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ABSTRACT

We prove a mixed joint discrete universality theorem for the Matsumoto zeta-function φ(s) (belonging to the Steu-
ding subclass) and the periodic Hurwitz zeta-function ζ(s, α;B). For this purpose, certain independence condition
for the parameter α and the minimal step of discrete shifts of these functions is assumed. This paper is a continuation
of authors’ works [12] and [13].

1. INTRODUCTION

In analytic number theory, the problem of the so-called mixed joint universality in Voronin’s
sense is a very interesting problem since it solves a problem on simultaneous approxima-
tion of certain tuples of analytic functions by shifts of tuples consisting of zeta-functions
having an Euler product expansion over the set of primes and other zeta-functions without
such a product. For such a type of universality, a very important role is played by the para-
meters that occur in the definitions of zeta-functions.
The first result on mixed joint universality was obtained by Mishou [21]. He proved that
the Riemann zeta-function ζ(s) and the Hurwitz zeta-function ζ(s, α) with transcendental
parameter α are jointly universal.
Let P, N, N0, Z, Q, R, and C be the sets of all primes, positive integers, nonnegative integers,
integers, rational numbers, real numbers, and complex numbers, respectively. Denote by
s = σ + it a complex variable. Recall that the functions ζ(s) and ζ(s, α), 0 < α 6 1, for
σ > 1, are defined by

ζ(s) =

∞∑
m=1

1

ms
=

∏
p∈P

(
1− 1

ps

)−1

and ζ(s, α) =

∞∑
m=0

1

(m+ α)s
,
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respectively. Both of them are analytically continued to the whole complex plane, except for
a simple pole at the point s = 1 with residue 1. Note that the Riemann zeta-function has the
Euler product expansion, whereas in general the Hurwitz zeta-function does not have (except
the cases α = 1

2 , 1).
For Mishou’s result and further statements, we introduce some notation. Let D(a, b) = {s ∈
C : a < σ < b} for any a < b. For every compact set K ⊂ C, denote by Hc(K) the
set of all C-valued continuous functions defined on K and holomorphic in the interior of K.
By Hc

0(K) we denote the subset of Hc(K) consisting of all elements that are nonvanishing
on K.

THEOREM 1 ([21]). Suppose that α is a transcendental number. Let K1 and K2 be compact
subsets of the strip D( 12 , 1) with connected complements. Suppose that f1(s) ∈ Hc

0(K1) and
f2(s) ∈ Hc(K2). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K1

|ζ(s+ iτ)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ iτ, α)− f2(s)| < ε

}
> 0.

Here, as usual, meas{A} denotes the Lebesgue measure of a measurable set A ⊂ R.
Note that Sander and Steuding [23] proved the same type of universality for rational α by a
quite different method.
In [12], we consider the mixed joint universality property for a wide class of zeta-functions
consisting of Matsumoto zeta-functions φ(s) belonging to the Steuding class S̃ and periodic
Hurwitz zeta-functions ζ(s, α;B).
Recall the definition of the polynomial Euler products φ̃(s) or so-called Matsumoto zeta-
functions. (Remark: The function φ̃(s) was introduced by the second author in [18].) For
m ∈ N, let g(m) be a positive integer, and pm the mth prime number. Moreover, let a(j)m ∈ C
and f(j,m) ∈ N, 1 6 j 6 g(m). The function φ̃(s) is defined by the polynomial Euler
product

φ̃(s) =
∞∏

m=1

g(m)∏
j=1

(
1− a(j)m p−sf(j,m)

m

)−1

. (1)

We assume that

g(m) 6 C1p
α
m and |a(j)m | 6 pβm (2)

with a positive constant C1 and nonnegative constants α and β. In view of (2), the function
φ̃(s) converges absolutely for σ > α + β + 1, and hence, in this region, it can be given by
the absolutely convergent Dirichlet series

φ̃(s) =
∞∑
k=1

c̃k
ks

. (3)
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The shifted function φ(s) is given by

φ(s) =
∞∑
k=1

c̃k
ks+α+β

=
∞∑
k=1

ck
ks

(4)

with ck = k−α−β c̃k. For σ > 1, the last series in (4) converges absolutely too.
Also, suppose that, for the function φ(s), the following assumptions hold (for the details,
see [18]):

(a) φ(s) can be continued meromorphically to σ > σ0, where 1
2 6 σ0 < 1, and all poles

in this region are included in a compact set that has no intersection with the line
σ = σ0,

(b) φ(σ + it) = O(|t|C2) for σ > σ0, where C2 is a positive constant,
(c) the mean-value estimate ∫ T

0

|φ(σ0 + it)|2dt = O(T ). (5)

It is possible to discuss functional limit theorems for Matsumoto zeta-functions (see Sec-
tion 2), but this framework is too wide to consider the universality property. To investigate
the universality, we introduce the Steuding subclass S̃, for which the following slightly more
restrictive conditions are required. We say that the function φ(s) belongs to the class S̃ if the
following conditions are fulfilled:

(i) there exists a Dirichlet series expansion

φ(s) =
∞∑

m=1

a(m)

ms

with a(m) = O(mε) for every ε > 0;
(ii) there exists σφ < 1 such that φ(s) can be meromorphically continued to the half-plane

σ > σφ and is holomorphic except for at most a pole at s = 1;
(iii) there exists a constant c > 0 such that

φ(σ + it) = O(|t|c+ε)

for every fixed σ > σφ and ε > 0;
(iv) there exists the Euler product expansion over prime numbers, that is,

φ(s) =
∏
p∈P

l∏
j=1

(
1− aj(p)

ps

)−1

;

(v) there exists a constant κ > 0 such that

lim
x→∞

1

π(x)

∑
p6x

|a(p)|2 = κ,

where π(x) denotes the number of primes up to x, that is, p 6 x.
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For φ ∈ S̃, let σ∗ be the infimum of all σ1 such that

1

2T

∫ T

−T

|φ(σ + it)|2dt ∼
∞∑

m=1

|a(m)|2

m2σ

for every σ > σ1. Then it is known that 1
2 6 σ∗ < 1. (Remark: The class S̃ was introduced

by Steuding [24].)
Now we recall the definition of the periodic Hurwitz zeta-function ζ(s, α;B) with a fixed
parameter α, 0 < α 6 1. (Remark: The function ζ(s, α;B) was introduced by Javtokas and
Laurinčikas [8].) Let B = {bm : m ∈ N0} be a periodic sequence of complex numbers (not
all zero) with minimal period k ∈ N. For σ > 1, the function ζ(s, α;B) is defined by

ζ(s, α;B) =

∞∑
m=0

bm
(m+ α)s

.

It is known that

ζ(s, α;B) =
1

ks

k−1∑
l=0

blζ

(
s,

l + α

k

)
, σ > 1. (6)

The last equality gives an analytic continuation of the function ζ(s, α;B) to the whole com-
plex plane, except for a possible simple pole at the point s = 1 with residue

b :=
1

k

k−1∑
l=0

bl.

If b = 0, then ζ(s, α;B) is an entire function.
In [12], we prove the mixed joint universality property of the functions φ(s) and ζ(s, α;B).

THEOREM 2 ([12]). Suppose that φ(s) ∈ S̃, and α is a transcendental number. Let K1 be
a compact subset of D(σ∗, 1), and K2 be a compact subset of D(12 , 1), both with connected
complements. Suppose that f1 ∈ Hc

0(K1) and f2 ∈ Hc(K2). Then, for every ε > 0,

lim inf
T→∞

1

T
meas

{
τ ∈ [0, T ] : sup

s∈K1

|φ(s+ iτ)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ iτ, α;B)− f2(s)| < ε

}
> 0.

In [13], we obtain a generalization of Theorem 2, in which several periodic Hurwitz zeta-
functions are involved.
More interesting and convenient in practical applications is the so-called discrete universa-
lity of zeta-functions (e.g., see [2]). This pushes us to extend our investigations of mixed
joint universality for a class of zeta-functions to the discrete case. Recall that, in this case,
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the pair of analytic functions is approximated by discrete shifts of tuple
(
φ(s + ikh), ζ(s +

ikh, α;B)
)
, k ∈ N0, where h > 0 is the minimal step of given arithmetical progression.

The aim of this paper is to prove a mixed joint discrete universality theorem for the collection
of the functions (φ(s), ζ(s, α;B)), that is, a discrete version of Theorem 2.
For h > 0, let

L(P, α, h) =
{
(log p : p ∈ P), (log(m+ α) : m ∈ N0),

2π

h

}
.

THEOREM 3. Let φ(s) ∈ S̃, K1, K2, f1(s), and f2(s) satisfy the conditions of
Theorem 2. Suppose that the set L(P, α, h) is linearly independent over Q. Then, for
every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 6 k 6 N : sup

s∈K1

|φ(s+ ikh)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ ikh, α;B)− f2(s)| < ε

}
> 0.

Remark 1. A typical situation when L(P, α, h) is linearly independent is the case where α
and exp

{
2π
h

}
are algebraically independent over Q. The proof of this fact is given in [3].

Now recall some known facts of discrete universality, which are directly related to the objects
under our interests.
The discrete universality property for the Matsumoto zeta-function under the condition that
exp{2πk

h } is irrational for every nonzero integer k was obtained by the first author in [9],
whereas the discrete universality of the periodic Hurwitz zeta-functions was proved by Lau-
rinčikas and Macaitienė [17].
Also, some results on discrete analogue of mixed universality are known. The first attempt in
this direction was done by the first author in [10] under the assumption that α is transcenden-
tal and exp

{
2π
h

}
is rational. Unfortunately, the proof in [10] is incomplete, as mentioned by

Laurinčikas [4] in 2014. However, the argument in [10] gives a correct proof for the modified
L-functions where all Euler factors corresponding to primes in the set of all prime numbers
appearing as a prime factor of a or b such that a

b = exp
{

2π
h

}
∈ Q, a, b ∈ Z, (a, b) = 1, are

removed; see Section 5.
Buivydas and Laurinčikas [3, 4] proved the joint mixed discrete universality for the Rie-
mann zeta-function ζ(s) and Hurwitz zeta-function ζ(s, α). The first result [3] deals with
the case where the minimal steps of arithmetical progressions h for both functions are com-
mon, whereas in the second paper [4], for ζ(s) and ζ(s, α), the minimal steps h1 and h2 are
different from each other.
The purpose of the present paper is to give the proof of the joint mixed discrete universality
theorem (Theorem 3) for (φ(s), ζ(s, α;B)), which generalizes the result from [3], and to
clarify the situation in [10].



56 Roma Kačinskaitė, Kohji Matsumoto

2. A JOINT MIXED DISCRETE LIMIT THEOREM

The proof of Theorem 3 is based on a joint mixed discrete limit theorem in the sense of
weakly convergent probability measures in the space of analytic functions for the Matsumoto
zeta-functions φ(s) and the periodic Hurwitz zeta-function ζ(s, α;B) (for the detailed ex-
positions of this method, see [15], [24]), which we prove in this section using the linear
independence of the set L(P, α, h). In this section, φ(s) denotes any general Matsumoto
zeta-function.
For further statements, we start with some notation and definitions.
For a set S, denote by B(S) the set of all Borel subset of S. Let γ = {s ∈ C : |s| = 1}.
Define

Ω1 =
∏
p∈P

γp and Ω2 =

∞∏
m=0

γm,

where γp = γ for all p ∈ P, and γm = γ for all m ∈ N0. By the Tikhonov theorem (see [14]),
the tori Ω1 and Ω2 with the product topology and the pointwise multiplication are compact
topological groups. Then

Ω := Ω1 × Ω2

is a compact topological Abelian group too, and we obtain the probability space (Ω,B(Ω),
mH). Here mH = m1H ×m2H with the probability Haar measures m1H and m2H defined
on the spaces (Ω1,B(Ω1)) and (Ω2,B(Ω2)), respectively.
Let ω1(p) stand for the projection of ω1 ∈ Ω1 to the coordinate space γp, p ∈ P, and, for
every m ∈ N, we put

ω1(m) =
r∏

j=1

ω1(pj)
lj ,

where, by factorizing of m into the primes, m = pl11 · · · plrr . Let ω2(m) denotes the projection
of ω2 ∈ Ω2 to the coordinate space γm, m ∈ N0. Define ω = (ω1, ω2) for elements of Ω.
For any open subregion G in the complex plane, let H(G) be the space of analytic functions
on G equipped with the topology of uniform convergence in compacta.
The function φ(s) has only finitely many poles by condition (a). Denote those poles by
s1(φ), . . . , sl(φ) and define

Dφ = {s : σ > σ0, σ ̸= ℜsj(φ), 1 6 j 6 l}.

Then φ(s) and its vertical shift φ(s+ ikh) are holomorphic in Dφ. The function ζ(s, α;B)
can be written as a linear combination of Hurwitz zeta-functions (6), and therefore it is entire
or has a simple pole at s = 1. Therefore, ζ(s, α;B) and its vertical shift ζ(s + ikh, α;B)
are holomorphic in

Dζ =

{{
s ∈ C : σ > 1

2

}
if ζ(s, α;B) is entire,{

s : σ > 1
2 , σ ̸= 1

}
if s = 1 is a pole of ζ(s, α;B).

Now, in view of the definitions of Dφ and Dζ , let D1 and D2 be two open subsets of Dφ
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and Dζ , respectively. Let H = H(D1) ×H(D2). On (Ω,B(Ω),mH), define the H-valued
random element Z(s, ω) by the formula

Z(s, ω) =
(
φ(s1, ω1), ζ(s2, α, ω2;B)

)
,

where s = (s1, s2) ∈ D1 ×D2,

φ(s1, ω1) =

∞∑
k=1

ckω1(k)

ks1
, (7)

and

ζ(s2, α, ω2;B) =
∞∑

m=0

bmω2(m)

(m+ α)s2
. (8)

Denote by PZ the distribution of Z(s, ω) as an H-valued random element, that is,

PZ(A) = mH{ω ∈ Ω : Z(s, ω) ∈ A}, A ∈ B(H).

Let N > 0. Define the probability measure PN on H by the formula

PN (A) =
1

N + 1
#
{
0 6 k 6 N : Z(s+ ikh) ∈ A

}
, A ∈ B(H),

where s+ ikh = (s1 + ikh, s2 + ikh) with s1 ∈ D1, s2 ∈ D2, and

Z(s) = (φ(s1), ζ(s2, α;B)).

In the proof of Theorem 3, the first main goal is the following mixed joint discrete limit
theorem.

THEOREM 4. Suppose that the set L(P, α, h) is linearly independent over Q. Then the pro-
bability measure PN converges weakly to PZ as N → ∞.

We will omit some details of the proof because the proof follows the standard way (see,
e.g., the proof of Theorem 7 of [3]). However, though the following lemma, a mixed joint
discrete limit theorem on the torus Ω, is exactly the same as Lemma 1 of [3], we reproduce
the detailed proof since this result plays a crucial role and from the proof we can see why the
linear independence of L(P, α, h) is necessary.
Define

QN (A) :=
1

N + 1
#

{
0 6 k 6 N :

((
p−ikh : p ∈ P

)
,
(
(m+ α)−ikh : m ∈ N0

))
∈ A

}
,

A ∈ B(Ω).

LEMMA 1 ([3]). Suppose that the set L(P, α, h) satisfies the condition of Theorem 3. Then
QN converges weakly to the Haar measure mH as N → ∞.
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Proof. For the proof of Lemma 1, we use the Fourier transformation method (for the details,
see [15]). The dual group of Ω is isomorphic to the group

G :=

(⊕
p∈P

Zp

)⊕( ⊕
m∈N0

Zm

)

with Zp = Z for all p ∈ P and Zm = Z for all m ∈ N0. The element of G is written as
(k, l) = ((kp : p ∈ P), (lm : m ∈ N0)), where only a finite number of integers kp and lm are
nonzero, and acts on Ω by

(ω1, ω2) → (ω
k
1 , ω

l
2) =

∏
p∈P

ω
kp

1 (p)
∏

m∈N0

ωlm
2 (m).

Let gN (k, l), (k, l) ∈ G, be the Fourier transform of the measure QN (A). Then we have

gN (k, l) =

∫
Ω

(∏
p∈P

ω
kp

1 (p)
∏

m∈N0

ωlm
2 (m)

)
dQN .

Thus, from the definition of QN (A),

gN (k, l) =
1

N + 1

N∑
k=0

∏
p∈P

p−ikkph
∏

m∈N0

(m+ α)−iklmh

=
1

N + 1

N∑
k=0

exp

{
− ikh

(∑
p∈P

kp log p+
∑

m∈N0

lm log(m+ α)

)}
. (9)

By the assumption of the lemma the set L(P, α, h) is linearly independent over Q.
Then the set {(log p : p ∈ P), (log(m+ α) : m ∈ N0)} is linearly independent over Q, and∑

p∈P
kp log p+

∑
m∈N0

lm log(m+ α) = 0

if and only if k = 0 and l = 0. Moreover, if (k, l) ̸= (0, 0), then

exp

{
− ih

(∑
p∈P

kp log p+
∑

m∈N0

lm log(m+ α)

)}
̸= 1. (10)

In fact, if (10) were false, then

∑
p∈P

kp log p+
∑

m∈N0

lm log(m+ α) =
2πa

h
(11)

with some a ∈ Z \ {0}. But this contradicts to the linear independence of the set L(P, α, h).
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Therefore, from (9) and (10) we find that

gN (k, l) =


1 if (k, l) = (0, 0),

1−exp
{
−i(N+1)h

(∑
p∈P kp log p+

∑
m∈N0

lm log(m+α)
)}

(N+1)
(
1−exp

{
−ih

(∑
p∈P kp log p+

∑
m∈N0

lm log(m+α)
)}) if (k, l) ̸= (0, 0).

Hence,

lim
N→∞

gN (k, l) =

{
1 if (k, l) = (0, 0),

0 otherwise.

By the continuity theorem for probability measures on compact groups (see [7]) we obtain
the statement of the lemma, that is, QN (A) converges weakly to mH as N → ∞.

Now, using Lemma 1, we may prove a joint mixed discrete limit theorem for absolutely
convergent Dirichlet series.
Let, for fixed σ̂ > 1

2 ,

v1(m,n) = exp

{
−
(
m

n

)σ̂}
, m, n ∈ N,

and

v2(m,n, α) = exp

{
−

(
m+ α

n+ α

)σ̂}
, m ∈ N0, n ∈ N.

Define the series

φn(s) =
∞∑

m=1

cmv1(m,n)

ms
,

ζn(s, α;B) =
∞∑

m=0

bmv2(m,n, α)

(m+ α)s
,

and, for ω̂ :=
(
ω̂1, ω̂2

)
∈ Ω,

φn(s, ω̂1) =

∞∑
m=1

ω̂1(m)cmv1(m,n)

ms
,

ζn(s, α, ω̂2;B) =
∞∑

m=0

ω̂2(m)bmv2(m,n, α)

(m+ α)s
.

These series are absolutely convergent for σ > 1
2 .

For brevity, denote

Zn(s) = (φn(s1), ζn(s2, α;B))

and

Zn(s, ω̂) = (φn(s1, ω̂1), ζn(s2, α, ω̂2;B)).
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Now, on the space (H,B(H)), we consider the weak convergence of the measures

PN,n(A) =
1

N + 1
#

{
0 6 k 6 N : Zn(s+ ikh) ∈ A

}
and, for ω̂ ∈ Ω,

P̂N,n(A) =
1

N + 1
#

{
0 6 k 6 N : Zn(s+ ikh, ω̂) ∈ A

}
.

LEMMA 2. Suppose that the set L(P, α, h) is linearly independent over Q. Then, on
(H,B(H)), there exists a probability measure Pn such that the measures PN,n and P̂N,n

both converge weakly to Pn as N → ∞.

Proof. The proof of the lemma is analogous to that of Lemma 2 from [3].

The next step of the proof is to approximate the tuple (Z(s), Z(s, ω̂)) by the tuple
(
Zn(s),

Zn(s, ω̂)
)
. For this purpose, we will use the metric on the space H . For any open region G,

it is known (see [5] or [15]) that there exists a sequence of compact sets {Kl : l ∈ N} ⊂ G
satisfying conditions:

1. G =
∞∪
l=1

Kl,

2. Kl ⊂ Kl+1 for any l ∈ N,
3. if K is a compact set, then K ⊂ Kl for some l ∈ N.
For functions g1, g2 ∈ H(G), define the metric ϱG by the formula

ϱG(g1, g2) =

∞∑
l=1

1

2l
sups∈Kl

|g1(s)− g2(s)|
1 + sups∈Kl

|g1(s)− g2(s)|
,

which induces the topology of uniform convergence on compacta. Put ϱ1 = ϱD1 and ϱ2 =
ϱD2 . Define, for g

1
= (g11, g21) and g

2
= (g12, g22) from H ,

ϱ(g
1
, g

2
) = max

{
ϱ1(g11, g12), ϱ2(g21, g22)

}
.

In such a way, we obtain a metric on the space H inducing its topology.

LEMMA 3. Suppose that the set L(P, α, h) is linearly independent over Q. Then

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

ϱ
(
Z(s+ ikh), Zn(s+ ikh)

)
= 0 (12)

and, for almost all ω ∈ Ω,

lim
n→∞

lim sup
N→∞

1

N + 1

N∑
k=0

ϱ
(
Z(s+ ikh, ω), Zn(s+ ikh, ω)

)
= 0. (13)
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Proof. This can be shown in a way similar to the proofs of Lemmas 3 and 4 of [3], respec-
tively. The main body of the argument in [3], based on an application of Gallagher’s lemma,
is going back to the proof of Theorem 4.1 of [17]. We just indicate some different points
from the proof in [3] and [17].
The starting point of the proof of (12) is the integral expressions

φn(s) =
1

2πi

∫ a+i∞

a−i∞
φ(s+ z)ln(z)

dz

z
(14)

and

ζn(s, α;B) =
1

2πi

∫ a+i∞

a−i∞
ζ(s+ z, α;B)ln(z, α)

dz

z
, (15)

where a > 1
2 , and

ln(z) =
z

a
Γ
(z
a

)
nz and ln(z, α) =

z

a
Γ
(z
a

)
(n+ α)z,

respectively. We shift the paths to the left and apply the residue calculus. The case (15) is
discussed in [17], where the path is moved to ℜz = b − σ with 1

2 < b < 1 and σ > b. In
this case, the relevant poles are only z = 0 and z = 1 − s. As for (14), we shift the path to
ℜz = σ0 + δ0 − σ, where δ0 is a small positive number such that φ(s) is holomorphic in the
strip σ0 6 ℜs 6 σ0 + δ0. We encounter all the poles z = sj(φ)− s, 1 6 j 6 l, so we have
to consider all the residues coming from those poles. But they can be handled by the same
method as described in the proof of Theorem 4.1 of [17].
To complete the proof of (12), it is also necessary to show the discrete mean square estimate

N∑
k=0

|φ(σ0 + δ0 + it+ ikh)|2 ≪ N(1 + |t|). (16)

This is an analogue of Lemma 4.3 of [17] and can be obtained similarly from (5) and Gal-
lagher’s lemma (Lemma 1.4 of [22]).
As for the proof of (13), we need the “random” version of (5), that is,∫ T

0

|φ(σ + it, ω1)|2dt = O(T ), σ > σ0, (17)

for almost all ω1 ∈ Ω1. This is actually a special case of Lemma 10 of [16]. The corres-
ponding mean value result for ζ(s, α, ω2;B) has been shown in [8]. Using those mean value
results, we can show (13) in the same way as in the proof of Lemma 4 of [3].

Lemma 3, together with the weak convergence of of the measures PN,n and P̂N,n (Lem-
ma 2), enables us to prove that the probability measure PN and one more probability measure
defined as

P̂N (A) =
1

N + 1
#
{
0 6 k 6 N : Z(s+ ikh, ω) ∈ A

}
, A ∈ B(H),
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both converge weakly to the same probability measure P , that is, the following statement
holds.

LEMMA 4. Suppose that the set L(P, α, h) is linearly independent over Q. Then, on
(H,B(H)), there exists a probability measure P such that the measures PN and P̂N both
converge weakly to P as N → ∞.

Proof. This lemma can be shown analogously to Lemma 5 from [3].

Proof of Theorem 4. As usual, in the last step of the proof of the functional discrete limit
theorem, we show that the limit measure P in Lemma 4 coincides with PZ .
Define the measurable measure-preserving transformation Φh : Ω → Ω on the group Ω by
Φh(ω) = fhω, ω ∈ Ω, where fh = {(p−ih : p ∈ P), ((m + α)−ih : m ∈ N0)}. Again
using (10), we see that {Φh(s)} is an ergodic one-parameter group. This, together with the
well-known Birkhoff–Khintchine theorem (see [6]) and the weak convergence of P̂N (A),
gives that P (A) = PZ(A) for all A ∈ B(H). For the details, consult the proof of Theorem 7
of [3] or Theorem 6.1 of [17].

3. THE SUPPORT OF THE MEASURE PZ

To introduce the support of PZ , we repeat the arguments of Section 4 from [12].
Let φ ∈ S̃, and let K1, K2, f1, and f2 be as in the statement of Theorem 3. Then we can find
a real number σ0 with σ∗ < σ0 < 1 and a positive number M > 0 such that K1 is included
in the open rectangle

DM = {s : σ0 < σ < 1, |t| < M}.

Since φ(s) ∈ S̃, the pole of φ is at most at s = 1. Then, in this case, we find that

Dφ = {s : σ > σ0, σ ̸= 1}.

Therefore, DM is an open subset of Dφ. Also, we can find T > 0 such that K2 belongs to
the open rectangle

DT =

{
s :

1

2
< σ < 1, |t| < T

}
.

To obtain the support of the measure PZ , we will use Theorem 4 with D1 = DM and
D2 = DT . Let Sφ be the set of all f ∈ H(DM ) that are nonvanishing on DM or constantly
equivalent to 0 on DM .

THEOREM 5. Suppose that the set L(P, α, h) is linearly independent over Q. The support
of the measure PZ is the set S = Sφ ×H(DT ).

Proof. This is an analogue to Lemma 4.3 of [12] or Theorem 8 from [3]. The fact that
φ ∈ S̃ is essentially used here.



On mixed joint discrete universality for a class of zeta-functions 63

4. PROOF OF THE MIXED JOINT DISCRETE UNIVERSALITY THEOREM

The proof of Theorem 3 follows from Theorems 4 and 5 and the Mergelyan theorem (see
[20]), which we state as a lemma.

LEMMA 5 (Mergelyan). Let K ⊂ C be a compact subset with connected complement, and
f(s) be a continuous function on K that is analytic in the interior of K. Then, for every
ε > 0, there exists a polynomial p(s) such that

sup
s∈K

|f(s)− p(s)| < ε.

Proof of Theorem 3. By Lemma 5 there exist polynomials p1(s) and p2(s) such that

sup
s∈K1

∣∣f1(s)− ep1(s)
∣∣ < ε

2
(18)

and

sup
s∈K2

∣∣f2(s)− p2(s)
∣∣ < ε

2
. (19)

We introduce the set

G =

{
(g1, g2) ∈ H : sup

s∈K1

|g1(s)− ep1(s)| < ε

2
, sup
s∈K2

|g2(s)− p2(s)| <
ε

2

}
.

Then G is an open set of the space H . By Theorem 5 it is an open neighborhood of the
element (ep1(s), p2(s)) of the support of PZ . Thus, PZ(G) > 0. Using Theorem 4 and an
equivalent statement of the weak convergence in terms of open sets (see [1]), we obtain

lim inf
N→∞

PN (G) > PZ(G) > 0.

This and the definitions of PN and G show that

lim inf
N→∞

1

N + 1
#

{
0 6 k 6 N : sup

s∈K1

∣∣φ(s+ ikh)− ep1(s)
∣∣ < ε

2
,

sup
s∈K2

∣∣ζ(s+ ikh, α;B)− p2(s)
∣∣ < ε

2

}
> 0. (20)

From (18) and (19) we deduce that{
0 6 k 6 N : sup

s∈K1

∣∣φ(s+ ikh)− f1(s)
∣∣ < ε, sup

s∈K2

∣∣ζ(s+ ikh, α;B)− f2(s)
∣∣ < ε

}

⊃
{
0 6 k 6 N : sup

s∈K1

∣∣φ(s+ ikh)− ep1(s)
∣∣ < ε

2
, sup
s∈K2

∣∣ζ(s+ ikh, α;B)− p2(s)
∣∣ < ε

2

}
.

This, together with inequality (20), gives the assertion of the theorem.
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5. THE CASE OF MODIFIED ZETA-FUNCTIONS

In Section 1, we mentioned an incomplete point in [10]. An inaccuracy is actually included
in a former paper [11], whose result is applied to [10]. On p. 103 of [11], inequality (10)
for (k, l) ̸= (0, 0) is claimed under the assumption that α is transcendental and exp{2π

h } is
rational. The same reasoning as in the case of (10) is valid if there is some lm ̸= 0 because
from (11) we have ∏

p∈P
pkp

∏
m∈N0

(m+ α)lm =

(
exp

{
2π

h

})a

, (21)

which contradicts the assumption. But if all lm = 0, then (21) does not produce a contradic-
tion. Therefore, the results in [11], and hence in [10], are to be amended.
Write exp

{
2π
h

}
= a

b , a, b ∈ Z, (a, b) = 1, and denote by Ph the set of all primes appearing
as prime divisors of a or b. Instead of QN (A) defined in Section 2, we define QN,h(A) by
replacing P in the definition of QN (A) by P \ Ph. Let

Ω1h =
∏

p∈P\Ph

γp

and denote the probability Haar measure on (Ω1h,B(Ω1h)) by m1hH .

LEMMA 6. Let α be transcendental, and exp
{

2π
h

}
be rational. Then QN,h converges

weakly to the Haar measure mhH = m1hH × m2H on the space Ωh = Ω1h × Ω2 as
N → ∞.

Proof. If we replace P by P \ Ph in (21), then the resulting equality is impossible even if
all lm = 0. Therefore, (10) is valid for any (k, l) ̸= (0, 0), and so we can mimic the proof of
Lemma 1.

This lemma is a corrected version of Lemma 2.1 of [11]. Let χ be a Dirichlet character.
Define the modified Dirichlet L-function by

Lh(s, χ) =
∏

p∈P\Ph

(
1− χ(p)

ps

)−1

.

Then, using Lemma 6, we can show a mixed joint discrete universality theorem for Lh(s, χ)
and a periodic Hurwitz zeta-function by the argument in [10]. This is the corrected version
of Theorem 1.7 of [10], which was already mentioned in [19].
It is possible to generalize the above arguments to the class of Matsumoto zeta-functions. We
conclude the present paper with the statement of such results.
Define the modified Matsumoto zeta-function by

φ̃h(s) =
∏

m∈N\Nh

g(m)∏
j=1

(
1− a(j)m p−sf(j,m)

m

)−1

, (22)
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where Nh is the set of all m ∈ N such that pm ∈ Ph, and φh(s) = φ̃h(s + α + β).
The difference between φh(s) and φ(s) is only finitely many Euler factors, so their analytic
properties are not so different. In particular, if φ(s) satisfies properties (a), (b), and (c), then
so does φh(s). Therefore, the method developed in the previous sections of the present paper
can be applied to φh(s). Let

Zh(s) = (φh(s1), ζ(s2, α;B)),

Zh(s, ωh) = (φh(s1, ω1h), ζ(s2, α, ω2;B)),

where ω1h ∈ Ω1h and ωh = (ω1h, ω2) ∈ Ωh. Define PZ,h and PN,h analogously to PZ

and PN , just replacing Z(s, ω) and Z(s+ ikh) by Zh(s, ωh) and Zh(s+ ikh), respectively.
Then, using Lemma 6, we obtain the following:

THEOREM 6. Let α be transcendental, and exp
{

2π
h

}
be rational. Then PN,h converges

weakly to PZ,h as N → ∞.

THEOREM 7. Let φ(s) ∈ S̃, K1, K2, f1(s), and f2(s) satisfy the conditions of Theorem 2.
Suppose that α is transcendental, and exp

{
2π
h

}
is rational. Then, for every ε > 0,

lim inf
N→∞

1

N + 1
#

{
0 6 k 6 N : sup

s∈K1

|φh(s+ ikh)− f1(s)| < ε,

sup
s∈K2

|ζ(s+ ikh, α;B)− f2(s)| < ε

}
> 0.
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