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Abstract: The distribution of the zeros of the Euler double zeta-function ζ2 (s1 , s2 ) , in the case

when s1 = s2 , is studied numerically. Some similarity to the distribution of the zeros of Hurwitz

zeta-functions is observed.

Keywords: double zeta-function, zeros

AMS Subject classification: 11M32, 11M35

Received: 25.02.2014

1. Introduction

The multiple sum

ζr(s1 , . . . , sr) =

X
1�n1<� � �<nr

1

n
s1

1 � � � nsr
r

, (1.1)

where r 2 N and s1 , . . . , sr are complex variables, was introduced independently

by Hoffman [6] and Zagier [15], and has been studied extensively in recent decades.

Mathematicians were first interested in special values of (1.1) at positive integer

points. Then around 2000, the meromorphic continuation of (1.1) to the whole

space Cr was established, and mathematicians started to consider analytic proper-

ties of (1.1).
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The case r = 2 of (1.1), that is

ζ2 (s1 , s2 ) =

1X
n1=1

1X
n2=1

1

n
s1

1 (n1 + n2 )s2
, (1.2)

was first studied already by Euler. Therefore (1.2) is sometimes called the Euler

double sum, or the Euler double zeta-function. Since this is the simplest case, it is

natural to begin analytic studies with (1.2).

The series (1.2) is absolutely convergent in the regionf(s1 , s2 ) 2 C
2 j Re s1 + Re s2 > 2, Re s2 > 1g, (1.3)

and can be continued meromorphically to the whole space C2 . The order estimate

of jζ2 (s1 , s2 )j outside the region (1.3) was discussed in [8], [10], [11]. Various mean

values of jζ2 (s1 , s2 )j has recently been discussed by [13] and [7].

The problem of studying the distribution of zeros of (1.2) (or more generally,

(1.1)) was first proposed by Zhao [16]. The case r = 1 of (1.1) is nothing but the

classical Riemann zeta-function ζ(s) . For the Riemann zeta-function there is the

famous Riemann hypothesis, which predicts that all non-trivial zeros (that is, zeros

except those on the negative real axis) lie on the line Re s = 1/2 . In the case of

ζ2 (s1 , s2 ) , however, the analogue of the Riemann hypothesis does not hold. In fact,

consider the case s1 = s2 (= s) . Let N(σ0, σ00, T ; ζ2 ) denotes the number of zeros of

ζ2 (s, s) (counted with multiplicity) in the rectangle σ0 < σ < σ00 , 0 < t < T , where

σ = Re s and t = Im s. Then it is shown in a recent preprint of Nakamura and

Pankowski [14] that for any σ0 and σ00 satisfying 1/2 < σ0 < σ00 < 1 , it holds that

c1T � N(σ0, σ
00, T ; ζ2 ) � c2T (1.4)

where c1 , c2 are constants with 0 < c1 < c2 .

The reason of this difference lies, probably, on the fact that ζ(s) has the Euler

product expansion while ζ2 (s1 , s2 ) does not have. This is because the additive struc-

ture n1 +n2 in the denominator on the right-hand side of (1.2) breaks multiplicative

structure. This observation suggests that the behaviour of zeros of ζ2 (s1 , s2 ) may

resemble the behaviour of zeros of not ζ(s) , but Hurwitz zeta-functions

ζ(s, α) =

1X
n=0

1

(n + α)s
(0 < α � 1),

03-Matsumoto.tex



297] Zeros of the Euler double zeta-function 23

because ζ(s, α) also includes an additive structure in its denominator. In fact, the

result analogous to (1.4) is known for Hurwitz zeta-functions; let N(σ0, σ00, T ; α)

denotes the number of zeros of ζ(s, α) in the rectangle as above. Then, at least when

α is a rational number ( 6= 1, 1/2 ) (due to Voronin) or a transcendental number

(due to Gonek), it holds that c3T � N(σ0, σ00, T ; α) � c4T with 0 < c3 < c4 (see

Theorems 4.7, 4.8 and 4.10 in [12, Chapter 8]).

The purpose of the present series of papers is to study the behaviour of zeros

of ζ2 (s1 , s2 ) from the viewpoint of numerical computations. In the present paper,

as the first step, we will study the case s1 = s2 = s, and especially we will show

that the behaviour of zeros of ζ2 (s, s) is indeed similar to the behaviour of zeros of

Hurwitz zeta-functions in some sense.

2. The distribution of zeros off the real axis

In this and the next section we describe the results on the distribution of zeros

of ζ2 (s, s) . In this case, the simplest way of computations is to use the harmonic

product formula

ζ(s1 )ζ(s2 ) = ζ2 (s1 , s2 ) + ζ2 (s2 , s1 ) + ζ(s1 + s2 ). (2.1)

Putting s1 = s2 (= s) in (2.1), we obtain

ζ2 (s, s) =
1

2

n
ζ(s)2 � ζ(2s)

o
, (2.2)

and hence all computations can be done just by using Mathematica 9.0.1.0, in which

the package for the computations of the values of ζ(s) is equipped. However in a

forthcoming paper we will study more general situation, when the values of s1 and

s2 are different. As a preparation to such a study, in the present paper we will also

develop another method, which can be applied to the general case.

Here we explain the theoretical background of our second method. The basic

formula which we use in our computations is the following form of the Euler-

Maclaurin summation formula:

ζ2 (s1 , s2 ) =
ζ(s1 + s2 � 1)

s2 � 1
� ζ(s1 + s2 )

2
+
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+

lX
q=1

(s2 )q

Bq+1

(q + 1)!
ζ(s1 + s2 + q) � 1X

n1=1

φl(n1 , s2 )

n
s1

1

, (2.3)

where Bq is the qth Bernoulli number defined by t/(et � 1) =

1P
q=0

Bqt
q/q! , (s)q =

= s(s + 1) � � � (s + q� 1) , and

φl(n, s) =

nX
k=1

1

ks
��8<:n1�s � 1

1 � s
+

1

2ns
� lX

q=1

(s)qBq+1

(q + 1)!ns+q
+ ζ(s) � 1

s� 1

9=; . (2.4)

It is not difficult to see that φl(n, s) is actually the usual remainder term of the

Euler-Maclaurin formula:

φl(n, s) =
(s)2k+1

(2k + 1)!

1Z
n

B2k+1 (x� [x])x�s�2k�1dx, (2.5)

where k = l/2 (if l is even) or = (l + 1)/2 (if l is odd), x � [x] is the fractional

part of x and Bq(x) is the qth Bernoulli polynomial.

This (2.3) is formula (3) of Akiyama, Egami and Tanigawa [1]. The last sum on

the right-hand side of (2.3) is absolutely convergent in the region Re(s1 +s2 ) > �l.

They use this formula (and its multiple generalization) to show the meromorphic

continuation of (1.1). Moreover they proved that ζ2 (s1 , s2 ) is holomorphic except

for the singularities

s2 = 1, s1 + s2 = 2, 1, 0, �2, �4, �6, . . . . (2.6)

The details how to calculate the zeros by using formula (2.3) will be explained

in Section 4.

In this section we consider the distribution of zeros of ζ2 (s, s) off the real

axis. Since ζ2 (s, s) = ζ2 (s, s) (here “bar” signifies the complex conjugate), it is

enough to consider the situation in the upper half-plane. Our numerical result on

the distribution of zeros is given in Figure 1. Let D(a, b) = fs j a < σ < bg for any

real numbers a and b with a < b. From Figures 1–4 we can observe:
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Observation 1 (i) There are many zeros of ζ2 (s, s) in the strip 0 < σ < 1.

(ii) It seems that there are more zeros in the region D(0, 1/2) than in the re-

gion D(1/2, 1). (More rigorously, it seems that N(0, 1/2, T ; ζ2 ) is larger than

N(1/2, 1, T ; ζ2 ).)

(iii) At least in the range of our computations, there is no zero 1) lying on the line

σ = 1/2.

(iv) There are some zeros in the region σ > 1, but no zero when σ is sufficiently large.

(v) There are some zeros in the region σ < 0, but it seems that there is no zero whenjσj is sufficiently large, and also becomes few and few when t becomes large.

Observation (i) suggests that there should be infinitely many zeros in the region

D(0, 1/2) and D(1/2, 1) . As mentioned in Section 1, at least in the case of D(1/2, 1) ,

this fact has already been proved by Nakamura and Pankowski [14]. The graphs in

Figure 2 look like straight lines, which suggests that

N(�1, 2, T ; ζ2 ) � C1T , N(0, 1/2, T ; ζ2 ) � C2T ,

N(1/2, 1, T ; ζ2 ) � C3T
(2.7)

(with some positive constants C1 , C2 , C3 ) would probably hold, as T ! 1. This

agrees with (1.4) of Nakamura and Pankowski.

In Section 1 we also mentioned that the behaviour of zeros of ζ2 (s, s) might

be similar to that of Hurwitz zeta-functions. We see that observations (ii), (iii) and

(iv) agree with this expectation.

In fact, in the case of ζ(s, α) , Garunkštis and Steuding [4, Corollary 3] proved

that there are more zeros of ζ(s, α) in D(0, 1/2) than those in D(1/2, 1) . Observation

(ii) and Figure 2 suggests that the same situation happens in the case of ζ2 (s, s) .

The line σ = 1/2 is very important in the theory of ζ(s) , but it seems that

the same line has no special meaning for Hurwitz zeta-functions. Let N0 (T ) (resp.

N0 (T , α) ) be the number of zeros in the interval fs j σ = 1/2, 0 < t < Tg of

ζ(s) (resp. ζ(s, α) ). Then it is believed that N0 (T ) � (T /2π) log T , while Gonek

[5] proved that N0 (T , α) is less than c(T /2π) log T with a certain c < 1 for

α = 1/3, 2/3, 1/4, 3/4, 1/6 and 5/6 . Moreover in the same paper he conjectured

1) Some zeros in Figure 1 may seem to be on the line σ = 1/2 , but numerical data shows that they

are very close to, but not on that line. For example there is a zero at (0.502166 � � �) + i(559.930082 � � �) .
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PS: ./fig-eps/figure1a.eps PS: ./fig-eps/figure1b.eps

Fig. 1. The distribution of zeros of ζ2 (σ + it, σ + it) for �1 � σ � 2 and 0 � t � 800.

The horizontal axis represents σ and the vertical axis does t
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PS: ./fig-eps/figure2.eps

Fig. 2. Plots of numbers of zeros for 0 6 T 6 800; N(�1, 2, T ; ζ2 ), N(0, 1/2, T ; ζ2 ) and

N(1/2, 1, T ; ζ2 ), respectively from the top. The horizontal axis represents T

that N0 (T , α) � T for any rational α 2 (0, 1) , α 6= 1/2 . Our observation (iii)

suggests that the line σ = 1/2 is also not special for ζ2 (s, s) .

The fact corresponding to observation (iv) is classically known for Hurwitz

zeta-functions. In fact, ζ(s, α) 6= 0 if σ � 1 + α ( [12, Chapter 8, Theorem 1.1] ).

We note here that the latter part of (iv) can be easily verified theoretically.

Proposition 2.1. We have ζ2 (s, s) 6= 0 when σ is sufficiently large.

PS: ./fig-eps/figure3.eps

Fig. 3. The graph of jζ2 (4 + it, 4 + it)j for 0 6 t 6 100
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PS: ./fig-eps/figure4.eps

Fig. 4. The graph of jζ2 (�2 + it, �2 + it)j for 0 6 t 6 100

Proof. Assume σ > 1 . Divide the sum (1.2) (with s1 = s2 = s) as

ζ2 (s, s) =

X
n2�1

1

(1 + n2 )s
+

X
n1�2

1

ns
1

X
n2�1

1

(n1 + n2 )s
=

=
1

2s
+

X
n2�2

1

(1 + n2 )s
+

1

2s

X
n2�1

1

(2 + n2 )s
+

X
n1�3

1

ns
1

X
n2�1

1

(n1 + n2 )s
=

=
1

2s

8<:1 +

X
n�3

1

(n/2)s
+

X
n�3

1

ns
+

X
n1�3

1

(n1 /2)s

X
n2�1

1

(n1 + n2 )s

9=; .

(2.8)

The second sum on the right-hand side is (putting n = 2k when n is even and

n = 2k + 1 when odd) equal toX
k�2

1

ks
+

X
k�1

1

(k + 1/2)s
.

We also divide the last sum on the right-hand side of (2.8) similarly. Then we obtain

ζ2 (s, s) =
1

2s
f1 + Zg, (2.9)
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where

Z =
1

2s
+ 2
X
k�3

1

ks
+

X
k�1

1

(k + 1/2)s
+

+

X
k�2

1

ks

X
n2�1

1

(2k + n2 )s
+

X
k�1

1

(k + 1/2)s

X
n2�1

1

(2k + 1 + n2 )s
=

=
1

2s
+ 2Z1 + Z2 + Z3 + Z4 , (2.10)

say. Since ������Xn2�1

1

(2k + n2 )s

������ � 1Z
2k

dx

xσ
=

(2k)1�σ

σ� 1
,

we have jZ3j � 21�σ

σ� 1

X
k�2

k
1�2σ

=
21�σ

σ� 1

0�21�2σ
+

X
k�3

k
1�2σ

1A �� 21�σ

σ� 1

0�21�2σ
+

1Z
2

x
1�2σ

dx

1A =
σ

(σ� 1)2
22�3σ.

Similarly we can show jZ4j � σ� 1/4

(σ� 1)2
21�σ

�
3

2

�1�2σ

,

and further jZ1j � 1

3σ
+

1Z
3

x
�σ

dx =
σ + 2

σ� 1
3�σ,jZ2j � �2

3

�σ

+

1Z
1

(x + 1/2)�σdx =
σ + 1/2

σ� 1

�
2

3

�σ

.

Collecting the above results we find that Z ! 0 as σ ! 1. Therefore 1 + Z 6= 0

for sufficiently large σ, and hence from (2.9) the desired assertion follows. �
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3. Zeros on the real axis

In this section we study the behaviour of ζ2 (s, s) on the real axis. When s1 = s2 = s,

(2.3) is

ζ2 (s, s) =
ζ(2s� 1)

s� 1
� ζ(2s)

2
+ (3.1)

+

lX
q=1

(s)q

Bq+1

(q + 1)!
ζ(2s + q) � 1X

n1=1

φl(n1 , s)

ns
1

.

From (3.1) we can observe that ζ2 (s, s) has a double pole at s = 1 , a single pole

at s = 1/2 , and varies from +1 to �1 when s moves from 1 to 1/2 . Therefore

there exists (at least) one zero s = σ0 on the interval (1/2, 1) . Figure 5 shows this

situation, and we calculate σ0 = 0.626817 � � �.

The list (2.6) of singularities implies that the intersections of the hyperplane

s1 = s2 and singular loci are

s = 1,
1

2
, 0, �1, �2, �3, . . . .

The first two of these points are poles (when restricted to the hyperplane

s1 = s2 (= s) ), as discussed above. The points s = �k (k = 0, 1, 2, . . .) are also

on singular loci, so they are points of indeterminancy. Figures 6–7 are the graph of

PS: ./fig-eps/figure5a.eps PS: ./fig-eps/figure5b.eps

Fig. 5. The graph of ζ2 (σ, σ) for 0 6 σ < 1 (left) and a close-up in the vicinity of

σ0 = 0.626817 � � � (right). The vertical axis represents ζ2 and the horizontal axis does σ
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PS: ./fig-eps/figure6a.eps PS: ./fig-eps/figure6b.eps

Fig. 6. The graph of ζ2 (σ, σ) for �2.5 6 σ < 0.5 (left) and a close-up in the vicinity of

ζC
2 (0, 0) (right). The vertical axis represents ζ2 and the horizontal axis does σ

PS: ./fig-eps/figure7.eps

Fig. 7. The graph of ζ2 (σ, σ) for σ < 0. The vertical axis represents ζ2 and the horizontal

axis does σ. Amplitude of the vibration becomes intense when σ < �6. Here zeros are�1.095527 � � � , �2, �3.005839 � � � , �4 and �5.000415 � � �
ζ2 (σ, σ) , therefore the values at σ = �k in Figure 7 show the limit value

lim
ε!0

ζ2 (�k + ε, �k + ε). (3.2)

This type of limit is called “central values” in Akiyama and Tanigawa [2]. We use

their notation to write (3.2) as ζC
2 (�k, �k) . Kamano [9] proved an explicit formula

for ζC
2 (�k, �k) . Formula (1.6) in [9] implies

ζ
C
2 (�k, �k) =

1

2

n
ζ(�k)2 � ζ(�2k)

o
(3.3)
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for k 2 N [ f0g. In particular, as Kamano stated [9, Corollary 2], ζC
2 (0, 0) = 3/8

and ζC
2 (�2k, �2k) = 0 for any k 2 N. (The latter was conjectured by Akiyama,

Egami and Tanigawa [1].) These values agree with Figure 6 and Figure 7.

When k 2 N, from (3.3) we have

ζ
C
2 (�k, �k) =

1

2
ζ(�k)2

=
(B1+k)2

2(1 + k)2
. (3.4)

For example

ζ
C
2 (�1, �1) =

1

288
, ζ

C
2 (�3, �3) =

1

28800
, ζ

C
2 (�5, �5) =

1

127008
. (3.5)

These values are rather small because the corresponding values of Bernoulli numbers

are small (B2 = 1/6 , B4 = �1/30 , B6 = 1/42 ). This is the reason why ζ2 (σ, σ) has

zeros near σ = �1, �3, �5 in Figure 7. However, since jB2kj � 2(2k)!/(2π)2k as

k !1 ( [3, Theorem 12.18]), we see that ζC
2 (�2k + 1, �2k + 1) !1 as k !1.

Comparing the above situation on the real axis with Observation 1 (v), we may

guess that there would exist some A > 0 , such that ζ2 (s, s) would have no zero

in the region σ < �A except for the real axis. This is again similar to the case of

Hurwitz zeta-functions (Theorem 2.7 of [12, Chapter 8]).

4. The method of computations

In this section we explain the details of our method to compute the zeros of ζ2 (s, s)

in C. As we already mentioned in Section 2, we apply two methods. The first method

is based on the harmonic product formula (2.2), which gives high-precision zeros

of ζ2 (s, s) in any digits by virtue of the function Zeta of Mathematica. But we also

calculate the zeros by using the Euler-Maclaurin formula. For this second method,

instead of the formula (3.1), we use the following truncated form:

ζ
N
2 (s, s) : =

ζ(2s� 1)

s� 1
� ζ(2s)

2
+ (4.1)

+

lX
q=1

(s)q

Bq+1

(q + 1)!
ζ(2s + q) � NX

n1=1

φl(n1 , s)

ns
1

,

where the infinite summation of (3.1) is truncated by N terms.
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4.1. Calculation accuracy

Obviously, calculation accuracy becomes better as the value of N increases in

(4.1). It is necessary to ascertain the appropriate value of N for our aim. Fortunately

we can get the data of high-precision zeros by (2.2). Therefore, comparing the zeros

obtained from (4.1) with the high-precision zeros obtained by (2.2), we can estimate

the accuracy of zeros of (4.1). Appropriate value of N depends on l, the number of

terms of the first summation. As l is smaller, it is necessary to take N larger. On the

other hand, the number l should be taken rather small since the value of the first

summation increases rapidly with l and s. Under the machine precision, l � 10 is

appropriate.

Some specific examples are shown below. Let s� be the high-precision zero

of (3.1) calculated by (2.2), and let sl,N be the zero of (4.1) with l and N . The

first two examples are about zeros which will be shown in Figure 10. Concerning

s� = (0.719846 � � �) + i (42.458519 � � �) , we obtain sl,N such as 2)js� � s10,100j = j7.8 � 10�17
+ i 4.3 � 10�17j = O

�
10�17

�
,js� � s

10,200j = j � 6.2 � 10�22
+ i 3.2 � 10�22j = O

�
10�22

�
,

where s10,100 is a zero of (4.1) with (l, N) = (10, 100) and so on. It shows that

larger N gives higher accuracy, namely js� � sl,N j of N = 200 is smaller than that

of N = 100 . Similarly, concerning s� = (1.043571 � � �) + i (98.989673 � � �) , we havejs� � s10,100j = O
�

10�14
�

, js� � s10,200j = O
�

10�18
�

,js� � s
10,1000j = O

�
10�26

�
.

Note that the accuracy of the second example is lower than that of the first one with

the same (l, N) . The next example is as to s� = (0.778519 � � �) + i (799.497864 � � �) ,

the imaginary part of which is larger than the above two examples. In this case,

we have js� � s8,200j = O
�

10�6
�

, js� � s6,300j = O
�

10�7
�

,js� � s
4,1000j = O

�
10�12

�
.

2) Here and in what follows, the symbol O(10�n) implies � C10�n with a constant C > 0 . What we

actually want to claim is that the error is as small as 10�n , so the numerical value of C is . 10 .
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For the third example, l should be taken smaller than 10. The reason is that its

absolute value is larger than the first two examples. From these examples, we see that

the calculation accuracy gets better by taking N large. In our actual computations

we choose (l, N) = (10, 100) for t < 400 , (l, N) = (8, 200) for 400 6 t < 600

and (l, N) = (8, 300) for 600 6 t < 800 , respectively, to realize higher accuracy

than O(10�6 ) .

Hereafter, we will omit the superscript of ζN
2 and sl,N for simplicity.

4.2. The way to find zeros

We first search for candidates of zeros by drawing a plot of jζ2 (s, s)j. See

Figure 8, which shows the absolute value of jζ2 (σ + it, σ + it)j for σ = 0.56 and

0 6 t 6 80 . In this figure, there is a point which seems to be in contact with

the horizontal axis. Then we use it as a starting value for the root finder FindRoot,

which is a built-in function of Mathematica. As an option of FindRoot, we specify

WorkingPrecision to 100 digits.

In this way, we draw this type of graphs for various values of σ to search

for candidates of zeros. Figure 1 is the consequence of such search in the region�2 6 σ 6 4 and 0 6 t 6 800 . In Figure 1, the leftmost zero is

s = (�0.830372 � � �) + i (35.603804 � � �)

and the rightmost zero is

s = (1.605277 � � �) + i (333.223539 � � �).

Some numerical examples of zeros with small imaginary parts are listed below.

(0.27672860 � � �) + i(8.39755368 � � �)

(�0.18995147 � � �) + i(12.30422130 � � �)

(0.06443907 � � �) + i(15.02312694 � � �)

(�0.53767831 � � �) + i(17.58063303 � � �)

(0.12844956 � � �) + i(20.59707674 � � �)

(0.08804454 � � �) + i(21.93232180 � � �)

(1.10778631 � � �) + i(23.79708697 � � �)

(0.27268471 � � �) + i(24.93425087 � � �)

(�0.67413685 � � �) + i(26.88584448 � � �)

(�0.15708737 � � �) + i(30.02450294 � � �)
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(0.24085861 � � �) + i(30.35443945 � � �)

(0.27943393 � � �) + i(32.43085844 � � �)

(0.19640810 � � �) + i(33.30504691 � � �)

(�0.83037218 � � �) + i(35.60380497 � � �)

(0.26817981 � � �) + i(37.74099414 � � �)

(1.48543370 � � �) + i(38.13262119 � � �)

(�0.45570264 � � �) + i(39.63195833 � � �)

(0.09633802 � � �) + i(41.36138867 � � �)

(0.71984635 � � �) + i(42.45851912 � � �)

(0.32260735 � � �) + i(43.57397755 � � �)

(0.30547044 � � �) + i(47.82257631 � � �)

(�0.07836730 � � �) + i(47.93661087 � � �)

(0.17623000 � � �) + i(49.35798458 � � �)

(�0.10065156 � � �) + i(50.42344359 � � �)

(1.20851184 � � �) + i(52.67628393 � � �)

(0.25607674 � � �) + i(52.90185286 � � �)

(0.26312128 � � �) + i(56.23680524 � � �)

(0.99787597 � � �) + i(57.00712796 � � �)

(�0.54056567 � � �) + i(57.89377726 � � �)

(0.25852514 � � �) + i(59.37031354 � � �)

PS: ./fig-eps/figure8.eps

Fig. 8. A plot of jζ2j when σ = 0.56 to search for a starting value for the root finder
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The imaginary parts of the zeros in this list are less than 60, so the calculation

accuracy is much better than O(10�6 ) ; it is around O(10�17 ) .

4.3. The “throwing a net and catching fish” method

By the method in the preceding subsection, we can find candidates of zeros,

but we canot determine by that method whether they are really zeros, or they are

just very small absolute values but not 0.

Therefore, to make sure that they are really zeros, we have to develop another

method. Let s� = σ� + it� be a candidate of zero which we found by the method

in Subsection 4.2. Consider a small rectangle

R = fs = σ + it j a � σ � b, c � t � dg
which includes s� as an interior point. Divide the interval [a, b] as

a = σ0 < σ1 < � � � < σn = b,

and draw the figure of the curvesKj = fζ2 (σj + it, σj + it) j c � t � dg (0 � j � n)

on the complex plane. If R is sufficiently small, then the points inside R are very

close to s� , and hence the curves Kj locate near the origin. When j moves from 0

to n, the curves Kj also move little by little. If in the course of this moving processKj crosses the origin, we should conclude that ζ2 (s, s) has a zero here, because

ζ2 (s, s) is a continuous function (Figure 9 and Figure 10). Therefore s� should be

a zero of ζ2 (s, s) .

It is to be noted that we have not yet checked all candidates of zeros in Figure

1 by this “throwing a net and catching fish” method, but we believe that all of those

candidates are indeed zeros.

4.4. The order of the zeros

Some zeros in Figure 1 seem to overlap or be very close to each other, but this

is because the vertical scale of Figure 1 is heavily reduced. All of them are actually

isolated from other zeros. In fact, the closest zeros in the figure are
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Scale = .88

PS: ./fig-eps/figure9a.eps

Scale = .88

PS: ./fig-eps/figure9b.eps

s� = (0.561016 � � �) + i (65.626461 � � �)

Fig. 9. The left figure is a plot of the curves ζ2 (s, s) with 65 � t � 67 drawn in the

complex plane. The point ζ2 (s�, s�) is on the solid line. The right figure is a plot of

s = σ + it in σ-t plane, whose each segment corresponds to each curve on the left

figure. The point s� is on the solid line. The curves represent the behaviour of ζ2 (s, s)

when σ = 0.54, 0.55, 0.561016, 0.57 and 0.58, respectively

(�0.024589 � � �) + i (575.888143 � � �)

and

(0.176317 � � �) + i (575.841132 � � �),

the distance of which is about 0.206 .

As a precaution, for all zeros here, we checked that the values of the derivative

ζ02 (s, s) at those points are non-zero. The values of the derivative of ζ2 (s, s) can be

calculated, by using (2.2), by a built-in function of Mathematica. From those facts,

we are sure they are not zero of order two (or more) 3) .

3) One might be worried about the possibility that a zero point on Figure 1 actually represents two

zeros which are so close to each other that cannot be distinguished by our present computations. However

such a possibility can also be removed by checking the values of derivatives.
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PS: ./fig-eps/figure10a.eps PS: ./fig-eps/figure10b.eps

(i) s� = (1.043571 � � �) + i (98.989673 � � �)

(ii) s� = (0.719846 � � �) + i (42.458519 � � �)

Fig. 10. Plots of the curve ζ2 (σ+ it, σ+ it) drawn in the complex plane. The left figure

shows the curves with 98 � t � 100 for σ = 0.95, 1, 1.043572, 1.1 and 1.15. The right

figure shows the curves with 41 � t � 44 for σ = 0.6, 0.65, 0.719846, 0.75 and 0.8
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