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Zeta and L-functions and Bernoulli polynomials of root systems

By Yasushi Komori,∗) Kohji Matsumoto,∗) and Hirofumi Tsumura∗∗)

Abstract: This article is essentially an announcement of the papers [7, 8, 9, 10] of the
authors, though some of the examples are not included in those papers. We consider what is
called zeta and L-functions of root systems which can be regarded as a multi-variable version of
Witten multiple zeta and L-functions. Furthermore, corresponding to these functions, Bernoulli
polynomials of root systems are defined. First we state several analytic properties, such as analytic
continuation and location of singularities of these functions. Secondly we generalize the Bernoulli
polynomials and give some expressions of values of zeta and L-functions of root systems in terms of
these polynomials. Finally we give some functional relations among them by our previous method.
These relations include the known formulas for their special values formulated by Zagier based on
Witten’s work.

Key words: Multiple zeta-function; Witten zeta-function; Root systems; Simple Lie al-
geras; Analytic continuation; Functional relation.

1. Zeta and L-functions of root systems
Let N, N0, Z, Q, R and C be the set of all posi-
tive integers, non-negative integers, integers, rational
numbers, real numbers and complex numbers respec-
tively.

Let g be a complex semisimple Lie algebra with
rank r. The Witten zeta-function associated with g

is defined by

ζW (s; g) =
∑
ϕ

(dimϕ)−s,(1.1)

where the summation runs over all finite dimensional
irreducible representations ϕ of g. It is known that

ζW (2k; g) = CW (2k, g)π2kn

for any k ∈ N, where n is the number of all positive
roots and CW (2k, g) ∈ Q. This is called Witten’s
volume formula (Witten [20], Zagier [21]).

In this paper, we introduce its multi-variable
version and character analogues defined as follows.

Let V be an r-dimensional real vector space
equipped with an inner product 〈·, ·〉. We denote
the norm of v ∈ V by ‖v‖ = 〈v, v〉1/2. The dual
space V ∗ is identified with V via the inner product
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of V . Let ∆ be a finite reduced root system in V and
Ψ = {α1, . . . , αr} its fundamental system. Let ∆+

and ∆− be the set of all positive roots and negative
roots respectively. Then we have a decomposition
of the root system ∆ = ∆+

∐
∆−. Let Q∨ be the

coroot lattice, P the weight lattice, P+ the set of in-
tegral dominant weights and P++ the set of integral
strongly dominant weights respectively defined by

Q∨ =
r⊕
i=1

Zα∨i , P =
r⊕
i=1

Zλi,

P+ =
r⊕
i=1

N0 λi, P++ =
r⊕
i=1

Nλi,

where the fundamental weights {λj}rj=1 are a basis
dual to Ψ∨ satisfying 〈α∨i , λj〉 = δij . Let

ρ =
1
2

∑
α∈∆+

α =
r∑
j=1

λj

be the lowest strongly dominant weight. Then
P++ = P+ + ρ.

We define the reflection σα with respect to a
root α ∈ ∆ as

σα : V → V, σα : v 7→ v − 〈α∨, v〉α

and for a subset ∆∗ ⊂ ∆, let W (∆∗) be the group
generated by reflections σα for α ∈ ∆∗. Let W =
W (∆) be the Weyl group. Then σj = σαj (1 ≤ j ≤
r) generates W . Namely we have W = W (Ψ). Any
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two fundamental systems Ψ, Ψ′ are conjugate under
W .

Let Aut(∆) be the subgroup of all the automor-
phisms GL(V ) which stabilizes ∆ (see [3, §12.2]).
Then the Weyl group W is a normal subgroup of
Aut(∆) and there exists a subgroup Ω ⊂ Aut(∆)
such that Aut(∆) = Ω n W . The group Aut(∆) is
called the extended Weyl group. For w ∈ Aut(∆),
we set ∆w = ∆+ ∩ w−1∆− and the length function
`(w) = |∆w| (see [4, §1.6]). The subgroup Ω is char-
acterized as w ∈ Ω if and only if `(w) = 0. Note that
w∆w = ∆− ∩ w∆+ = −∆w−1 and `(w) = `(w−1).

Let n = |∆+| and r be the rank of ∆. Let ∆ be
the quotient of ∆ obtained by identifying α and −α.
For s = (sα)α∈∆ ∈ Cn we define an action of Aut(∆)
by (ws)α = sw−1α. For y ∈ V , s ∈ Cn and ∆∗ ⊂ ∆+

such that for any fundamental weight λi there exists
a root α ∈ ∆∗ satisfying 〈α∨, λi〉 > 0, we define

ζr(s,y; ∆∗) =
∑

λ∈P++

e2π
√
−1〈y,λ〉

∏
α∈∆∗

1
〈α∨, λ〉sα

,

which is called the zeta-function of the roots ∆∗ with
exponential factors, introduced in [7, 8]. When y =
0 and ∆∗ = ∆+ is of type Xr, we denote it simply by
ζr(s; ∆) or ζr(s;Xr) which is called the zeta-function
of the root system Xr. In particular when s = (s),
namely sα = s for each α, this coincides with (1.1)
up to some exponential function part.

In the case of rank one, ζ1(s;A1) is just the Rie-
mann zeta-function ζ(s). In the case of rank two,
analytic properties of ζ2(s;A2) and ζ2(s;B2) have
been studied in, for example, [12, 14, 17, 18, 19, 21].
In the case of rank three, ζ3(s;A3) has been studied
in [2, 5, 15]. Now we consider the cases of B3 and
C3 types, namely

ζ3(s1, s2, s3, s4, s5, s6, s7, s8, s9;B3)

=
∞∑

m1,m2,m3=1

m−s11 m−s22 m−s33 (m1 +m2)−s4

× (m2 +m3)−s5(2m2 +m3)−s6(m1 +m2 +m3)−s7

× (m1 + 2m2 +m3)−s8(2m1 + 2m2 +m3)−s9 ,

and

ζ3(s1, s2, s3, s4, s5, s6, s7, s8, s9;C3)

=
∞∑

m1,m2,m3=1

m−s11 m−s22 m−s33 (m1 +m2)−s4

× (m2 +m3)−s5(m2 + 2m3)−s6(m1 +m2 +m3)−s7

× (m1 +m2 + 2m3)−s8(m1 + 2m2 + 2m3)−s9 .

By the same method as introduced in the papers
[11, 12, 13, 14] of the second named author, we see
that there is a certain recursive structure in the fam-
ily of those zeta-functions corresponding to inclusion
relations among certain sets of roots. This consider-
ation gives the analytic continuation of these func-
tions to the whole complex space, and furthermore,
determines the location of possible singularities (cf.
[7, 15, 16]). For example, we obtain

Theorem 1.1 ([7]). The possible singularities
of ζ3(s;B3) and of ζ3(s;C3) are located only on the
subsets of C9 defined by one of the following:

s1 + s4 + s7 + s8 + s9 = 1− `,
s3 + s5 + s6 + s7 + s8 + s9 = 1− `,
s2 + s4 + s5 + s6 + s7 + s8 + s9 = 1− `,
s1 + s2 + s4 + s5 + s6 + s7 + s8 + s9 = 2− `,
s1 + s3 + s4 + s5 + s6 + s7 + s8 + s9 = 2− `,
s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 = 2− `,
s1 + s2 + s3 + s4 + s5 + s6 + s7 + s8 + s9 = 3,

where ` ∈ N0.
It is to be noted that the above recursive struc-

ture can be explained in terms of Dynkin diagrams; a
recursive step corresponds to a cut of one edge of the
diagram. For example, by cutting one of the right-
most edges in the Dynkin diagram of type B3 or C3,
we obtain that of A3 type, which corresponds to the
equation

ζ3(s;A3) = ζ3(s1, s2, s3, s4, s5, 0, s6, 0, 0;B3 or C3).

In fact, ζ3(s, B3 or C3) can be expressed as an in-
tegral involving ζ(·, A3) in the integrand. Conse-
quently, we have the following recursion diagram

B3 or C3
c c c

→ A3
c c c

→ A2 ×A1
c c c

→ A1 ×A1 ×A1
c c c

by repeating the same type of procedure.
Define

S(s,y; ∆) =∑
w∈W

( ∏
α∈∆w−1

(−1)−sα
)
ζr(w−1s, w−1y; ∆).

This S(s,y; ∆) is a “Weyl group symmetric” lin-
ear combination of zeta-functions of root systems,
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which plays a fundamental role in the study of value-
relations and functional relations in [8].

Let χα be a Dirichlet character modulo fα ∈ N
for α ∈ ∆. Set χ = (χα)α∈∆. We define an action of
Aut(∆) on characters by

(wχ)α = χw−1α.

Now we define the L-function by

Lr(s,χ; ∆) =
∑

λ∈P++

∏
α∈∆+

χα(〈α∨, λ〉)
〈α∨, λ〉sα

,

and more generally, define the L-function of ∆∗ by

Lr(s,χ; ∆∗) =
∑

λ∈P++

∏
α∈∆∗

χα(〈α∨, λ〉)
〈α∨, λ〉sα

for any ∆∗ ⊂ ∆+ such that for any fundamen-
tal weight λi, there exists a root α ∈ ∆∗ satisfy-
ing 〈α∨, λi〉 > 0. Using the method introduced in
[11, 12, 13, 14], we have

Theorem 1.2 ([9]). The L-function
Lr(s,χ; ∆∗) can be continued meromorphically
to the whole Cn∗ space, where n∗ = |∆∗|.

2. Bernoulli polynomials Let V be the
set of all linearly independent subsets V =
{β1, . . . , βr} ⊂ ∆+ and let L(V∨) =

⊕
β∈V Zβ∨.

For V ∈ V , let {µV
β } be the dual basis of V∨ =

{β∨}. Let R be the set of all linearly independent
subsets R = {β1, . . . , βr−1} ⊂ ∆, HR∨ =

⊕r−1
i=1 Rβ∨i

the hyperplane passing through R∨ ∪ {0} and

HR :=
⋃

R∈R
q∈Q∨

(HR∨ + q).

Then it can be shown that V \HR is a disjoint union
of open subsets. Hence we denote by D(ν) each open
connected component of V \ HR so that

V \ HR =
∐
ν∈J

D(ν),

where J is a set of indices. Fix a vector φ ∈ V such
that

φ 6∈
⋃

R∈R

HR∨ ⊂ HR.

Then 〈φ, µV
β 〉 6= 0 for all V ∈ V and β ∈ V. For

x ∈ R, we denote its fractional part x − [x] by {x}.
For y ∈ V , V ∈ V and β ∈ V, we define

{y}V,β =

{
{〈y, µV

β 〉} (〈φ, µV
β 〉 > 0),

1− {−〈y, µV
β 〉} (〈φ, µV

β 〉 < 0).

We note that {x} = 1 − {−x} holds for x ∈ R \ Z
and that {x} is right continuous while 1 − {−x} is
left continuous. For y ∈ V and t = (tα)α∈∆ ∈ Cn,
we define

F (t,y; ∆) =
∑
V∈V

( ∏
γ∈∆+\V

tγ
tγ −

∑
β∈V tβ〈γ∨, µV

β 〉

)
× 1
|Q∨/L(V∨)|

∑
q∈Q∨/L(V∨)

×
(∏
β∈V

tβ exp(tβ{y + q}V,β)
etβ − 1

)
,

and in particular F (t; ∆) = F (t,0; ∆). It should be
noted that in the A1 case, we have

F (t,y;A1) =
tet{y}

et − 1

=
∞∑
k=0

Bk({y}) t
k

k!
,

with y = 〈y, λ1〉, t = tα1 and φ = α∨1 , where {Bk(x)}
are the classical Bernoulli polynomials. Let T = {t ∈
C | |t| < 2π}n.

Theorem 2.1 ([8, 9]). Fix y ∈ V . Then
F (t,y; ∆) is holomorphic on T with respect to t.

For k = (kα)α∈∆ ∈ Nn0 and y ∈ V , we define
P (k,y; ∆) and Bk(∆) by

F (t,y; ∆) =
∑
k∈Nn0

P (k,y; ∆)
∏
α∈∆+

tkαα
kα!

,

F (t; ∆) =
∑
k∈Nn0

Bk(∆)
∏
α∈∆+

tkαα
kα!

.

Let yi = 〈y, λi〉 for 1 ≤ i ≤ r and we identify y with
(yi)1≤i≤r ∈ Rr. We set Q [y] = Q [(yi)1≤i≤r].

Theorem 2.2 ([8, 9]). The function
P (k,y; ∆) is analytically continued to a poly-
nomial function B

(ν)
k (y; ∆) ∈ Q [y] from each D(ν)

to the whole space C ⊗ V with its total degree at
most |k| =

∑
α∈∆+

kα.
Let S = {s = (sα) ∈ Cn | <sα > 1 for α ∈

∆+} and K = S ∩ Nn. Note that both S and K are
Aut(∆)-invariant sets.

Theorem 2.3 ([8]).

S(k,y; ∆) = (−1)n
( ∏
α∈∆+

(2π
√
−1)kα

kα!

)
P (k,y; ∆)

for k ∈ K.
In the A1 case, this theorem reduces to the for-

mula
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(2.1)
∑

j∈Z\{0}

e2π
√
−1jy

jk
= − (2π

√
−1)k

k!
Bk({y})

for k ≥ 2. Hence the function P (k,y; ∆) may be re-
garded as a generalization of the Bernoulli periodic
functions, Bk(∆) = P (k, 0; ∆) the Bernoulli num-
bers and B

(ν)
k (y; ∆) the Bernoulli polynomials (see

[1]). We have shown in [8] that P (k,y; ∆) is continu-
ous in y on V and F (t,y; ∆) is continuous on T×V
if ∆ is not of type A1.

We define generalized Bernoulli numbers
Bk,χ(∆) by its generating function G(t,χ; ∆) as

G(t,χ; ∆)

=
fα∑
aα=1
α∈∆+

( ∏
α∈∆+

χα(aα)/fα
)
F (f t,y(a; f); ∆)

=
∑
k∈Nn0

Bk,χ(∆)
∏
α∈∆+

tkαα
kα!

,

where f t = (fαtα)α∈∆+ and

y(a; f) =
∑
α∈∆+

aα
fα
α∨.

Theorem 2.4 ([9]). Let k ∈ K. Assume
kα = kβ, χα = χβ if ‖α‖ = ‖β‖, and assume
(−1)−kαχα(−1) = 1 for all α ∈ ∆+. Then

Lr(k,χ; ∆)

=
(−1)|k|+n

|W |

( ∏
α∈∆+

(2π
√
−1)kα

kα!fkαα
g(χα)

)
Bk,χ(∆),

where g(χ) is the Gauss sum.
Theorem 2.5 ([9]). Assume that ∆ is an ir-

reducible root system. Moreover assume that fα > 1
if ∆ is of type A1. Then for w ∈ Aut(∆),

Bw−1k,w−1χ(∆) =
( ∏
α∈∆w−1

(−1)−kαχα(−1)
)
Bk,χ(∆).

Theorem 2.6 ([9]). We have Bk,χ(∆) = 0 if
there exists an element w ∈ Aut(∆)k∩Aut(∆)χ such
that ∏

α∈∆w−1

(−1)−kαχα(−1) 6= 1,

where Aut(∆)k and Aut(∆)χ are the stabilizers of k
and χ respectively.

A more explicit form of the generating func-
tion F (t,y; ∆) can be calculated. For example,
F (t,y;B2) is given as follows.

Example 2.7. The set of positive roots of
type B2 consists of α1, α2, 2α1 + α2 and α1 + α2.
Let t1 = tα1 , t2 = tα2 , t3 = t2α1+α2 and t4 = tα1+α2 .
Let φ = α∨1 + εα∨2 where ε > 0 is sufficiently small.
Then we have
F (t,y;B2) = t1t2t3t4

×
( e{y1}t1+{y2}t2

(et1 − 1)(et2 − 1)(t1 + t2 − t3)(t1 + 2t2 − t4)

+
e{y1−y2}t1+{y2}t3

(et1 − 1)(et3 − 1)(t1 + t2 − t3)(t1 − 2t3 + t4)

− 2(e{y1−
y2
2 + 1

2}t1+{ y22 + 1
2}t4 + e{y1−

y2
2 }t1+{ y22 }t4)

(et1 − 1)(et4 − 1)(t1 + 2t2 − t4)(t1 − 2t3 + t4)

− e(1−{y1−y2})t2+{y1}t3

(et2 − 1)(et3 − 1)(t1 + t2 − t3)(t2 + t3 − t4)

+
e(1−{2y1−y2})t2+{y1}t4

(et2 − 1)(et4 − 1)(t1 + 2t2 − t4)(t2 + t3 − t4)

+
e{2y1−y2}t3+(1−{y1−y2})t4

(et3 − 1)(et4 − 1)(t2 + t3 − t4)(t1 − 2t3 + t4)

)
.

By using the generating functions, we can ex-
plicitly calculate Bk,χ(∆). Hence, from Theorem
2.4, we obtain the following examples.

Example 2.8. Let 11 be the trivial character.
In the case when χ = {11} = (11, . . . , 11), k = {2} =
(2, . . . , 2) and y = 0, we have

ζ2({2};B2) =
π8

302400
;

ζ3({2};B3) =
19

8403115488768000
π18;

ζ3({2};C3) =
19

8403115488768000
π18,

which are examples of Witten’s volume formulas with
explicit values of the constants. Let χ5 the quadratic
character of conductor 5. Then we have

L2(2, 2, 2, 2;χ5, χ5, χ5, χ5;B2) =
92

29296875
π8;

L2(2, 4, 4, 2;χ5, χ5, χ5, χ5;B2) =
133676

17303466796875
π12;

L2(2, 2, 2, 2; 11, χ5, χ5, 11;B2) = − 3679
1230468750

π8;

L3(2, 2, 2, 2, 2, 2;χ5, χ5, χ5, χ5, χ5, χ5;A3)

= − 1856
213623046875

π12.

Also, let ρ7 be the even cubic character of conductor
7 defined by

ρ7(1) = 1, ρ7(2) = e2π
√
−1/3, ρ7(3) = e4π

√
−1/3.

Then we obtain
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L2(2, 2, 2, 2; ρ7, ρ7, ρ7, ρ7;B2)

=
π8

g(ρ7)4

(
− 3406

86472015
− 1294

√
−3

17294403

)
= g(ρ7)4π8

(
− 3406

207619308015
− 1294

√
−3

41523861603

)
;

L2(2, 4, 4, 2; 11, ρ7, ρ7, 11;B2)

= g(ρ7)2π12

(
69967019

181289027372537700

+
102810289

√
−3

181289027372537700

)
.

3. Functional relations By using the
method introduced in the papers [18, 19] of the
third named author, we can prove some functional
relations among zeta-functions and also among
L-functions of root systems which include Witten’s
volume formulas as follows.

Example 3.1. In the case of A3 type , we have

2ζ3(2, 2, s, 2, 2, 2;A3) + ζ3(2, s, 2, 2, 2, 2;A3)

+ ζ3(2, 2, 2, 2, s, 2;A3) + 2ζ3(2, 2, 2, 2, 2, s;A3)

= 339ζ(s+ 10)− 256ζ(2)ζ(s+ 8)

+ 74ζ(4)ζ(s+ 6) + 2ζ(6)ζ(s+ 4).

This equation, as well as the functional equations
stated below, holds for all s ∈ C except for singular
points of functions on the both sides.

In particular, putting s = 2 in the above equa-
tion, we obtain

ζ3({2};A3) =
23

2554051500
π12

which was obtained by Gunnells and Sczech [2]. Note
that Nakamura [17] considers functional relations of
A3 type in a different way.

By using our method, we can further obtain

ζ3({1};A3) = − 62
105

ζ(2)3 + 2ζ(3)2,

which is not included in Witten’s volume formulas.
Example 3.2. In the case of C3 type, we have

ζ3(2, 2, s, 2, 2, 2, 2, 2, 2;C3)

+ ζ3(2, 2, 2, 2, s, 2, 2, 2, 2;C3)

+ ζ3(2, 2, 2, 2, 2, 2, s, 2, 2;C3)

=
184775
4096

ζ(s+ 16)− 16875
512

ζ(2)ζ(s+ 14)

+
513
64

ζ(4)ζ(s+ 12) +
25
64
ζ(6)ζ(s+ 10)

+
1
32
ζ(8)ζ(s+ 8).

Putting s = 2, we obtain

ζ3({2};C3) =
19

8403115488768000
π18,

which coincides with a result stated in Example 2.8.

Example 3.3. We further consider the case of
G2 type in [10], for example,

ζ2(2, s, 2, 2, 2, 2;G2) + ζ2(2, 2, s, 2, 2, 2;G2)

+ ζ2(2, 2, 2, s, 2, 2;G2)

= − 5
1458

(
2−s +

5519
4

)
ζ(s+ 10)

− 1
162

(
2−s − 466

)
ζ(2)ζ(s+ 8).

Putting s = 2, we obtain

ζ2(2, 2, 2, 2, 2, 2;G2) =
23

297904566960
π12.

Example 3.4. Concerning the L-function of
B2 type, we obtain

L2(2, 2, s, 2;χ5, χ5, χ5, χ5;B2)

+ L2(2, s, 2, 2;χ5, χ5, χ5, χ5;B2)

=
1
50

[
3π
√
−1
{

Li
(
s+ 5; e2π

√
−1/5

)
− Li

(
s+ 5; e−2π

√
−1/5

)}
+ 6π

√
−1
{

Li
(
s+ 5; e4π

√
−1/5

)
− Li

(
s+ 5; e−4π

√
−1/5

)}
− 2π2

{
Li
(
s+ 4; e2π

√
−1/5

)
+ Li

(
s+ 4; e−2π

√
−1/5

)}
− 2

5
π2
{

Li
(
s+ 4; e4π

√
−1/5

)
− Li

(
s+ 4; e−4π

√
−1/5

)}
+

24
5
π2ζ(s+ 4)

]
,

where Li(s; z) =
∑
n≥1 z

nn−s. Putting s = 2 and
using ζ(6) = π6/945,

∞∑
m=1

sin(2πm/5)
m7

=
1112

3515625
π7,

and so on, we obtain

L2(2, 2, 2, 2;χ5, χ5, χ5, χ5;B2) =
92

29296875
π8

which is also a result in Example 2.8.

Remark 3.5. As mentioned above, the func-
tional relations stated in this section can be obtained
by the method in [18, 19]. However we can also ob-
tain them by using a certain generalization of the
method stated in Section 2. This result will be given
in a forthcoming paper.
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