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ABSTRACT

A joint limit theorem, universality and a theorem on the functional inde-
pendence for a collection of series of Lerch zeta-functions are proved. They
generalize the results of (Laurin£ikas and Matsumoto, 2006).

1. INTRODUCTION

The Lerch zeta-function L(λ, α, s), s = σ+it, with �xed real parameters
α and λ, 0 < α ≤ 1, is de�ned, for σ > 1, by

L(λ, α, s) =
∞∑

m=0

e2πiλm

(m + α)s
.

For λ 6∈ Z, the function L(λ, α, s) is analytically continuable to an entire
function. If λ ∈ Z, then the Lerch zeta-function reduces to the Hurwitz
zeta-function

ζ(s, α) =
∞∑

m=0

1

(m + α)s
, σ > 1,

and L(k, 1, s) = ζ(s), k ∈ Z, where ζ(s) is the Riemann zeta-function.
In (Laurin£ikas and Matsumoto, 1998, 2000) and (Laurin£ikas and Mat-

sumoto, 2006) we considered the joint value-distribution of Lerch zeta-
functions. We proved joint limit theorems in the sense of weak convergence
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of probability measures on the complex plane and in the space of analytic
functions. We obtained, for some values of the parameters λ and α, the joint
universality as well as the functional independence for Lerch zeta- functions.
The aim of this note is to prove a generalization of the mentioned results
for series of Lerch zeta-functions. Let, for r > 1, L(s) = (L(λ11, α1, s), ...,
L(λ1k1 , α1, s), L(λ21, α2, s), ..., L(λ2k2 , α2, s), ..., L(λr1, αr, s), ..., L(λrkr , αr, s))
be a collection of series of Lerch zeta-functions. Here kj, j = 1, ..., r, are
positive integers. We suppose that λlj 6∈ Z, l = 1, ..., r, j = 1, ..., kl. For this
collection, we will obtain a limit theorem in the space of analytic functions,
a joint universality theorem and its consequence on the functional indepen-
dence. In the aforementioned papers (Laurin£ikas and Matsumoto, 1998,
2000, 2006), we studied the case k1 = ... = kr = 1. To state the results, we
need some notation and de�nitions.

Let, for T > 0,

νT (...) =
1

T
meas{τ ∈ [0, T ] : ...},

where meas{A} is the Lebesgue measure of a measurable set A ⊂ R and in
place of dots a condition satis�ed by τ is to be written. Denote by B(S) the
class of Borel sets of the space S. For D = {s ∈ C : σ > 1

2
}, let H(D) be

the space of analytic on D functions equipped with the topology of uniform
convergence on compacta. Moreover, let Hd(D) = H(D)× ...×H(D)︸ ︷︷ ︸

d

,

where d =
r∑

j=1

kj. Denote γ = {s ∈ C : |s| = 1}, and de�ne

Ω =
∞∏

m=0

γm,

where γm = γ for all m ∈ N0 = N
⋃
{0}. The Tikhonov theorem shows

that Ω is a compact topological Abelian group. Therefore, on (Ω,B(Ω))
the probability Haar measure mH exists, and this gives a probability space
(Ω,B(Ω), mH). Denote by ω(m) the projection of ω ∈ Ω to the coordinate
space γm. Furthermore, let Ωr = Ω1× ...×Ωr, where Ωj = Ω for j = 1, ..., r.
By the Tikhonov theorem again, Ωr is a compact topological group, and the
probability Haar measure mHr on (Ωr,B(Ωr)) can be de�ned. Now on the
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probability space (Ωr,B(Ωr), mHr) de�ne an Hd(D)-valued random element
L(s, ω) by

L(s, ω) = (L(λ11, α1, s, ω1), ..., L(λ1k1 , α1, s, ω1), L(λ21, α2, s, ω2), ...,

L(λ2k2 , α2, s, ω2), ..., L(λr1, αr, s, ωr), ..., L(λrkr , αr, s, ωr)),

where

L(λlj, αl, s, ωl) =
∞∑

m=0

e2πiλljmωl(m)

(m + αl)s
, l = 1, ..., r; j = 1, ..., kl.

Here, for l = 1, ..., r, ωl ∈ Ω, and ω = (ω1, ..., ωr) ∈ Ωr. Denote by PL the
distribution of the random element L(s, ω), that is

PL(A) = mHr (ω ∈ Ωr : L(s, ω) ∈ A) , A ∈ B(Hd(D)).

De�ne, for A ∈ B(Hd(D)),

PT (A) = νT (L(s + iτ) ∈ A) .

THEOREM 1. Suppose that the numbers α1, ..., αr are algebraically inde-
pendent over the �eld of rational numbers Q. Then the probability measure
PT converges weakly to PL as T →∞.

Theorem 1 is the principal tool for the proof of the joint universality
for the collection L(s). Let λlj, l = 1, ..., r, j = 1, ..., kl, be arbitrary ratio-
nal numbers with denominators qlj, l = 1, ..., r, j = 1, ..., kl, respectively.
Denote by k = [q11, ..., q1k1 , ..., qr1, ..., qrkr ] the least common multiple, and
de�ne

A =


e2πiλ11 e2πiλ12 ... e2πiλ1k1 ... e2πiλr1 e2πiλr2 ... e2πiλrkr

e4πiλ11 e4πiλ12 ... e4πiλ1k1 ... e4πiλr1 e4πiλr2 ... e4πiλrkr

......... ......... ... ......... ... ......... ......... .........
e2πikλ11 e2πikλ12 ... e2πikλ1k1 ... e2πikλr1 e2πikλr2 ... e2πikλrkr


THEOREM 2. Suppose that α1, ..., αr are algebraically independent over

Q and that rank(A) = d. Let Klj be a compact subset of the strip D0 =
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{
s ∈ C : 1

2
< σ < 1

}
with connected complement, and let flj(s) be a contin-

uous on Klj function which is analytic in the interior of Klj, l = 1, ..., r,
j = 1, ..., kl. Then, for every ε > 0,

lim inf
T→∞

νT

(
sup

1≤l≤r
sup

1≤j≤kl

sup
s∈Klj

|L(λlj, αl, s + iτ)− flj(s)| < ε

)
> 0.

Theorem 2 implies the functional independence of functions from the
collection L(s).

THEOREM 3. Suppose that α1, ..., αr are algebraically independent over
Q and that rank (A) = d. For j = 0, 1, ...,M , let Fj be a continuous on
CNd function, and

M∑
j=0

sjFj(L(λ11, α1, s), L(λ12, α1, s), ..., L(λ1k1 , α1, s), ..., L(λr1, αr, s), ...,

L(λrkr , αr, s), L
′(λ11, α1, s), L

′(λ12, α1, s), ..., L
′(λ1k1 , α1, s), ..., L

′(λr1, αr, s),

..., L′(λrkr , αr, s), ..., L
(N−1)(λ11, α1, s), L

(N−1)(λ12, α1, s), ..., L
(N−1)(λ1k1 , α1, s),

..., L(N−1)(λr1, αr, s), L
(N−1)(λr2, αr, s), ..., L

(N−1)(λrkr , αr, s)) = 0

identically for s ∈ C. Then Fj ≡ 0, j = 0, 1, ...,M .

2. PROOF OF THEOREM 1

We will follow the proof of Theorem 1 from (Laurin£ikas and Matsumoto,
2002), therefore we will omit some details.

We begin with joint limit theorems for Dirichlet polynomials. For this,
we will apply a limit theorem on torus Ωr which was proved in (Laurin£ikas
and Matsumoto, 2006), Lemma 4. Let

QT,r(A) = νT

(((
(m + α1)

iτ : m ∈ N0

)
, ...,

(
(m + αr)

iτ : m ∈ N0)
)
∈ A

)
, A ∈ B(Ωr

)
.

LEMMA 4. The probability measure QT,r converges weakly to the Haar
measure mHr on (Ωr,B(Ωr)) as T →∞.
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Let σ1 > 1
2
, and, for m,n ∈ N,

vl(m,n) = exp

{
−
(

m + αl

n + αl

)σ1
}

, l = 1, ..., r.

De�ne, for Nlj ∈ N0, ω̂l ∈ Ω and s ∈ D,

LNlj ,l,j,n(λlj, αl, s) =

Nlj∑
m=0

e2πiλljmvl(m, n)

(m + αl)s
,

LNlj ,l,j,n(λlj, αl, s, ω̂l) =

Nlj∑
m=0

e2πiλljmvl(m,n)ω̂l(m)

(m + αl)s
,

l = 1, ..., r, j = 1, ..., kl. Let N = (N11, ..., N1k1 , ..., Nr1, ..., Nrkr), ω̂ =
(ω̂1, ..., ω̂r), and

LN,n(s) = (LN11,1,1,n(λ11, α1, s), ..., LN1k1
,1,k1,n(λ1k1 , α1, s), ...

LNr1,r,1,n(λr1, αr, s), ..., LNrkr ,r,kr,n(λrkr , αr, s)),

LN,n(s, ω̂) = (LN11,1,1,n(λ11, α1, s, ω̂1), ..., LN1k1
,1,k1,n(λ1k1 , α1, s, ω̂1), ...

LNr1,r,1,n(λr1, αr, s, ω̂r), ..., LNrkr ,r,kr,n(λrkr , αr, s, ω̂r)).

Now, for A ∈ B(Hd(D)), de�ne the probability measures

PT,N,n(A) = νT

(
LN,n(s + iτ) ∈ A

)
and

P̂T,N,n(A) = νT

(
LN,n(s + iτ, ω̂) ∈ A

)
.

THEOREM 5. The probability measures PT,N,n and P̂T,N,n both converge
weakly to the same probability measure on (Hd(D),B(Hd(D))) as T →∞.

Proof. The theorem is a generalization of Theorem 5 from (Laurin£ikas
and Matsumoto, 2006). De�ne a function h : Ωr → Hd(D) by

h(ω1, ..., ωr) = LN,n(s, ω−1),
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where ω−1 = (ω−1
1 , ..., ω−1

r ), (ω1, ..., ωr) ∈ Ωr. Then the function h is con-
tinuous, moreover,

h
(
((m + α1)

iτ : m ∈ N0), ..., ((m + αr)
iτ : m ∈ N0)

)
= LN,n(s + iτ).

Therefore PT,N,n = QT,rh
−1, and Lemma 4 together with Theorem 5.1

of (Billingsley, 1968) shows that the measure PT,N,n converges weakly to
mHrh

−1 as T →∞.
Now de�ne h1 : Ωr → Ωr by

h1(ω1, ..., ωr) = (ω1ω̂
−1
1 , ..., ωrω̂

−1
r ).

Then we have that

LN,n(s + iτ, ω̂) = h
(
h1

(
((m + α1)

iτ : m ∈ N0), ..., ((m + αr)
iτ : m ∈ N0)

))
.

Therefore, similarly to the case of the measure PT,N,n, we �nd that the
measure P̂T,N,n converges weakly to the measure mHr(hh1)

−1 as T → ∞,
and the theorem follows in virtue of the equality

mHr(hh1)
−1 = (mHrh

−1
1 )h−1 = mHrh

−1.

The next step is limit theorems for absolutely convergent Dirichlet series.
For l = 1, ..., r, j = 1, ..., kl, de�ne

Ll,j,n(λlj, αl, s) =
∞∑

m=0

e2πiλljmvl(m,n)

(m + αl)s
(1)

and

Ll,j,n(λlj, αl, s, ωl) =
∞∑

m=0

e2πiλljmvl(m, n)ωl(m)

(m + αl)s
, (2)

where (ω1, ..., ωr) ∈ Ωr, and put

Ln(s) = (L1,1,n(λ11, α1, s), ..., L1,k1,n(λ1k1 , α1, s), ...

Lr,1,n(λr1, αr, s), ..., Lr,kr,n(λrkr , αr, s))

and

Ln(s, ω) = (L1,1,n(λ11, α1, s, ω1), ..., L1,k1,n(λ1k1 , α1, s, ω1), ...
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Lr,1,n(λr1, αr, s, ωr), ..., Lr,kr,n(λrkr , αr, s, ωr)).

Note that series (1) and (2) both converge absolutely for σ > 1
2
. Our next

aim is to show limit theorems for the probability measures

PT,n(A) = νT (Ln(s + iτ) ∈ A) , A ∈ B(Hd(D)),

and
P̂T,n(A) = νT (Ln(s + iτ, ω) ∈ A) , A ∈ B(Hd(D)).

THEOREM 6. On (Hd(D),B(Hd(D))) there exists a probability measure
Pn such that the measures PT,n and P̂T,n both converge weakly to Pn as
T →∞.

Proof. We argue similarly to the proof of Theorem 6 from (Laurin£ikas
and Matsumoto, 2006). For simplicity, let Nlj = N for all l = 1, ..., r,
j = 1, ..., kl. Then by Theorem 5 we have that the probability measures
PT,N,n = PT,N,n and P̂T,N,n = P̂T,N,n both converge weakly to the same
measure PN,n as T → ∞. Note that in the de�nition of P̂T,N,n we write ω
in place of ω̂.

Let η be a random variable de�ned on a certain probability space (Ω̂,B(Ω̂), P)
and uniformly distributed on [0, 1]. De�ne, for l = 1, ..., r, j = 1, ..., kl,

XT,N,l,j,n = XT,N,l,j,n(s) = LN,l,j,n(λlj, αj, s + iTη).

Then XT,N,l,j,n is an H(D)-valued random element de�ned on (Ω̂,B(Ω̂), P),
and by Theorem 5 we have that

XT,N,n = XT,N,n(s)
def
= (XT,N,1,1,n, ..., XT,N,1,k1,n,

..., XT,N,r,1,n, ..., XT,N,r,kr,n)
D−→

T→∞
XN,n, (3)

where XN,n = (XN,1,1,n, ..., XN,1,k1,n, ..., XN,r,1,n, ..., XN,r,kr,n) is an Hd(D)-

valued random element with the distribution PN,n, and
D−→ means the

convergence in distribution.
Let {Km : m ∈ N} be a sequence of compact subsets of D such that

∞⋃
m=1

Km = D, Km ⊂ Km+1, and, for any compact subset K of D, we �nd
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an m for which K ⊆ Km holds. Then

ρ(f, g) =
∞∑

m=1

2−m

sup
s∈Km

|f(s)− g(s)|

1 + sup
s∈Km

|f(s)− g(s)|
, f, g ∈ H(D),

is a metric on H(D) which induces its topology. Then we can de�ne a
metric on Hd(D) by

ρd(f, g) = max
1≤l≤r

max
1≤j≤kl

ρ(flj, glj),

where f = (f11, ..., f1k1 , ..., fr1, ..., frkr), g = (g11, ..., g1k1 , ..., gr1, ..., grkr) ∈
Hd(D).

Since the series for Ll,j,n(λlj, αl, s), l = 1, ..., r, j = 1, ..., kl, is absolutely
convergent for σ > 1

2
, we have that, for any Mmljn > 0, m ∈ N, l = 1, ..., r,

j = 1, ..., kl, n ∈ N0,

lim sup
T→∞

P
(

sup
s∈Km

|XT,N,l,j,n(s)| > Mmljn for at least one pair(l, j)

)
≤

≤
r∑

l=1

kl∑
j=1

lim sup
T→∞

P
(

sup
s∈Km

|XT,N,l,j,n(s)| > Mmljn

)
≤

≤
r∑

l=1

kl∑
j=1

1

Mmljn

sup
N≥1

lim sup
T→∞

1

T

T∫
0

sup
s∈Km

|LN,l,j,n(λlj, αl, s + iτ)|dτ =

=
r∑

l=1

kl∑
j=1

Rmljn

Mmljn

< ∞, (4)

where

Rmljn = sup
N≥1

lim sup
T→∞

1

T

T∫
0

sup
s∈Km

|LN,l,j,n(λlj, αl, s + iτ)|dτ.

8



Now choose Mmljn = Rmljn2md/ε. Then (4) yields

lim sup
T→∞

P
(

sup
s∈Km

|XT,N,l,j,n(s)| > Mmljn for at least one pair (l, j)

)
≤ ε

2m
.

This and (3) show that, for all m ∈ N,

P
(

sup
s∈Km

|XN,l,j,n(s)| > Mmljn for at least one pair (l, j)

)
≤ ε

2m
. (5)

De�ne

Hd
ε = {(f11, ..., f1k1 , ..., fr1, ..., frkr) ∈ Hd(D) : sup

s∈Km

|flj(s)| ≤ Mmljn,

l = 1, ..., r, j = 1, ..., kl, m ∈ N}.
Then, by the compactness principle, the set Hd

ε is compact in Hd(D), and
in view of (5), for all N ∈ N0 and any �xed n ∈ N0,

P
(
XN,n ∈ Hd

ε

)
≥ 1− ε.

Taking into account the de�nition of XN,n, hence we obtain that

PN,n

(
Hd

ε

)
≥ 1− ε

for all N ∈ N0 and any �xed n ∈ N0. This shows that the family of
probability measures {PN,n : N ∈ N0} is tight, therefore, by the Prokhorov
theorem, it is relatively compact.

By the de�nition, for l = 1, ..., r, j = 1, ..., kl,

lim
N→∞

LN,l,j,n(λlj, αl, s) = Ll,j,n(λlj, αl, s),

uniformly on compact subsets of the half-plane D. Hence, using the above
notation, we have, for every ε > 0,

lim
N→∞

lim sup
T→∞

νT

(
ρd(LN,n(s + iτ), Ln(s + iτ)) ≥ ε

)
≤

≤ lim
N→∞

lim sup
T→∞

1

Tε

T∫
0

ρd

(
LN,n(s + iτ), Ln(s + iτ)

)
dτ ≤
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≤ lim
N→∞

lim sup
T→∞

1

Tε

r∑
l=1

kl∑
j=1

T∫
0

ρ (LN,l,j,n(λlj, αl, s + iτ), Ll,j,n(λlj, αl, s + iτ)) dτ = 0.

(6)
Now, for l = 1, ..., r, j = 1, ..., kl, we de�ne

XT,l,j,n = XT,l,j,n(s) = Ll,j,n(λlj, αl, s + iTη),

and let

XT,n = (XT,1,1,n, ..., XT,1,k1,n, ..., XT,r,1,n, ..., XT,r,kr,n) .

Then (6) implies

lim
N→∞

lim sup
T→∞

P
(
ρd(XT,N,n, XT,n) ≥ ε

)
= 0. (7)

Moreover, the relative compactness of the family {PN,n : N ∈ N0} shows
that there exists {PN1,n} ⊂ {PN,n} such that PN1,n converges weakly to
some probability measure Pn as N1 →∞. Hence

XN1,n
D−→

N1→∞
Pn. (8)

Therefore, relations (3), (7) (8) and Theorem 4.2 of (Billingsley, 1968) yield

XT,n
D−→

T→∞
Pn, (9)

and we have that the probability measure PT,n converges weakly to Pn as
T →∞.

Relation (9) shows that the measure Pn is independent of the sequence
N1. Thus, by Theorem 2.3 of (Billingsley, 1968),

XN,n
D−→

N→∞
Pn. (10)

Now de�ne
X̂T,N,n(s) = LN,n(s + iTη, ω)

and
X̂T,n(s) = Ln(s + iTη, ω).

10



Then, repeating the above arguments for the random elements X̂T,N,n(s)

and X̂T,n(s), recalling that P̂T,N,n also converges weakly to PN,n and using
(10), we obtain that the probability measure P̂T,n also converges weakly to
Pn as T →∞. The theorem is proved.

Now we approximate in mean the vectors L(s) and L(s, ω) by the vec-
tors Ln(s) and Ln(s, ω), respectively.

THEOREM 7. We have

lim
n→∞

lim sup
T→∞

1

T

T∫
0

ρd (L(s + iτ), Ln(s + iτ)) dτ = 0,

and, for almost all ω ∈ Ωr,

lim
n→∞

lim sup
T→∞

1

T

T∫
0

ρd (L(s + iτ, ω), Ln(s + iτ, ω)) dτ = 0.

Proof. Obviously, the numbers α1, ..., αr are transcendental. Therefore,

by Lemmas 5.2.11 and 5.2.13 of (Laurin£ikas and Garunk²tis, 2002), for
l = 1, ..., r, j = 1, ..., kl,

lim
n→∞

lim sup
T→∞

1

T

T∫
0

ρ (L(λlj, αl, s + iτ), Ll,j,n(λlj, αl, s + iτ)) dτ = 0,

and, for almost all ωl ∈ Ω,

lim
n→∞

lim sup
T→∞

1

T

T∫
0

ρ (L(λlj, αl, s + iτ, ωl), Ll,j,n(λlj, αl, s + iτ, ωl)) dτ = 0.

Thus to prove the theorem it su�ces to use the de�nition of metric ρd.
Now we are ready to prove Theorem 1 without indication of the limit

measure. De�ne

P̂T (A) = νT (L(s + iτ, ω) ∈ A) , A ∈ B(Hd(D)).
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THEOREM 8. On (Hd(D),B(Hd(D))) there exists a probability measure
P such that the measures PT and P̂T (for almost all ω) both converge weakly
to P as T →∞.

Proof. The proof uses Theorems 6 and 7 and di�ers from that of The-
orem 8 from (Laurin£ikas and Matsumoto, 2006) only by evident details
which are clear from the proof of Theorem 6.

For the identi�cation of the limit measure P in Theorem 8, as usual, we
apply some statements of ergodic theory.

Let aτ,l = {(m + αl)
−iτ : m ∈ N0}, τ ∈ R, l = 1, ..., r. Then {aτ,l :

τ ∈ R}, for each l = 1, ..., r, is a one-parameters group. De�ne the one-
parameter family {Φτ : τ ∈ R} = {(ϕτ,1, ..., ϕτ,r) : τ ∈ R} of transforma-
tions on Ωr by ϕτ,l(ωl) = aτ,lωl, ωl ∈ Ωl, l = 1, ..., r. Then we obtain a
one-parameter group of measurable measure preserving transformations on
Ωr.

LEMMA 9. The one-parameter group {Φτ : τ ∈ R} is ergodic.

Proof of the lemma is given in (Laurin£ikas and Matsumoto, 2006).
Proof of Theorem 1. The proof is based on Theorem 8 and Lemma 9 as

well as on the Birkho�- Khinchine theorem and completely coincides with
the proof of Theorem 1 from (Laurin£ikas and Matsumoto, 2006).

3. PROOF OF THEOREMS 2 AND 3

We recall that D0 =
{
s ∈ C : 1

2
< σ < 1

}
. For the proof of Theorem

2 we need a limit theorem on Hd(D0). Let PL0
be the restriction of the

distribution PL of the random element L(s, ω) to Hd(D0), that is

PL0
(A) = mHr (ω ∈ Ωr : L(s, ω) ∈ A) , A ∈ B(Hd(D0)).

LEMMA 10. Suppose that α1, ..., αr are algebraically independent over
Q. Then the probability measure

νT (L(s + iτ) ∈ A) , A ∈ B(Hd(D0)),

converges weakly to PL0
as T →∞.
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Proof. The statement of the Lemma is a consequence of Theorem 1, the
continuity of the function h : Hd(D) → Hd(D0) de�ned by h(g) = g

∣∣
s∈D0

,
g ∈ Hd(D), and of a property of weak convergence of probability measures
(see Theorem 5.1 of (Billingsley, 1968)).

Now we deal with the support of the measure PL0
. The support of PL0

is a minimal closed set SPL0
⊂ Hd(D0) such that PL0

(SPL0
) = 1, and SPL0

consists of all g ∈ Hd(D0) such that for every neighborhood G of g the
inequality PL0

(G) > 0 is satis�ed.

THEOREM 11. Suppose that α1, ..., αr are algebraically independent
over Q and that rank(A) = d. Then the support of PL0

is the whole of
Hd(D0).

Proof. De�ne

L̂0(s, ω) = (L(λ11, α1, s, ω), ..., L(λ1k1 , α1, s, ω), ..., L(λr1, αr, s, ω),

..., L(λrkr , αr, s, ω)), s ∈ D0,

where, for ω ∈ Ω, l = 1, ..., r, j = 1, ..., kl,

L(λlj, αl, s, ω) =
∞∑

m=0

e2πimλljω(m)

(m + αl)s
.

Then we have that SPL0
⊇ SPL̂0

, and it is su�cient to prove that SPL̂0
=

Hd(D0).
The support of each random variable ω(m), m ∈ N0, is the unit circle γ.

Moreover, by construction {ω(m) : m ∈ N0} is a sequence of independent
random variables on the probability space (Ω,B(Ω), mH). This and Lemma
5 of (Laurin£ikas and Matsumoto, 2002) show that the support SPL̂0

is the
closure of all convergent series

∞∑
m=0

Lm0(s, a),

where

Lm0(s, a) =

(
e2πimλ11am

(m + α1)s
, ...,

e2πimλ1k1am

(m + α1)s
, ...,

e2πimλr1am

(m + αr)s
, ...,

e2πimλrkr am

(m + αr)s

)
13



with a = {am : am ∈ γ, m ∈ N0}. In order to prove that the latter set
of series is dense in Hd(D0), we will apply Lemma 6 of (Laurin£ikas and
Matsumoto, 2002).

Since L̂0(s, ω) is an Hd(D0)-valued random element, there exists a se-
quence b = {bm : bm ∈ γ, m ∈ N0} such that the series

∞∑
m=0

Lm0(s, b) (11)

is convergent in Hd(D0). Moreover, for every compact subset K ⊂ D0,

∞∑
m=0

r∑
l=1

kl∑
j=1

sup
s∈K

∣∣∣∣e2πimλljbm

(m + αl)s

∣∣∣∣2 < ∞. (12)

Now let µlj, l = 1, ..., r, j = 1, ..., kl, be complex measures on (C,B(C))
with compact supports contained in D0 and such that

∞∑
m=0

∣∣∣∣∣∣
r∑

l=1

kl∑
j=1

∫
C

e2πimλlj

(m + αl)s
dµlj(s)

∣∣∣∣∣∣ < ∞.

This, in view of the estimate (see(Laurin£ikas and Matsumoto, 2000))

(m + αl)
−s = m−s + O

(
m−1−σ|s|eO(|s|)) , l = 1, ..., r,

and the de�nition of µlj, leads to

∞∑
m=0

∣∣∣∣∣∣
r∑

l=1

kl∑
j=1

∫
C

e2πimλlj

ms
dµlj(s)

∣∣∣∣∣∣ < ∞. (13)

The sequence
{
e2πimλlj , m ∈ N0

}
(for each l, j) is periodic with period k.

Thus, by (13), for every h = 1, ..., k,

∞∑
m=0

m≡h(modk)

∣∣∣∣∣∣
r∑

l=1

kl∑
j=1

∫
C

e2πihλlj

ms
dµlj(s)

∣∣∣∣∣∣ < ∞. (14)

14



De�ne, for A ∈ B(C) and h = 1, ..., k,

νh(A) =
r∑

l=1

kl∑
j=1

e2πihλljµlj(A).

Then νh, h = 1, ..., k, are also complex measures on (C,B(C)) with compact
supports contained in D0, and by (14), for every h = 1, ..., k,

∞∑
m=0

m≡h(modk)

∣∣∣∣∣∣
∫
C

m−sdνh(s)

∣∣∣∣∣∣ < ∞. (15)

Let, for h = 1, ..., k and z ∈ C,

ρh(z) =

∫
C

e−szdνh(s).

Then we can rewrite (14) in the form

∞∑
m=0

m≡h(modk)

|ρh(log m)| < ∞, h = 1, ..., k. (16)

For all h = 1, ..., k, ρh(z) is an entire function of exponential type. Therefore,
taking into account (16) and Lemma 6.4.10 of (Laurin£ikas, 1996), we have
that, for all h = 1, ..., k, either ρh(z) ≡ 0, or

lim sup
x→∞

log |ρh(x)|
x

> −1. (17)

If (17) takes place, then in view of Lemma 5 of (Laurin£ikas and Matsumoto,
2000), which is a case of general positive density method, we obtain that,
for h = 1, ..., k,

∞∑
m=0

m≡h(modk)

|ρh(log m)| = ∞.

15



However, this contradicts (16). Thus, it remains the case ρh(z) ≡ 0, h =
1, ..., k. This shows that, for h = 1, ..., k,

r∑
l=1

kl∑
j=1

e2πihλlj

∫
C

e−szdµlj(s) ≡ 0. (18)

Now we apply the hypothesis that rank(A) = d. Then the system of equa-
tions (18) has the unique solution∫

C

e−szdµlj(s) ≡ 0, l = 1, ..., r, j = 1, ..., kl.

Hence, by di�erentiation we �nd that∫
C

smdµlj(s) = 0

for all m ∈ N0 and l = 1, ..., r, j = 1, ..., kl. This together with convergence
of series (11) and (12) show that all hypotheses of Lemma 6 from (Lau-
rin£ikas and Matsumoto, 2002) are satis�ed, and we obtain that the set of
all convergent series

∞∑
m=0

Lm0(s, ab)

with a = {am : am ∈ γ, m ∈ N0} is dense in Hd(D0). Then set of all
convergent series

∞∑
m=0

Lm0(s, a)

is also dense in Hd(D0), and the theorem is proved.
Now Theorem 2 is deduced by a standard way from Lemma 10, Theo-

rem 11 as well as Mergelyan's theorem, while Theorem 3 is a consequence
of Theorem 2. For the details, see (Laurin£ikas and Matsumoto, 2000).
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