ζ(s−N)

hold for s ∈ C except for singularities.

Proof. It follows from [15, (4.4)] that

ζ2(s1, s2) =
1

s2 − 1
ζ(s1 + s2 − 1) +

M−1∑
k=0

(
−s2
k

)
ζ(s1 + s2 + k)ζ(−k)(4.4)

+
1

2πiΓ(s2)

∫
(M−ε)

Γ(s2 + z)Γ(−z)ζ(s1 + s2 + z)ζ(−z)dz

for M ∈ N and (s1, s2) ∈ C2 with ℜs2 > −M + ε, ℜ(s1 + s2) > 1 − M + ε for any

small ε > 0. Setting (s1, s2) = (s,−N) and M = N +1 in (4.4), we see that (4.2) holds

for any s ∈ C except for singularities because the both sides of (4.2) can be continued

meromorphically to C. Next, using the well-known relation

ζ2(s1, s2) + ζ2(s2, s1) = ζ(s1)ζ(s2)− ζ(s1 + s2),

we can immediately obtain (4.3).

Example 4.2. From (4.2) and (4.3), we have

ζ2(s, 0) = −ζ(s− 1)− 1

2
ζ(s),(4.5)

ζ2(s,−1) = −1

2
ζ(s− 2)− 1

2
ζ(s− 1)− 1

12
ζ(s),(4.6)

ζ2(0, s) = ζ(s− 1)− ζ(s),(4.7)

ζ2(−1, s) =
1

2
{ζ(s− 2)− ζ(s− 1)} .(4.8)

Proposition 4.3. For s ∈ C and N ∈ N0,

ζdes2 (s,−N) = −
N∑

k=0

(
N

k

)
(k + 1)(s−N + k − 1)ζ(s−N + k)ζ(−k).(4.9)

Proof. From (4.1) we have

ζdes2 (s,−N) = (s− 1)(−N − 1)ζ2(s,−N)−N(−N + 1− s)ζ2(s− 1,−N + 1)
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+N(−N + 1)ζ2(s− 2,−N + 2).

Substituting (4.2) with (s,−N), (s−1,−N +1) and (s−2,−N +2) into the right-hand

side of the above equation, we have

ζdes2 (s,−N) =

N∑
k=0

{
(s− 1)(−N − 1)

(
N

k

)
−N(−N + 1− s)

(
N − 1

k

)
+N(−N + 1)

(
N − 2

k

)}
ζ(s−N + k)ζ(−k),

and the right-hand side of the above formula can be transformed to the right-hand side

of (4.9).

Example 4.4. Setting N = 3 in (4.9), we obtain

(4.10) ζdes2 (s,−3) =
s− 4

2
ζ(s− 3) +

s− 3

2
ζ(s− 2)− s− 1

30
ζ(s).

For example,

ζdes2 (1,−3) =
1

20
, ζdes2 (2,−3) =

1

3
− 1

30
ζ(2),

ζdes2 (3,−3) =
3

4
− 1

15
ζ(3), ζdes2 (4,−3) =

1

2
+

1

2
ζ(2)− 1

10
ζ(4).

Also we have

ζdes2 (0, 0) =
1

4
, ζdes2 (−1,−1) =

1

36
, ζdes2 (0,−2) =

1

18
.

Proposition 4.5. For s ∈ C and N ∈ N0,

ζdes2 (−N, s)(4.11)

=
(s−N − 3)(s−N − 2)

(N + 3)(N + 2)
ζ(s−N − 1)

+

N+1∑
k=0

(ks+N − k + 2)(s−N + k − 1)

N + 2

(
N + 2

k

)
ζ(s−N + k)ζ(−k)

− (N + 1)(s− 1)ζ(s)ζ(−N) + s(s+ 1 +N)ζ(s+ 1)ζ(−N − 1)

+ (s−N − 1)ζ(s−N).

Proof. From (4.1), we have

ζdes2 (−N, s) = (−N − 1)(s− 1)ζ2(−N, s) + s(s+ 1 +N)ζ2(−N − 1, s+ 1)
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− s(s+ 1)ζ2(−N − 2, s+ 2).

Similar to the proof of Proposition 4.3, substituting (4.3) with (−N, s), (−N − 1, s+1)

and (−N−2, s+2) into the right-hand side of the above equation, we can obtain (4.11).

Note that, in this case, we apply (4.3) with the sum on the right-hand side from 0 to

N +2, but the term corresponding to k = N +2 is canceled and does not appear in the

final statement.

Example 4.6. Setting N = 1 in (4.11), we have

(4.12) ζdes2 (−1, s) =
(s− 4)(s− 3)

12
ζ(s− 2) +

s− 2

2
ζ(s− 1)− s(s− 1)

12
ζ(s).

For example,

ζdes2 (−1, 1) =
1

8
, ζdes2 (−1, 2) =

5

12
− 1

6
ζ(2),

ζdes2 (−1, 3) = − 1

12
+

1

2
ζ(2)− 1

2
ζ(3).

Next we consider ζdes2 (N, 1) (N ∈ N). From (4.1) with s1 = N ∈ Z>1 and s2 → 1,

we have

ζdes2 (N, 1) = (N − 1) lim
s2→1

(s2 − 1)ζ2(N, s2) + (2−N)ζ2(N − 1, 2)− 2ζ2(N − 2, 3).

We know from Arakawa and Kaneko [2, Proposition 4] that

ζ2(N, s) =
ζ(N)

s− 1
+O(1) (N ∈ Z>1).(4.13)

Thus we obtain the following.

Proposition 4.7. For N ∈ N>1,

ζdes2 (N, 1) = (N − 1)ζ(N) + (2−N)ζ2(N − 1, 2)− 2ζ2(N − 2, 3).(4.14)

Example 4.8. Using well-known results for double zeta-values, we obtain

ζdes2 (2, 1) = ζ(2)− 2ζ2(0, 3) = 2ζ(3)− ζ(2),

ζdes2 (3, 1) = 2ζ(3)− ζ2(2, 2)− 2ζ2(1, 3) = 2ζ(3)− 5

4
ζ(4),

ζdes2 (4, 1) = 3ζ(4)− 2ζ2(3, 2)− 2ζ2(2, 3) = 3ζ(4) + 2ζ(5)− 2ζ(2)ζ(3),

where we note ζ2(0, 3) = ζ(2)− ζ(3).

The case N = 1 should be treated separately.
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Proposition 4.9.

ζdes2 (1, 1) =
1

2
.

Proof. Denote the first, the second and the third term on the right-hand side of

(4.1) by I1, I2 and I3, respectively. Setting M = 1 in (4.4), we have

(4.15) lim
s2→1

lim
s1→1

I1 = lim
s2→1

(s2 − 1) lim
s1→1

(s1 − 1)ζ2(s1, s2) = 0.

Using (4.7) and (4.8), we obtain

lim
s2→1

lim
s1→1

(I2 + I3) = lim
s2→1

{
s22ζ2(0, s2 + 1)− s2(s2 + 1)ζ2(−1, s2 + 2)

}
(4.16)

= lim
s2→1

(
s22 −

s2(s2 + 1)

2

)
{ζ(s2)− ζ(s2 + 1)}

= lim
s2→1

s2
2
(s2 − 1){ζ(s2)− ζ(s2 + 1)} =

1

2
.

From (4.15) and (4.16), we obtain the assertion. Note that, since ζdes2 (s1, s2) is entire,

the final result does not depend on the choice how to take the limit.

§ 5. p-adic multiple star polylogarithm for indices with arbitrary integers

Now we proceed to our second main topic of the present paper. Our aim is to extend

the result of [7, Theorem 3.41] to the case of indices with arbitrary (not necessarily all

positive) integers (Theorem 5.8), which is a p-adic analogue of the equation (1.3).

First we prepare ordinary notation. For a prime number p, let Zp, Qp, Qp and Cp

be the set of p-adic integers, p-adic numbers, the algebraic closure of Qp and the p-adic

completion of Qp respectively. For a in P1(Cp) (= Cp ∪ {∞}), ā means the image red(a)

by the reduction map red : P1(Cp) → P1(Fp)
(
= Fp ∪ {∞}

)
, where Fp is the algebraic

closure of Fp. For a finite subset S ⊂ P1(Fp), we define ]S[:= red−1(S) ⊂ P1(Cp).

Denote by | · |p the p-adic absolute value, and by µc the group of c th roots of unity in

Cp for c ∈ N. We put q = p if p ̸= 2 and q = 4 if p = 2. We denote by ω : Z×
p → Z×

p the

Teichmüller character and define ⟨x⟩ := x/ω(x) for x ∈ Z×
p .

We recall that, for r ∈ N, k1, . . . , kr ∈ Z and c ∈ N>1 with (c, p) = 1, the p-adic

multiple L-function of depth r, a Cp-valued function on

(sj) ∈ Xr

(
q−1
)
:=
{
(s1, . . . , sr) ∈ Cr

p

∣∣ |sj |p < qp−1/(p−1) (1 ⩽ j ⩽ r)
}
,

is defined in [7] by

Lp,r(s1, . . . , sr;ω
k1 , . . . , ωkr ; c)
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:=

∫
(Zr

p)
′
⟨x1⟩−s1⟨x1 + x2⟩−s2 · · · ⟨

r∑
j=1

xj⟩−srωk1(x1) · · ·ωkr (

r∑
j=1

xj)

r∏
j=1

dm̃c(xj),

where
(
Zr
p

)′
:=

{
(xj) ∈ Zr

p

∣∣∣∣ p ∤ x1, p ∤ (x1+x2), . . . , p ∤
∑r

j=1 xj

}
, and m̃c is the p-adic

measure given in [7, §1]. The function is equal to Lp,r(s1, . . . , sr;ω
k
1 , . . . , ω

k
r ; 1, . . . , 1; c)

in [7, Definition 1.16]. When r = 1, we have

(5.1) Lp,1(s;ω
k−1; c) = (⟨c⟩1−sωk(c)− 1)Lp(s;ω

k),

where Lp(s;ω
k) is the Kubota-Leopoldt p-adic L-function (see [7, Example 1.19]).

The p-adic rigid TMSPL can be defined for indices with arbitrary integers in the

same way as [7, Definition 3.4]: Let n1, . . . , nr ∈ Z and ξ1, . . . , ξr ∈ Cp with |ξj |p ⩽ 1

(1 ⩽ j ⩽ r). The p-adic rigid TMSPL 2 is defined by the following p-adic power

series:

(5.2) ℓ(p),⋆n1,...,nr
(ξ1, . . . , ξr, z) :=

∑
0<k1⩽···⩽kr

(k1,p)=···=(kr,p)=1

ξk1
1 · · · ξkr

r

kn1
1 · · · knr

r
zkr

which converges for z ∈]0̄[= {x ∈ Cp

∣∣ |x|p < 1} by |ξj |p ⩽ 1 for 1 ⩽ j ⩽ r.

When |ξj |p = 1 for all 1 ⩽ j ⩽ r, by the completely same way as the arguments

in [7, §3], we can show that it can be extended to a rigid analytic function (consult [7,

§3.1]) on P1(Cp)−]S[ with

(5.3) S := {ξ−1
r , (ξr−1ξr)−1, . . . , (ξ1 · · · ξr)−1}.

Namely,

ℓ(p),⋆n1,...,nr
(ξ1, . . . , ξr; z) ∈ Arig(P1 \ S).

We also note that

(5.4) ℓ(p),⋆n1,...,nr
(ξ1, . . . , ξr; 0) = ℓ(p),⋆n1,...,nr

(ξ1, . . . , ξr;∞) = 0,

and the following equality:

Proposition 5.1. For n1, . . . , nr ∈ Z and c ∈ N>1 with (c, p) = 1,

Lp,r(n1, . . . , nr;ω
−n1 , . . . , ω−nr ; c) =

∑
ξc1=···=ξcr=1

ξ1···ξr ̸=1, ..., ξr−1ξr ̸=1, ξr ̸=1

ℓ(p),⋆n1,...,nr
(ξ1, . . . , ξr; 1).

2TMSPL stands for the twisted multiple star polylogarithm. Here ’star’ means that we add equalities
in the running indices of the summation.
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The p-adic partial TMSPL can also be defined for indices with arbitrary integers

in the same way as [7, Definition 3.4]: Let n1, . . . , nr ∈ Z and ξ1, . . . , ξr ∈ Cp with

|ξj |p ⩽ 1 (1 ⩽ j ⩽ r). Let α1, . . . , αr ∈ N with 0 < αj < p (1 ⩽ j ⩽ r). The p-adic

partial TMSPL ℓ
≡(α1,...,αr),(p),⋆
n1,...,nr (ξ1, . . . ξr; z) is defined by the following p-adic power

series:

(5.5) ℓ≡(α1,...,αr),(p),⋆
n1,...,nr

(ξ1, . . . , ξr; z) :=
∑

0<k1⩽···⩽kr

k1≡α1,...,kr≡αr mod p

ξk1
1 · · · ξkr

r

kn1
1 · · · knr

r
zkr

which converges for z ∈]0̄[.
When |ξj |p = 1 for all 1 ⩽ j ⩽ r, by the completely same way as the arguments in

[7, §3.2], we can show that it is a rigid analytic function on P1(Cp)−]S[. Namely,

(5.6) ℓ≡(α1,...,αr),(p),⋆
n1,...,nr

(ξ1, . . . , ξr; z) ∈ Arig(P1 \ S).

We have

(5.7) ℓ≡(α1,...,αr),(p),⋆
n1,...,nr

(ξ1, . . . , ξr; 0) = ℓ≡(α1,...,αr),(p),⋆
n1,...,nr

(ξ1, . . . , ξr;∞) = 0

by the equality

ℓ≡(α1,...,αr),(p),⋆
n1,...,nr

(ξ1, . . . , ξr; z) =
1

pr

∑
ρp
1=···=ρp

r=1

ρ−α1
1 · · · ρ−αr

r ℓ(p),⋆n1,...,nr
(ρ1ξ1, . . . , ρrξr; z).

We also note

(5.8) ℓ(p),⋆n1,...,nr
(ξ1, . . . , ξr; z) =

∑
0<α1,...,αr<p

ℓ≡(α1,...,αr),(p),⋆
n1,...,nr

(ξ1, . . . , ξr; z).

The following formulas are extensions of [7, Lemma 3.19] to the case of indices with

arbitrary integers.

Lemma 5.2. Let n1, . . . , nr ∈ Z, ξ1, . . . , ξr ∈ Cp with |ξj |p ⩽ 1 (1 ⩽ j ⩽ r) and

α1, . . . , αr ∈ N with 0 < αj < p (1 ⩽ j ⩽ r).

(i) For any index (n1, . . . , nr),

d

dz
ℓ≡(α1,...,αr),(p),⋆
n1,...,nr

(ξ1, . . . , ξr; z) =
1

z
ℓ
≡(α1,...,αr),(p),⋆
n1,...,nr−1 (ξ1, . . . , ξr; z).

(ii) For nr = 1 and r ̸= 1,

d

dz
ℓ≡(α1,...,αr),(p),⋆
n1,...,nr

(ξ1, . . . , ξr; z)

=



ξr(ξrz)
αr−αr−1−1

1−(ξrz)p
ℓ
≡(α1,...,αr−1),(p),⋆
n1,...,nr−1 (ξ1, . . . , ξr−2, ξr−1; ξrz)

if αr ⩾ αr−1,
ξr(ξrz)

αr−αr−1+p−1

1−(ξrz)p
ℓ
≡(α1,...,αr−1),(p),⋆
n1,...,nr−1 (ξ1, . . . , ξr−2, ξr−1; ξrz)

if αr < αr−1.
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(iii) For nr = 1 and r = 1 with ξ1 = ξ and α1 = α,

d

dz
ℓ
≡α,(p),⋆
1 (ξ; z) =

ξ(ξz)α−1

1− (ξz)p
.

Proof. They can be proved by direct computations.

The following result is an extension of [7, Theorem 3.21] to the case of indices with

arbitrary integers.

Proposition 5.3. Let n1, . . . , nr ∈ Z, ξ1, . . . , ξr ∈ Cp with |ξj |p = 1 (1 ⩽ j ⩽ r)

and α1, . . . , αr ∈ N with 0 < αj < p (1 ⩽ j ⩽ r). Set S as in (5.3). The function

ℓ
≡(α1,...,αr),(p),⋆
n1,...,nr (ξ1, . . . , ξr; z) is an overconvergent function on P1 \ S. Namely,

ℓ≡(α1,...,αr),(p),⋆
n1,...,nr

(ξ1, . . . , ξr; z) ∈ A†(P1 \ S).

Here A†(P1 \ S) means the space of overconvergent functions on P1 \ S (consult

[7, Notation 3.13]).

Proof. The proof of [7, Theorem 3.21] was done by the induction on the weight

but here it is achieved by the induction on the depth r.

(i) Assume that r = 1. By [7, Theorem 3.21], we know ℓ
≡α1,(p),⋆
n1 (ξ1; z) ∈ A†(P1\S)

when n1 > 0. When n1 ⩽ 0, by Lemma 5.2 (i) and (iii) we know that the function

is a rational function and the degree of whose numerator is less than that of whose

denominator which is a power of 1− (ξ1z)
p, which implies that the poles of the function

are of the form ζp/ξ1 (ζp ∈ µp).

(ii) Assume that r > 1 and nr = 1. We put

S∞ = S ∪ {∞} and S∞,0 = S ∪ {∞} ∪ {0̄}

and take a lift {ŝ0, ŝ1, . . . , ŝd} of S∞,0 with ŝ0 = ∞ and ŝ1 = 0. Put

β(z) :=


ξr(ξrz)

αr−αr−1−1

1−(ξrz)p
if αr ⩾ αr−1,

ξr(ξrz)
αr−αr−1+p−1

1−(ξrz)p
if αr < αr−1.

By our assumption

ℓ≡(α1,...,αr−1),(p),⋆
n1,...,nr−1

(ξ1, . . . , ξr−2, ξr−1; ξrz) ∈ A†(P1 \ {ξ−1
r , . . . , (ξ1 · · · ξr)−1})

and by the fact β(z)dz ∈ Ω†,1(P1 \ {0,∞, ξ−1
r }), we have

ℓ≡(α1,...,αr−1),(p),⋆
n1,...,nr−1

(ξ1, . . . , ξr−2, ξr−1; ξrz) · β(z)dz ∈ Ω†,1(P1 \ S∞,0).

For the symbol Ω†,1, consult [7, §3.2]. Put

(5.9) f(z) := ℓ≡(α1,...,αr−1),(p),⋆
n1,...,nr−1

(ξ1, . . . , ξr−2, ξr−1; ξrz) · β(z) ∈ A†(P1 \ S∞,0).
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Since ℓ
≡(α1,...,αr),(p),⋆
n1,...,nr (ξ1, . . . , ξr; z) belongs to Arig(P1 \ S)

(
⊂ Arig(P1 \ S∞,0)

)
by

(5.6) and it satisfies the differential equation in Lemma 5.2 (ii), i.e. its differential is

equal to f(z), we have particularly, in the expression of [7, Lemma 3.14],

(5.10) am(ŝ1; f) = 0 (m > 0)

(recall ŝ1 = 0) and

(5.11) a1(ŝl; f) = 0 (2 ⩽ l ⩽ d).

By (5.9) and (5.10),

f(z) ∈ A†(P1 \ S∞).

By (5.11) and [7, Lemma 3.15], there exists a unique function F (z) in A†(P1 \S∞),

i.e. a function F (z) which is rigid analytic on an affinoid V containing

P1(Cp)− ]S∞[ = P1(Cp)− ]∞, S[

such that

(5.12) F (0) = 0 and dF (z) = f(z)dz.

Since ℓ
≡(α1,...,αr),(p),⋆
n1,...,nr (ξ1, . . . , ξr; z) is also a unique function in Arig(P1\S) satisfying

(5.12), the restrictions of both F (z) and ℓ
≡(α1,...,αr),(p),⋆
n1,...,nr (ξ1, . . . , ξr; z) to the subspace

P1(Cp)−]S∞[ must coincide, i.e.

F (z)
∣∣∣
P1(Cp)−]S∞[

≡ ℓ≡(α1,...,αr),(p),⋆
n1,...,nr

(ξ1, . . . , ξr; z)
∣∣∣
P1(Cp)−]S∞[

.

Hence by the coincidence principle of rigid analytic functions ([7, Proposition 3.3]),

there is a rigid analytic function G(z) on the union of V and P1(Cp)−]S[ whose

restriction to V is equal to F (z) and whose restriction to P1(Cp)−]S[ is equal to

ℓ
≡(α1,...,αr),(p),⋆
n1,...,nr (ξ1, . . . , ξr; z). So we can say that

ℓ≡(α1,...,αr),(p),⋆
n1,...,nr

(ξ1, . . . , ξr; z) ∈ Arig(P1 \ S)

can be rigid analytically extended to a bigger rigid analytic space by G(z). Namely,

ℓ≡(α1,...,αr),(p),⋆
n1,...,nr

(ξ1, . . . , ξr; z) ∈ A†(P1 \ S).

(iii) Assume that r > 1 and nr < 1. In our (ii) above, we showed that

(5.13) ℓ
≡(α1,...,αr),(p),⋆
n1,...,nr−1,1

(ξ1, . . . , ξr; z) ∈ A†(P1 \ S).

Now showing that ℓ
≡(α1,...,αr),(p),⋆
n1,...,nr (ξ1, . . . , ξr; z) ∈ A†(P1\S) is immediate, which follows

from the differential equation in Lemma 5.2 (i) and (5.7).
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(iv) Assume that r > 1 and nr > 1. The proof in this case can be achieved by the

induction on nr. Recall that we have (5.13) by our (ii) above. By our assumption

ℓ
≡(α1,...,αr),(p),⋆
n1,...,nr−1,nr−1 (ξ1, . . . , ξr−1, ξr; z) ∈ A†(P1 \ S)

and by the fact dz
z ∈ Ω†,1(P1 \ {∞, 0}), we have

ℓ
≡(α1,...,αr),(p),⋆
n1,...,nr−1,nr−1 (ξ1, . . . , ξr−1, ξr; z)

dz

z
∈ Ω†,1(P1 \ S∞,0).

Put

f(z) :=
1

z
ℓ
≡(α1,...,αr),(p),⋆
n1,...,nr−1,nr−1 (ξ1, . . . , ξr−1, ξr; z) ∈ A†(P1 \ S∞,0).

Then it follows that

ℓ≡(α1,...,αr),(p),⋆
n1,...,nr

(ξ1, . . . , ξr; z) ∈ A†(P1 \ S)

by the same arguments as those given in (ii) above.

By (5.8) and Proposition 5.3, we have

Corollary 5.4. Let n1, . . . , nr ∈ Z, ξ1, . . . , ξr ∈ Cp with |ξj |p = 1 (1 ⩽ j ⩽ r).

Set S as in (5.3). The function ℓ
(p),⋆
n1,...,nr (ξ1, . . . , ξr; z) is an overconvergent function on

P1 \ S. Namely, ℓ
(p),⋆
n1,...,nr (ξ1, . . . , ξr; z) ∈ A†(P1 \ S).

The p-adic TMSPL can also be defined for indices with arbitrary integers in the

same way as [7, Definition 3.29]: Let n1, . . . , nr ∈ Z and ξ1, . . . , ξr ∈ Cp with |ξj |p ⩽ 1

(1 ⩽ j ⩽ r). The p-adic TMSPL Li
(p),⋆
n1,...,nr (ξ1, . . . , ξr; z) is defined by the following

p-adic power series:

(5.14) Li(p),⋆n1,...,nr
(ξ1, . . . , ξr; z) :=

∑
0<k1⩽···⩽kr

ξk1
1 · · · ξkr

r zkr

kn1
1 · · · knr

r

which converges for z ∈]0̄[ by |ξj |p ⩽ 1 for 1 ⩽ j ⩽ r. By direct computations one

obtains the following differential equations which are extensions of [7, Lemma 3.31] to

the case of indices with arbitrary integers.

Lemma 5.5. Let n1, . . . , nr ∈ Z, ξ1, . . . , ξr ∈ Cp with |ξj |p ⩽ 1 (1 ⩽ j ⩽ r).

(i) For any index (n1, . . . , nr),

d

dz
Li(p),⋆n1,...,nr

(ξ1, . . . , ξr; z) =
1

z
Li

(p),⋆
n1,...,nr−1,nr−1(ξ1, . . . , ξr; z).

(ii) For nr = 1 and r ̸= 1,

d

dz
Li(p),⋆n1,...,nr

(ξ1, . . . , ξr; z) =

{
ξr

1− ξrz
+

1

z

}
Li(p),⋆n1,...,nr−1

(ξ1, . . . , ξr−2, ξr−1; ξrz).
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(iii) For nr = 1 and r = 1 with ξ1 = ξ,

d

dz
Li

(p),⋆
1 (ξ; z) =

ξ

1− ξz
.

The following result is an extension of [7, Theorem-Definition 3.32] to the case of

indices with arbitrary integers.

Proposition 5.6. Fix a branch of the p-adic logarithm by ϖ ∈ Cp. Let n1, . . . , nr ∈
Z, ξ1, . . . , ξr ∈ Cp with |ξj |p ⩽ 1 (1 ⩽ j ⩽ r). Put

Sr := {0̄,∞, (ξr)−1, (ξr−1ξr)−1, . . . , (ξ1 · · · ξr)−1} ⊂ P1(Fp).

Then the function Li
(p),⋆
n1,...,nr (ξ1, . . . , ξr; z) can be analytically continued as a Coleman

function attached to ϖ ∈ Cp, that is,

Li(p),⋆,ϖn1,...,nr
(ξ1, . . . , ξr; z) ∈ Aϖ

Col(P
1 \ Sr)

whose restriction to ]0̄[ is given by Li
(p),⋆
n1,...,nr (ξ1, . . . , ξr; z) and which is constructed by

the following iterated integrals:

(5.15) Li
(p),⋆,ϖ
1 (ξ1; z) = − logϖ(1− ξ1z) =

∫ z

0

ξ1
1− ξ1t

dt,

Li(p),⋆,ϖn1,...,nr
(ξ1, . . . , ξr; z)(5.16)

=


∫ z

0
Li

(p),⋆,ϖ
n1,...,nr−1,nr−1(ξ1, . . . , ξr; t)

dt
t if nr ̸= 1,∫ z

0
Li

(p),⋆,ϖ
n1,...,nr−1(ξ1, . . . , ξr−2, ξr−1ξr; t){ ξr

1−ξrt
+ 1

t }dt if nr = 1.

Here Aϖ
Col(P

1 \ Sr) means the space of Coleman functions of P1 \ Sr (consult [7,

Notation 3.25]).

Proof. The proof of [7, Theorem-Definition 3.32] was done by the induction on

the weight but here it is achieved by the induction on the depth r.

(i) Assume that r = 1. By [7, Theorem-Definition 3.32], we know Li
(p),⋆,ϖ
n1 (ξ1; z) ∈

Aϖ
Col(P

1 \ S1) when n1 > 0. When n1 ⩽ 0, it is immediate to see the assertion by the

differential equation in Lemma 5.5 (iii) because differentials of Coleman functions are

again Coleman functions.

(ii) Assume that r > 1 and nr = 1. Then by our induction assumption on r,

Li
(p),⋆,ϖ
n1,...,nr−1(ξ1, . . . , ξr−1; z) ∈ Aϖ

Col(P
1 \ Sr−1) and also Li

(p),⋆,ϖ
n1,...,nr−1(ξ1, . . . , ξr−1; 0) = 0.

Hence Li
(p),⋆,ϖ
n1,...,nr−1(ξ1, . . . , ξr−1; t) has a zero at t = 0. Therefore the integrand on the

right-hand side of (5.16) has no pole at t = 0. So the integration (5.16) starting from 0

makes sense and whence we have

(5.17) Li
(p),⋆,ϖ
n1,...,nr−1,1

(ξ1, . . . , ξr−1, ξr; z) ∈ Aϖ
Col(P

1 \ Sr).
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(iii) Assume that r > 1 and nr < 1. It is immediate to prove

Li(p),⋆,ϖn1,...,nr−1,nr
(ξ1, . . . , ξr−1, ξr; z) ∈ Aϖ

Col(P
1 \ Sr)

by (5.17) and the differential equation in Lemma 5.5 (i).

(iv) Assume that r > 1 and nr > 1. The proof can be achieved by the induction

on nr. By our induction assumption, Li
(p),⋆,ϖ
n1,...,nr−1(ξ1, . . . , ξr; z) ∈ Aϖ

Col(P
1 \ Sr) and

also Li
(p),⋆,ϖ
n1,...,nr−1(ξ1, . . . , ξr; 0) = 0. Hence Li

(p),⋆,ϖ
n1,...,nr−1(ξ1, . . . , ξr; t) has a zero at t = 0.

Therefore the integrand on the right-hand side of (5.16) has no pole at t = 0. The

integration (5.16) starting from 0 makes sense and thus we have Li
(p),⋆,ϖ
n1,...,nr (ξ1, . . . , ξr; z) ∈

Aϖ
Col(P

1 \ Sr).

It should be noted that the restriction of the p-adic TMSPL Li
(p),⋆,ϖ
n1,...,nr (ξ1, . . . , ξr; z)

to P1(Cp)− ]Sr \ {0}[ does not depend on any choice of the branch ϖ ∈ Cp, which can

be proved in the same way as [7, Proposition 3.34].

In particular, we remind that it is shown in [7, Theorem-Definiton 3.38] that, for

ρ1, . . . , ρr ∈ µp and ξ1, . . . , ξr ∈ µc with (c, p) = 1 and

ξ1 · · · ξr ̸= 1, ξ2 · · · ξr ̸= 1, . . . , ξr−1ξr ̸= 1, ξr ̸= 1,

the special value of Li
(p),⋆,ϖ
n1,...,nr (ρ1ξ1, . . . , ρrξr; z) at z = 1 is independent of the choice

of ϖ. This value, denoted by Li
(p),⋆
n1,...,nr (ρ1ξ1, . . . , ρrξr) for short, is called the p-adic

twisted multiple L-star value.

The following result is an extension of [7, Theorem 3.36] to the case of indices

with arbitrary integers, where we give a relationship between our p-adic rigid TMSPL

ℓ
(p),⋆
n1,...,nr (ξ1, . . . , ξr; z) and our p-adic TMSPL Li

(p),⋆,ϖ
n1,...,nr (ξ1, . . . , ξr; z).

Proposition 5.7. Fix a branch ϖ ∈ Cp. Let n1, . . . , nr ∈ Z, ξ1, . . . , ξr ∈ Cp

with |ξj |p = 1 (1 ⩽ j ⩽ r). The equality

ℓ(p),⋆n1,...,nr
(ξ1, . . . , ξr; z) = Li(p),⋆,ϖn1,...,nr

(ξ1, . . . , ξr; z)(5.18)

+
r∑

d=1

(
−1

p

)d ∑
1⩽i1<···<id⩽r

∑
ρp
i1

=1

· · ·
∑

ρp
id

=1

Li(p),⋆,ϖn1,...,nr

((
(

d∏
l=1

ρ
δilj
il

)ξj
)
; z
)

holds for z ∈ P1(Cp)−]Sr \ {0}[, where δij is the Kronecker delta.

Proof. By using the power series expansions (5.5) and (5.14), direct calculations

show that the equality holds on ]0̄[. By Corollary 5.4, the left-hand side belongs to

A†(P1 \Sr) (⊂ Aϖ
Col(P

1 \Sr)), while by Proposition 5.6, the right-hand side belongs to

Aϖ
Col(P

1\Sr). Therefore by the coincidence principle (consult [7, Proposition 3.27]), the
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equality holds on the whole space of P1(Cp)− ]Sr \ {0}[, in fact, on an affinoid bigger

than the space.

Our main theorem in this section is the following, which could be regarded as an

extension of [7, Theorem 3.41] to the case of indices with arbitrary integers and might

be also regarded as an extension of [7, Theorem 2.1] to the case of indices with arbitrary

integers in the special case of γ1 = · · · = γr = 1.

Theorem 5.8. For n1, . . . , nr ∈ Z and c ∈ N>1 with (c, p) = 1,

Lp,r(n1, . . . , nr;ω
−n1 , . . . , ω−nr ; c)

(5.19)

=
∑
ξc1=1

ξ1 ̸=1

· · ·
∑
ξcr=1

ξr ̸=1

Li(p),⋆n1,...,nr

(
ξ1
ξ2

,
ξ2
ξ3

, . . . ,
ξr

ξr+1

)

+

r∑
d=1

(
−1

p

)d ∑
1⩽i1<···<id⩽r

∑
ρp
i1

=1

· · ·
∑

ρp
id

=1

∑
ξc1=1

ξ1 ̸=1

· · ·
∑
ξcr=1

ξr ̸=1

Li(p),⋆n1,...,nr

((∏d
l=1 ρ

δilj
il

ξj

ξj+1

))
,

where we put ξr+1 = 1.

Proof. It follows from Proposition 5.1 and Proposition 5.7.

Remark 7. From (1.3), we have

(5.20)
∑
ξc1=1

ξ1 ̸=1

· · ·
∑
ξcr=1

ξr ̸=1

ζr((nj); (ξj); (1)) =
∑
ξc1=1

ξ1 ̸=1

· · ·
∑
ξcr=1

ξr ̸=1

Lin1,...,nr

(
ξ1
ξ2

,
ξ2
ξ3

, . . . ,
ξr

ξr+1

)
,

where ξr+1 = 1. Similarly, we obtain

(5.21)
∑
ξc1=1

ξ1 ̸=1

· · ·
∑
ξcr=1

ξr ̸=1

ζ⋆r ((nj); (ξj); (1)) =
∑
ξc1=1

ξ1 ̸=1

· · ·
∑
ξcr=1

ξr ̸=1

Li⋆n1,...,nr

(
ξ1
ξ2

,
ξ2
ξ3

, . . . ,
ξr

ξr+1

)
,

where

ζ⋆r ((nj); (ξj); (1)) =
∑

0<k1⩽···⩽kr

(ξ1/ξ2)
k1 · · · (ξr/ξr+1)

kr

kn1
1 · · · knr

r
,(5.22)

with ξr+1 = 1 and

Li⋆n1,...,nr
(z1, . . . , zr) =

∑
0<k1⩽···⩽kr

zk1
1 · · · zkr

r

kn1
1 · · · knr

r
(5.23)
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for (nj) ∈ Nr and (zj) ∈ Cr with |zj | = 1, which are star-versions of (0.2) and (1.1),

respectively. Also (5.23) should be compared with (5.14). Note that Theorem 5.8 can

be regarded as a p-adic analogue of (5.21). Therefore Lp,r((sj); (ω
kj ); c) might be called

the p-adic multiple L-star function.

Corollary 5.9. For n1, . . . , nr ∈ N0 and c ∈ N>1 with (c, p) = 1,

Lp,r(−n1, . . . ,−nr;ω
n1 , . . . , ωnr ; c)(5.24)

=
∑
ξc1=1

ξ1 ̸=1

· · ·
∑
ξcr=1

ξr ̸=1

B̃((nj); (ξj))

+

r∑
d=1

(
−1

p

)d ∑
1⩽i1<···<id⩽r

∑
ρp
i1

=1

· · ·
∑

ρp
id

=1

∑
ξc1=1

ξ1 ̸=1

· · ·
∑
ξcr=1

ξr ̸=1

B̃((nj); ((
∏
j⩽il

ρil)ξj)),

where {B̃((nj); (ξj))} are certain twisted multiple Bernoulli numbers defined by

ξ1 exp (
∑r

ν=1 tν)

1− ξ1 exp (
∑r

ν=1 tν)

r∏
j=2

1

1− ξj exp
(∑r

ν=j tν

)(5.25)

=

∞∑
n1=0

· · ·
∞∑

nr=0

B̃((nj); (ξj))
tn1
1

n1!
· · · t

nr
r

nr!
.

Proof. We first show the following result which can be proved by the same method

as in the proof of [11, Lemma 5.9]. For z ∈]0̄[, we obtain from the definition (5.14) that

∞∑
n1=0

· · ·
∞∑

nr=0

Li
(p),⋆
−n1,...,−nr

(
ξ1
ξ2

,
ξ2
ξ3

, . . . ,
ξr

ξr+1
; z

)
tn1
1 · · · tnr

r

n1! · · ·nr!
(5.26)

=
ξ1ze

∑r
ν=1 tν

1− ξ1ze
∑r

ν=1 tν

r∏
j=2

1

1− ξjze
∑r

ν=j tν

(cf. [11, (5.16)]). Since Li
(p),⋆
−n1,...,−nr

(ξ1/ξ2, ξ2/ξ3, . . . , ξr/ξr+1; z) is a rational function

in z, we can let z → 1 on the both sides of (5.26). Hence it follows from (5.25) that

(5.27) Li
(p),⋆
−n1,...,−nr

(
ξ1
ξ2

,
ξ2
ξ3

, . . . ,
ξr

ξr+1

)
= B̃((nj); (ξj)) ((nj) ∈ Nr

0).

Therefore we can see that the right-hand side of (5.19) coincides with the right-hand

side of (5.24). This completes the proof.

Remark 8. It should be emphasized that (5.24) with replacing B̃((nj); (ξj)) by

B((nj); (ξj)) defined by

r∏
j=1

1

1− ξj exp
(∑r

ν=j tν

) =
∞∑

n1=0

· · ·
∞∑

nr=0

B((nj); (ξj))
tn1
1

n1!
· · · t

nr
r

nr!
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(see [7, Definition 1.4]) is also valid; in fact, it is [7, Theorem 2.1].

Finally, we consider the case r = 1. Since∑
ξc=1
ξ ̸=1

ξet

1− ξet
=

et

et − 1
− cect

ect − 1
=

∞∑
n=0

(1− cn+1)Bn+1
tn

n!
+ (1− c),

∑
ρp=1

∑
ξc=1
ξ ̸=1

ρξet

1− ρξet
=
∑
ρp=1

{
ρet

ρet − 1
− cρcect

ρcect − 1

}
=

pept

ept − 1
− cpecpt

ecpt − 1

=

∞∑
n=0

(1− cn+1)pn+1Bn+1
tn

(n+ 1)!
+ (1− c)p,

we have ∑
ξc=1
ξ ̸=1

B̃(n; ξ) =

(1− cn+1)Bn+1

n+1 (n > 0),

1−c
2 (n = 0),

∑
ξc=1
ξ ̸=1

∑
ρp=1

B̃(n; ρξ) =

(1− cn+1)pn+1Bn+1

n+1 (n > 0),
(1−c)p

2 (n = 0).

Hence (5.24) implies that

Lp,1(−n;ωn; c) =
∑
ξc=1
ξ ̸=1

B̃(n; ξ)− 1

p

∑
ρp=1

∑
ξc=1
ξ ̸=1

B̃(n; ρξ)

=

(1− cn+1)(1− pn)Bn+1

n+1 (n > 0),

0 (n = 0).

By (5.1), this can be rewritten as the Kubota-Leopoldt formula ([19, Theorem 5.11]):

Lp(1− n;ωn) = −(1− pn−1)
Bn

n
(n ∈ N).(5.28)

On the other hand, combining (5.19) in the case r = 1 and (5.1), we obtain the Coleman

formula ([3]):

(5.29) Lp(n;ω
1−n) =

(
1− 1

pn

)
Li(p),⋆n (1) (n ∈ N)

(see [7, Example 3.42]). Therefore Theorem 5.8 can be regarded as a generalization of

both (5.28) and (5.29).
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