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ABSTRACT

A joint limit theorem, universality and a theorem on the functional inde-
pendence for a collection of series of Lerch zeta-functions are proved. They
generalize the results of (Laurin¢ikas and Matsumoto, 2006).

1. INTRODUCTION

The Lerch zeta-function L(\, a, s), s = o+it, with fixed real parameters
a and A\, 0 < o < 1, is defined, for o > 1, by

For A € Z, the function L(\, «,s) is analytically continuable to an entire
function. If A € Z, then the Lerch zeta-function reduces to the Hurwitz

zeta-function
oo

1
C(s,a) = z:()m7 o>1,

and L(k,1,s) =((s), k € Z, where ((s) is the Riemann zeta-function.

In (Laurin¢ikas and Matsumoto, 1998, 2000) and (Laurin¢ikas and Mat-
sumoto, 2006) we considered the joint value-distribution of Lerch zeta-
functions. We proved joint limit theorems in the sense of weak convergence
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of probability measures on the complex plane and in the space of analytic
functions. We obtained, for some values of the parameters A and «, the joint
universality as well as the functional independence for Lerch zeta- functions.
The aim of this note is to prove a generalization of the mentioned results
for series of Lerch zeta-functions. Let, for » > 1, L(s) = (L(A11, @1, ), ...,
L(A\gy, a1, 8), L(Aa1, 2, 8), ooy L(Aogy, 2, S), ooy L(N1, 0y 8), ooy LAk, @y S))
be a collection of series of Lerch zeta-functions. Here k;, j = 1,...,r, are
positive integers. We suppose that \j; € Z, 1 =1,...,r, 7 =1, ..., k. For this
collection, we will obtain a limit theorem in the space of analytic functions,
a joint universality theorem and its consequence on the functional indepen-
dence. In the aforementioned papers (Laurin¢ikas and Matsumoto, 1998,
2000, 2006), we studied the case k; = ... = k, = 1. To state the results, we
need some notation and definitions.
Let, for 7' > 0,

vr(...) = %meas{T €[0,7]: ...},
where meas{A} is the Lebesgue measure of a measurable set A C R and in
place of dots a condition satisfied by 7 is to be written. Denote by B(S) the
class of Borel sets of the space S. For D = {s € C: 0 > 3}, let H(D) be
the space of analytic on D functions equipped with the topology of uniform
convergence on compacta. Moreover, let HY(D) = H(D) x ... x H(D),

-~

d

where d = ) k;. Denote v = {s € C: |s| = 1}, and define
j=1

0= H Tm
m=0

where v, = 7 for all m € Ny = N{J{0}. The Tikhonov theorem shows
that  is a compact topological Abelian group. Therefore, on (Q,5(12))
the probability Haar measure mpy exists, and this gives a probability space
(Q,B(2), mp). Denote by w(m) the projection of w € Q to the coordinate
space Y. Furthermore, let 0" = Q; x ... x Q,, where (}; = Qfor j =1,...,r.
By the Tikhonov theorem again, 2" is a compact topological group, and the
probability Haar measure mg, on (7, 3(2")) can be defined. Now on the
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probability space (2", B(2"), my,) define an H?(D)-valued random element
L(s,w) by

L(S7u_)> = (L(/\117a1787w1)7 [ERE) L()\lk17a1’ Suwl)u L()\217a2)87w2)7 sy

L(A2k27 a2, S, Ldg), sy L(/\Th Ay S, w?”)a L) L()\T’krv A, vaT))a
where

o] 627T’i>\1j mwl (m)

L()\lj,ozl,s,wl) = Z Y = 1, ...,T;j = 1, ...,k’l.
— (m+w)

Here, for | = 1,...,7, w; € ©, and w = (w1, ...,w,) € Q. Denote by Py, the
distribution of the random element L(s,w), that is

PL(A):er (QEQT:L(&Q) GA), AGB(Hd(D))

Define, for A € B(HY(D)),

PT(A):VT(L(S—i—’iT)EA).

THEOREM 1. Suppose that the numbers aq, ..., o, are algebraically inde-
pendent over the field of rational numbers Q. Then the probability measure
Pr converges weakly to Py as T — oo.

Theorem 1 is the principal tool for the proof of the joint universality
for the collection L(s). Let X\, l =1,....7, j = 1,..., k;, be arbitrary ratio-
nal numbers with denominators ¢, [ = 1,...;r, j = 1,..., K, respectively.
Denote by k& = [q11, -, Qkys - Gr1y -, Grk,| the least common multiple, and
define

eQTri)\n 627ri)\12 . e?wi)\lkl » eQTriz\M e27ri)\r2 . eQﬂi)\,.kr

e47ri)\1 1 e47ri)\12 . e47ri)\1kl » 6471—“\"'1 e47ri)\7.2 o e47ri)\rkr
A=

e?Trik‘)\n 627ri1€>\12 N e?ﬂ'ik)\lkl . e?ﬂ'ik‘)\rl eQﬂik)\rg L eQTrik)\Tk’r

THEOREM 2. Suppose that o, ..., . are algebraically independent over
Q and that rank(A) = d. Let K;; be a compact subset of the strip Dy =
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{s eC: % <o < 1} with connected complement, and let fi;(s) be a contin-
uous on Ky function which is analytic in the interior of Ky, | = 1,...,r,
7 =1,....k. Then, for every e > 0,

T—oo 1<I<r 1< <k; s€Ky;

lim inf v7 (sup sup sup |L(Nj, aq, s +i1) — fi;(s)| < 8) > 0.

Theorem 2 implies the functional independence of functions from the
collection L(s).

THEOREM 3. Suppose that o, ..., a,. are algebraically independent over
Q and that rank (A) = d. For j = 0,1,.... M, let F; be a continuous on
CN? function, and

M
ZSjE(L(A11> Qq, 8)7 L()\127 Qq, 8)7 se0y L(Alklv Qq, 8)7 ceey L(Arlv Oy, 8)7 sy
j=0
L()\rky-aams)vL/(AllvalvS)7L/(A12aa17s)7"'7L,()\1k’17a1a8)7 "'7L/()\r1aa7"78)7
-'-7L,()\7”kr7a7“75)7"'7L(N_l)()\llaalvs)aL(N_l)(Al%a178)7"'aL(N_l)()\lklaahs))
s L(N_l)()\rla ., 5)7 L(N_l)()\r27 A, 3)7 sy L(N_l)(/\'l’k:r? A,y S)) =0
identically for s € C. Then F; =0, j =0,1,..., M.

2. PROOF OF THEOREM 1

We will follow the proof of Theorem 1 from (Laurin¢ikas and Matsumoto,
2002), therefore we will omit some details.

We begin with joint limit theorems for Dirichlet polynomials. For this,
we will apply a limit theorem on torus Q" which was proved in (Laurincikas
and Matsumoto, 2006), Lemma 4. Let

Qr.(A) =vr ((((m +a)7:mée NO) yes ((m +a,)7:m € NO)) € A) , A€ B(Q’") .

LEMMA 4. The probability measure Qr, converges weakly to the Haar
measure my, on (Q7,B(Q7)) as T — oo.



Let 01 > 3, and, for m,n € N,

o1
v(m,n) = exp {— (Zifj) } , l=1,..r

Define, for N;; € Ny, w; € Q and s € D,

Ny; eZTri)\ljm,Ul (m’ n)

(m+ «)®

LNljvlzj:n(Alj7al7s) -
m=0
Nlj
LNlj’l7j7n()\lj7 al? Sjwl> -
m=0
| = 1,...,7”, ] = 1,...,]{71. Let M = (Nllu---7N1k17-~-7N7’17-~-7Nrk,«)7 w =
(wh “'7w7")7 and

eIy, (m, 1)@y (m)
(m+ oy)®

)

Lﬂ,n(s) = (LNn,l,l,n()\lla Qq, S), ceny LN1k1717k17n()\1k17 aq, 3)7

Ly ran(Ars; 0, 8), s LNrkNT,kr,nO‘rkra ar, 8)),

Lﬂ’n(s7 Q) - (LN11,1717n()\11, ai, S, d)1>7 ES) Llel 71,k1,n()‘1k17 ai, S, djl)a

LN7'17T’17n<)\7'1’ Qr, 3, dj?")’ ) LNrkT:T’knTL()\TkM Ay, S, djr))

Now, for A € B(H?(D)), define the probability measures
Prnn(A) =vr (Ly,(s+i1) € A)

and A
Pryn(A) =vr (Ly,(s+it,0) € A).

THEOREM 5. The probability measures Pr n » and pT,ﬂ,n both converge
weakly to the same probability measure on (HY(D), B(H%(D))) as T — oo.

Proof. The theorem is a generalization of Theorem 5 from (Laurincikas
and Matsumoto, 2006). Define a function h : Q" — H?(D) by

h(wla "')WT) = Lﬂ,n(sag_l%
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where w™! = (Wi, ..., w ), (wi,...,w,) € Q. Then the function h is con-

tinuous, moreover,

h(((m+a1)™:meNy),...,((m+ )" :meNg)) = Ly, (s +ir).

Therefore Pry, = QTﬂnh_l, and Lemma 4 together with Theorem 5.1
of (Billingsley, 1968) shows that the measure Pry, converges weakly to
myh~tas T — oo.

Now define hy : 0" — Q" by

hl(wl, ...,wT) = (wld)fl, ...,u)ﬂ;};l).
Then we have that
Ly (s+im,@) =h (hi (m+a1)” :m e No), ..., (m + a,,) :m € Ny))) .

Therefore, similarly to the case of the measure Pry,, we find that the

1

measure Pry, converges weakly to the measure mpy,(hh;)™" as T — oo,

and the theorem follows in virtue of the equality
er(hhl)_l = (mHThl_l)h_l = erh_l.

The next step is limit theorems for absolutely convergent Dirichlet series.
Forl=1,..,r, 7 =1,... k;, define

[e.9]

Liin( N, aq,8) = g ’ 1
L.J, ( lj> ) i (erOq)S ( )
and
S ezm',\ljmvl(m n)w,(m)
Liin(i, ap,8,wp) = ’ , 2
L,J, ( ljs &l l) o (eral)s ( )

where (w1, ...,w,) € Q", and put

Ln(s) = (L1,1,n()\117041,3), oo Ll,kl,n(/\lklaahS)»
Lr,l,n(/\rla Qy, S), ceey Lr,k,~,n<)\rk7-a Qy, S))

and
L,(s,w) = (L1,1,n(M1, 00, 8,w1),s vy L1y n( A1k, 01, 8,01 ), -
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Lr,l,n()\rla Ay, S, wr)v ceey Lr,kr,n()\rkw Qy, S, Wr))-

Note that series (1) and (2) both converge absolutely for o > 1. Our next
aim is to show limit theorems for the probability measures

Pro,(A) =vr (L, (s+it) € A), A€ B(HYD)),

and
Prn(A) =vr (L, (s +it,w) € A), Ae B(HYD)).

THEOREM 6. On (HY(D),B(H%(D))) there exists a probability measure
P, such that the measures Pr, and PTﬁn both converge weakly to P, as
T — oo.

Proof. We argue similarly to the proof of Theorem 6 from (Laurin¢ikas
and Matsumoto, 2006). For simplicity, let N;; = N for all | = 1,..., 7,
j = 1,...,k. Then by Theorem 5 we have that the probability measures
Pryn = Pry, and FA’T,NJL = pT7ﬂ’n both converge weakly to the same
measure Py, as T" — oo. Note that in the definition of pT,N,n we write w
in place of w.

Let ) be a random variable defined on a certain probability space (€2, B(Q), P)
and uniformly distributed on [0, 1]. Define, for [ =1,...,r, j = 1,..., k;,

Xrngjn = XoN1jn(S) = Lngjn(Nj, aj, s +41n).

Then X7 nijn is an H(D)-valued random element defined on (Q, B(Q), P),
and by Theorem 5 we have that

def
Xrnn = Xrnn(8) = (XN 1m0 XNk

D

ceey XT,N,T,I,?% ceey XT,N,T,/CTJL) T?o)o XN,na (3)

— ; d
where XNJL - (XN,l,l,n7"'7XN,1,k1,na --'>XN,r,l,n7 -'-7XN,r,kr,n) is an H (D)'

valued random element with the distribution Py, and 2. means the
convergence in distribution.

Let {K,, : m € N} be a sequence of compact subsets of D such that
o

U K» = D, K,, C K41, and, for any compact subset K of D, we find
m=1
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an m for which K C K,, holds. Then

o sup |f(s) —g(s)|
p(f,9) =m2212 T s )~ 9] f,9 € H(D),

is a metric on H(D) which induces its topology. Then we can define a
metric on H(D) by

palfg) = max max p(fy, gi;),

where f = (fi1, o, fik s Jris oo ke )y @ = (9115 s Gikys o5 Grts ooy Grky) €
HY(D).

Since the series for L; j (A, cu,s), L =1,...,7, j = 1,..., k, is absolutely
convergent for o > %, we have that, for any My,;;, >0, me N, [ =1,...,r,
7=1,..,k, n e Ny,

lim sup P ( sup | Xr,nn(8)| > Myyjn for at least one pair(l,j)) <
T—o00 sEKm

<> th SHPIED ( sup | Xzn15n(s)] > Mmljn) <

=1 j5=1

r

sup lim sup — / sup | L jn( Ny, i, 5 +47)|dT =
mljn N>1 T—oo s€EKm

_ mljn 4
; ]Zl Mmlyn = ( )

where

Rypijn = sup limsup — / sup | Ly jn( Ny, u, s+ i7)|dT.
N>1 T—oo sEKm



Now choose M,ijn = Ryijn2d/c. Then (4) yields

3

limsup P ( sup |Xrnijn(s)| > My, for at least one pair (l,j)) < o

T—o00 sEKm

This and (3) show that, for all m € N,

P < sup | Xnyjn(s)| > My, for at least one pair (l,j)) < Qim. (5)
s€eKm
Define
Hg = {(flb "'7flk:17 "'7.f7“17 "'7f7“kT) € Hd(D) . sup ‘flj(s)‘ S Mmljna

SEK’m
l=1,.,7r j=1,...k, meN}.

Then, by the compactness principle, the set H? is compact in H%(D), and
in view of (5), for all N € Ny and any fixed n € Ny,

P(Xy,€H)>1—c
Taking into account the definition of Xy, hence we obtain that
Py, (HY) >1-c¢

for all N € Ny and any fixed n € Nj. This shows that the family of
probability measures {Py,, : N € Ny} is tight, therefore, by the Prokhorov
theorem, it is relatively compact.

By the definition, for [ =1,....r, j=1,.... k,

Um Ly jn(Nj,ou,8) = Lijn(Nj, a4, 8),
N—oo

uniformly on compact subsets of the half-plane D. Hence, using the above
notation, we have, for every ¢ > 0,

lim limsup vy (pa(Ly (s +i7), L,(s +i7)) > €) <

Neoso o ) =

T
1
< lim limsup Te /pd (Lyn(s+i7), Ly(s+i7)) dr <
0

N—oo 7,00
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r

T
Z/p L jn( N, cuys +41), Lyjn(Nj, cuy s +i7)) dr = 0.
0

=1 j=1
(6)
Now, for I =1,....r, 7 =1,..., k;, we define

Xr1jm = X105n(8) = Lijn(Nj, aq, s +iTn),
and let

XT,n = (XT,LL“? sy XT,l,kl,m R XTml,n? A XT,T,kr,n) :
Then (6) implies

lim limsup P (pa(Xy,y0 Xr,,) > €) = 0. (7)

N—oo 7,00

Moreover, the relative compactness of the family {Py, : N € Ny} shows
that there exists {Pn, ,} C {Pnyan} such that Py, , converges weakly to
some probability measure P, as N; — oo. Hence

D
XNln ]\/1——>>oo P (8)

Therefore, relations (3), (7) (8) and Theorem 4.2 of (Billingsley, 1968) yield

Xy o P (9)
and we have that the probability measure Pr, converges weakly to P, as
T — oo.

Relation (9) shows that the measure P, is independent of the sequence
Ni. Thus, by Theorem 2.3 of (Billingsley, 1968),

D

Now define X
XT,N,n(S) = LN,n<3 + i1, w)
and

XT,n(S) - Ln(‘s + ZTT]? w)‘
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Then, repeating the above arguments for the random elements XTJV,”(S)
and X T’n(s), recalling that I5T, ~N.n also converges weakly to Py, and using

(10), we obtain that the probability measure ]ADT,n also converges weakly to
P, as T'— oo. The theorem is proved.

Now we approximate in mean the vectors L(s) and L(s,w) by the vec-
tors L, (s) and L, (s,w), respectively.

THEOREM 7. We have

T
1
lim lim sup T /pd (L(s+17),L,(s+i1))dr =0,

n—00 T _,o0

0

and, for almost all w € Q",

n—oo T—00

T
1
lim lim sup T / pa(L(s+it,w), L, (s +it,w))dr = 0.
0

Proof. Obviously, the numbers aq,...,a, are transcendental. Therefore,

by Lemmas 5.2.11 and 5.2.13 of (Laurinc¢ikas and Garunkstis, 2002), for
= 1,...,7”, j = 1, ...,/{Zl,

=0 T—oo

T
1
lim lim sup T /,0 (L(Nij, ou, s +17), Lijn(Nj, g, s +471)) dT = 0,
0

and, for almost all w; € €2,

T

1

lim limsup — / p (L( Ny, cu, s +i1,wp), Lijn(Nj, cu, s +iT,w)) dr = 0.

Nn—00 T_)OO T 2J s

0

Thus to prove the theorem it suffices to use the definition of metric py.
Now we are ready to prove Theorem 1 without indication of the limit

measure. Define

~

Pr(A) = vr (L(s +it,w) € A), A€ B(HYD)).
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THEOREM 8. On (HY(D), B(H*(D))) there exists a probability measure
P such that the measures Pr and Pr (for almost all w) both converge weakly
to P asT — oo.

Proof. The proof uses Theorems 6 and 7 and differs from that of The-
orem 8 from (Laurin¢ikas and Matsumoto, 2006) only by evident details
which are clear from the proof of Theorem 6.

For the identification of the limit measure P in Theorem 8, as usual, we
apply some statements of ergodic theory.

Let ary = {(m+ o)™ :m € No}, 7 € R, I = 1,...,r. Then {a,; :
7 € R}, for each | = 1,...,r, is a one-parameters group. Define the one-
parameter family {®, : 7 € R} = {(¢r1,...,rr) : T € R} of transforma-
tions on Q" by ¢ (w) = arwi, wi € , | = 1,...,r. Then we obtain a
one-parameter group of measurable measure preserving transformations on

Qr.
LEMMA 9. The one-parameter group {®, : 7 € R} is ergodic.

Proof of the lemma is given in (Laurin¢ikas and Matsumoto, 2006).

Proof of Theorem 1. The proof is based on Theorem 8 and Lemma 9 as
well as on the Birkhoff- Khinchine theorem and completely coincides with
the proof of Theorem 1 from (Laurin¢ikas and Matsumoto, 2006).

3. PROOF OF THEOREMS 2 AND 3

We recall that Dy = {s eC: % <o < 1}. For the proof of Theorem
2 we need a limit theorem on H%(Dy). Let Pp, be the restriction of the
distribution Py, of the random element L(s,w) to H%(Dy), that is

P (A) =mpy, (we Q" : L(s,w) € A), A€ BHYDy)).

LEMMA 10. Suppose that o, ..., ., are algebraically independent over
Q. Then the probability measure

vr (L(s+i1) € A), A€ B(HYDy)),

converges weakly to Pr  as T — oo.
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Proof. The statement of the Lemma is a consequence of Theorem 1, the
continuity of the function h : H4(D) — H*(Dy) defined by h(g) = g‘seDO,
g € HY(D), and of a property of weak convergence of probability measures
(see Theorem 5.1 of (Billingsley, 1968)).

Now we deal with the support of the measure Pp . The support of P
is a minimal closed set Sp, C H?(Dy) such that P (Sp,,) =1, and Sp,,
consists of all g € H%(Dy) such that for every neighborhood G of g the
inequality Pp (G) > 0 is satisfied. B

THEOREM 11. Suppose that aq, ..., «, are algebraically independent
over Q and that rank(A) = d. Then the support of Py is the whole of
H(Dy).

Proof. Define

A

LO(Saw) = (L<)\117041a va)v "'7L(A1k1a aq, S7w)7 LK) L()\Tla Qr, va)v

ooy Lk, iy 8,0)), 8 € Dy,
where, forw e Q, 1 =1,...,r, 1 =1,..., k,

L(Nj, o, 8,w) = Z
m=0

eQﬂ"LmAle(m)

(m+ o)

Then we have that S P, o8 P and it is sufficient to prove that S P =
H(Dy).

The support of each random variable w(m), m € Ny, is the unit circle 7.
Moreover, by construction {w(m) : m € Ny} is a sequence of independent
random variables on the probability space (§2, B(€2), my). This and Lemma
5 of (Laurin¢ikas and Matsumoto, 2002) show that the support Spﬁo is the
closure of all convergent series B

m=0
where
L (s.0) = ( e2mimAi . Q2T ) Q2mimAr - Q2T am)
(m+ aq)® (m+aq)* (m+ a,)* (m+ oa,)*



with a = {a,, : an € v,m € Ng}. In order to prove that the latter set
of series is dense in H%(Dy), we will apply Lemma 6 of (Laurinikas and
Matsumoto, 2002).

Since Ly(s,w) is an H%(Dy)-valued random element, there exists a se-
quence b = {by, : b, € v,m € Ny} such that the series

> Lyo(s,b) (11)

is convergent in H%(Dy). Moreover, for every compact subset K C Dy,

ZZZSHP

m=0 =1 j=1 €K

27rim)\ljb
< 00. (12)

(m+ ay)®

Now let yuy;, I =1,...,7, j = 1,..., k;, be complex measures on (C, B(C))
with compact supports contained in Dy and such that

r 2mim
2 ;;/ (T o) dpu;(s)| < oo
This, in view of the estimate (see(Laurin¢ikas and Matsumoto, 2000))
(m+a) ™ =m*+0 (m 7 s[e?BD)  1=1,..r
and the definition of 1, leads to
Sy [

mOlljl

27rzm)\l]

du;i(s)| < oo. (13)

The sequence {eQ”im’\lj, m € NO} (for each [, ) is periodic with period k.
Thus, by (13), for every h =1, ... k,

r
m= 0 1 /
m=h(modk) =1 =

OO 27rzh)\lj

,LLZJ ) < 00. (14)
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Define, for A € B(C) and h =1, ..., k,

T kl

()= 3030 (4)

=1 j=1

Then vy, h =1, ..., k, are also complex measures on (C, B(C)) with compact
supports contained in Dg, and by (14), for every h = 1,.... k,

mz:o /m‘sdl/h(s) < 0. (15)

m=h(modk) 1C

Let, for h=1,...,k and z € C,

pn(z) = /eszduh(s).

Then we can rewrite (14) in the form

o0

Z lpn(logm)| < oo, h=1,.. k. (16)

m=0
m=h(modk)

Forallh =1, ..., k, pp(2) is an entire function of exponential type. Therefore,
taking into account (16) and Lemma 6.4.10 of (Laurin¢ikas, 1996), we have
that, for all h = 1,..., k, either p,(2) =0, or

1
lim sup log |pn(2)] > —1. (17)
T

Tr—00

If (17) takes place, then in view of Lemma 5 of (Laurin¢ikas and Matsumoto,
2000), which is a case of general positive density method, we obtain that,
forh=1,..,k,

(e}

Y lonllogm)| = oo.

m=0
m=h(modk)
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However, this contradicts (16). Thus, it remains the case pp(z) = 0, h =
1, ..., k. This shows that, for h =1, ..., k,

r ki

Z Ze%ih’\’j /e_szdulj(s) = 0. (18)

=1 j=1 ¢

Now we apply the hypothesis that rank(A) = d. Then the system of equa-
tions (18) has the unique solution

/eszdulj(s) =0,l=1,...,r, j=1,... k.
C

Hence, by differentiation we find that
/smdulj(s) =0
C

foralmeNyand [ =1,...,r, j=1,...,k. This together with convergence
of series (11) and (12) show that all hypotheses of Lemma 6 from (Lau-
rin¢ikas and Matsumoto, 2002) are satisfied, and we obtain that the set of
all convergent series

S Lyo(s.ab)
m=0

with @ = {a, : @, € v, m € Ny} is dense in H4(Dy). Then set of all

convergent series
00
§ LmO <S7 (l)
m=0

is also dense in H%(Dy), and the theorem is proved.

Now Theorem 2 is deduced by a standard way from Lemma 10, Theo-
rem 11 as well as Mergelyan’s theorem, while Theorem 3 is a consequence
of Theorem 2. For the details, see (Laurin¢ikas and Matsumoto, 2000).
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