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Abstract. We give corrected statements of some theorems from [5] and [6] on joint value
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an extension of a joint universality theorem.
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1. INTRODUCTION

Let, as usual, s = σ + it, denote a complex variable, and let N, N0, Z, R and
C be the set of all positive integers, non-negative integers, integers, real and com-
plex numbers, respectively. The Lerch zeta-function L(λ, α, s) with fixed parame-
ters α, λ ∈ R, 0 < α 6 1, for σ > 1, is defined by

L(λ, α, s) =
∞∑

m=0

e2πiλm

(m + α)s
.

If λ ∈ Z, then the Lerch zeta-function becomes the Hurwitz zeta-function

ζ(s, α) =
∞∑

m=0

1
(m + α)s

, σ > 1,

and ζ(s, α), for α = 1, reduces to the Riemann zeta-function.
The paper is conditioned by [5] and [6], where the joint value distribution of

Lerch zeta-functions was considered and some inaccuracies in the statements of
some theorems in these papers were remained. The aim of this paper is to correct
and comment the results of [5] and [6], and to give for some of them new proofs
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as well as certain their extensions. For this, first we recall the results of [5]. De-
note by B(S) the class of Borel sets of the space S, and let, for T > 0,

νt
T (...) =

1
T

meas{t ∈ [0, T ] : ...},

where meas{A} is the Lebesgue measure of a measurable set A ⊂ R, in place of
dots a condition satisfied by t is to be written, and the sign t in νt

T means that
the measure is taken over t ∈ [0, T ].

Let r ∈ N \ {1}, and let L(λ1, α1, σ1 + it), ..., L(λr, αr, σr + it) be a collection
of Lerch zeta-functions. Throughout the paper, as in [5], we suppose that λj 6∈ Z,
j = 1, ..., r.

Theorem 1 of [5] remains without any changes. It asserts that, for min
16j6r

σj >

1
2 , on (Cr,B(Cr)), there exists a probability measure P such that the probability
measure

νt
T ((L(λ1, α1, σ1 + it), ..., L(λr, αr, σr + it)) ∈ A) , A ∈ B(Cr),

converges weakly to P as T → ∞. Now we will present the corrected statement
of Theorem 2 from [5]. This theorem deals with joint distribution of Lerch zeta-
functions in the space of analytic functions, and differently from Theorem 1, gives
the explicit form of the limit measure. For its statement, we need some additional
notation. For D = {s ∈ C : σ > 1

2}, denote by H(D) the space of analytic on
D functions equipped with the topology of uniform convergence on compacta, and
let Hr(D) = H(D)× ...×H(D)︸ ︷︷ ︸

r

. Let γ = {s ∈ C : |s| = 1}, and define

Ω =
∞∏

m=0

γm,

where γm = γ for all m ∈ N0. By the Tikhonov theorem the infinite-dimensional
torus Ω is a compact topological Abelian group, therefore, the probability Haar
measure mH on (Ω,B(Ω)) can be defined. This gives a probability space (Ω,B(Ω),mH).
Denote by ω(m) the projection of ω ∈ Ω to the coordinate space γm. Moreover,
define Ωr = Ω1× ...×Ωr, where Ωj = Ω for j = 1, ..., r. Then Ωr is also a compact
topological group. Denote by mHr the probability Haar measure on (Ωr,B(Ωr)),
and on the probability space (Ωr,B(Ωr),mHr) define an Hr(D)-valued random
element L(s, ω) by

L(s, ω) = (L(λ1, α1, s, ω1), ..., L(λr, αr, s, ωr)) ,

where

L(λj , αj , s, ωj) =
∞∑

m=0

e2πiλjmωj(m)
(m + αj)s

,



Joint value-distribution theorems on Lerch zeta-functions. II 3

ωj ∈ Ω, j = 1, ..., r, and ω = (ω1, ..., ωr). Denote by PL the distribution of the
random element L(s, ω), that is

PL(A) = mHr (ω ∈ Ωr : L(s, ω) ∈ A) , A ∈ B(Hr(D)),

and define the probability measure PT by

PT (A) = ντ
T ((L(λ1, α1, s + iτ), ..., L(λr, αr, s + iτ)) ∈ A) , A ∈ B(Hr(D)).

We recall that the numbers a1, ..., ar are algebraically independent over the
field of rational numbers Q if the coefficients of every polynomial p with rational
coefficients satisfying p(a1, ..., ar) = 0 are equal to zero.

THEOREM 1. Suppose that α1, ..., αr are algebraically independent over Q and
that λj 6∈ Z, j = 1, ..., r. Then the probability measure PT converges weakly to PL

as T →∞.

Theorem 1 is the corrected statement of Theorem 2 from [5]. In Theorem 2 of
[5] it is required that the numbers α1, ..., αr should be transcendental, however,
this is not sufficient for the proof of Lemma 9 of [5]. Since, for σ > 1, the shift-
ing parameters of the functions L(λ1, α1, s), ..., L(λr, αr, s) are different, for the
proof of Lemma 9 of [5] we need a limit theorem on the torus Ωr (see Lemma 4
below). Moreover, in this theorem, the limit measure must be the Haar measure.
Therefore, we have to use a condition that the set

r⋃
j=1

∞⋃
m=0

{log(m + αj)}

should be linearly independent over Q. The latter requirement is satisfied if the
numbers α1, ..., αr are algebraically independent over Q. This is also used in ap-
plication of elements of ergodic theory for the identification of the limit measure.
So, except for the above change in the proof of Lemma 9 of [5], the proof of The-
orem 2 from [5] remains the same, and only in its statement the condition of the
transcendence of α1, ..., αr is changed by the algebraic independence over Q. Be-
low we will give a new direct proof of Theorem 1 which does not use the modified
Cramér-Wald criterion (a statement of the type of Lemma 9 in [5]).

We note that Theorem 3 of [5] is true. In the case of rational λ, the Dirichlet
series for L(λ, α, s) is reduced to ordinary Dirichlet series (with exponents log m),
therefore, even in the multidimensional case, we can use a limit theorem on the
torus

Ω̂ =
∏
p

γp,

where γp = γ for all primes p, and the linear independence over Q of logarithms
of prime numbers. The further proof runs in a standard way.

The same changes must be done also in Theorems 1 and 2 from [6], on the
joint universality and functional independence of Lerch zeta-functions, since their
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proof is based on Theorem 2 of [5]. Thus, in Theorems 1 and 2 of [6] the condi-
tion that α1, ..., αr are transcendental must be changed by a more strong require-
ment that the numbers α1, ..., αr are algebraically independent over Q.

We also note that the same changes must be done in Theorems 5.3.1, 5.3.2,
6.3.1 and 7.2.1 of [4].

For example, the transcendental numbers α1 = e−1 and α2 = e−2 are not
algebraically independent over Q, therefore they do not satisfy the hypotheses of
Theorem 1. On the other hand, it is known that the numbers eπ and π are al-
gebraically independent over Q. So, we can take, for example, α1 = eπ/12 and
α2 = π/4 in Theorem 1.

Now we state one generalization of Theorems 1 and 2 (after the above cor-
rection) from [6]. Let λ1, ..., λr be arbitrary rational numbers with denominators
q1, ..., qr, respectively. Denote by k = [q1, ..., qr] the least common multiple, and
define

A =


e2πiλ1 e2πiλ2 · · · e2πiλr

e4πiλ1 e4πiλ2 · · · e4πiλr

· · · · · · · · · · · ·
e2πkiλ1 e2πkiλ2 · · · e2πkiλr

 .

THEOREM 2. Suppose that α1, ..., αr are algebraically independent over Q and
that rank(A) = r. Let Kj be a compact subset of the strip D0 =

{
s ∈ C : 1

2 < σ < 1
}

with connected complement, and let fj(s) be a continuous on Kj function which is
analytic in the interior of Kj, j = 1, ..., r. Then, for every ε > 0

lim inf
T→∞

ντ
T

(
sup

16j6r
sup

s∈Kj

|L(λj , αj , s + iτ)− fj(s)| < ε

)
> 0.

THEOREM 3. Suppose that α1, ..., αr are algebraically independent over Q and
that rank(A) = r. Let Fj be a continuous on CNr function, j = 0, ..., l, and

l∑
j=0

sjFj(L(λ1, α1, s), ..., L(λr, αr, s), L′(λ1, α1, s), ...,

L′(λr, αr, s), ..., L(N−1)(λ1, α1, s), ..., L(N−1)(λr, αr, s)) = 0

identically for s ∈ C. Then Fj ≡ 0, j = 0, ..., l.

Theorem 3 is deduced from Theorem 2 in the same way as in [6] where Theo-
rem 2 of [6] is obtained from Theorem 1 of [6].

2. PROOF OF THEOREM 1

2.1. Joint limit theorems for Dirichlet polynomials. First we will prove
a joint limit theorem on the torus Ωr for the probability measure

QT,r(A) = ντ
T

(((
(m + α1)iτ : m ∈ N0

)
, ...,

(
(m + αr)iτ : m ∈ N0

))
∈ A

)
, A ∈ B(Ωr).
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LEMMA 4. The probability measure QT,r converges weakly to the Haar mea-
sure mHr on (Ωr,B(Ωr)) as T →∞.

Proof. The dual group of Ωr is

r⊕
j=1

∞⊕
m=0

Zmj ,

where Zmj = Z for all m ∈ N0 and j = 1, ..., r. The element (k1, ..., kr) =

(k01, k11, ..., k0r, k1r, ...) ∈
r⊕

j=1

∞⊕
m=0

Zmj , where only a finite number of integers

kmj , m ∈ N0, j = 1, ..., r, are distinct from zero, acts on Ωr by

(x1, ..., xr) → (xk1
1 , ..., x

kr
r ) =

r∏
j=1

∞∏
m=0

x
kmj
mj , xj = (x1j , x2j , ...), xmj ∈ γ, m ∈ N0, j = 1, ..., r.

Therefore, the Fourier transform gT,r(k1, ..., kr) of the measure QT,r is

gT,r(k1, ..., kr) =
∫
Ωr

r∏
j=1

∞∏
m=0

x
kmj
mj dQT,r =

=
1
T

T∫
0

r∏
j=1

∞∏
m=0

eiτkmj log(m+αj)dτ =

=
1
T

T∫
0

exp

iτ
r∑

j=1

∞∑
m=1

kmj log(m + αj)

dτ.

Since α1, ..., αr are algebraically independent over Q, we find that

gT,r(k1, ..., kr) =


1 if (k1, ..., kr) = (0, ..., 0),

exp{iT
r∑

j=1

∞∑
m=0

kmj log(m+αj)}−1

iT

r∑
j=1

∞∑
m=0

kmj log(m+αj)

if (k1, ..., kr) 6= (0, ..., 0).

Consequently, we have

lim
T→∞

gT,r(k1, ..., kr) =
{

1 if (k1, ..., kr) = (0, ..., 0),
0 if (k1, ..., kr) 6= (0, ..., 0) .

Hence by continuity theorems for probability measures on locally compact groups
([2], Theorem 1.4.2), we obtain that the measure QT,r converges weakly to mHr

as T →∞.
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Now let σ1j > 1
2 , and, for m,n ∈ N0,

vj(m,n) = exp
{
−
(

m + αj

n + αj

)σ1j
}

, j = 1, ..., r.

Define, for Nj ∈ N0, ω̂j ∈ Ω, s ∈ D,

LNj ,j,n(λj , αj , s) =
Nj∑

m=0

e2πiλjmvj(m,n)
(m + αj)s

,

LNj ,j,n(λj , αj , s, ω̂j) =
Nj∑

m=0

e2πiλjmvj(m,n)ω̂j(m)
(m + αj)s

, j = 1, ..., r,

and consider the weak convergence of the probability measures

PT,N1,...,Nr,n(A) = ντ
T ((LN1,1,n(λ1, α1, s + iτ), ..., LNr,r,n(λr, αr, s + iτ)) ∈ A)

and

P̂T,N1,...,Nr,n(A) = ντ
T ((LN1,1,n(λ1, α1, s + iτ, ω̂1), ..., LNr,r,n(λr, αr, s + iτ, ω̂r)) ∈ A) ,

where A ∈ B(Hr(D)).

THEOREM 5. The probability measures PT,N1,...,Nr,n and P̂T,N1,...,Nr,n both
converge weakly to the same probability measure on (Hr(D),B(Hr(D))) as T →
∞.

Proof. Let a function h : Ωr → Hr(D) be defined by

h(ω1, ..., ωr) =

(
N1∑

m=0

e2πiλ1mv1(m,n)ω−1
1 (m)

(m + α1)s
, ...,

Nr∑
m=0

e2πiλrmvr(m,n)ω−1
r (m)

(m + αr)s

)
,

(ω1, ..., ωr) ∈ Ωr. Then the function h is continuous, and

h
(
((m + α1)iτ : m ∈ N0), ..., ((m + αr)iτ : m ∈ N0)

)
= ((LN1,1,n(λ1, α1, s + iτ), ..., LNr,r,n(λr, αr, s + iτ)) .

Hence PT,N1,...,N,n = QT,rh
−1, therefore by Lemma 4 and Theorem 5.1 of [1] we

obtain that the measure PT,N1,...,Nr,n converges weakly to mHrh
−1 as T →∞.

Now let h1 : Ωr → Ωr be given by

h1(ω1, ..., ωr) = (ω1ω̂
−1
1 , ..., ωrω̂

−1
r ).

Then
(LN1,1,n(λ1, α1, s + iτ, ω̂1), ..., LNr,r,n(λr, αr, s + iτ, ω̂r)) =
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= h
(
h1

(
((m + α1)iτ : m ∈ N0), ..., ((m + αr)iτ : m ∈ N0)

))
.

Similarly as above we find that P̂T,N1,...,Nr,n converges weakly to the measure
mHr(hh1)−1 as T →∞. However, the invariance of the measure mHr yields

mHr(hh1)−1 = (mHrh
−1
1 )h−1 = mHrh

−1,

and the theorem follows.

2.2. Limit theorems for absolutely convergent series. For j = 1, ..., r,
let ωj ∈ Ω, and

Ln,j(λj , αj , s) =
∞∑

m=0

e2πiλjmvj(m,n)
(m + αj)s

and

Ln,j(λj , αj , s, ωj) =
∞∑

m=0

e2πiλjmωj(m)vj(m,n)
(m + αj)s

.

Note that these two series both converge absolutely for σ > 1
2 . Define the proba-

bility measures

PT,n(A) = ντ
T ((Ln,1(λ1, α1, s + iτ), ..., Ln,r(λr, αr, s + iτ)) ∈ A)

and

P̂T,n(A) = ντ
T ((Ln,1(λ1, α1, s + iτ, ω1), ..., Ln,r(λr, αr, s + iτ, ωr)) ∈ A) ,

where A ∈ B(Hr(D)).

THEOREM 6. On (Hr(D),B(Hr(D))) there exists a probability measure Pn

such that the measures PT,n and P̂T,n both converge weakly to Pn as T →∞.

Proof. We apply Theorem 5 with N1 = ... = Nr
def
= N . Then by Theorem 5

the measures PT,N1,...,Nr,n
def
= PT,N,n and P̂T,N1,...,Nr,n

def
= P̂T,N,n both converge to

the same measure PN,n as T →∞.
First we observe that, for any fixed n, the family {PN,n : N ∈ N0} is tight. Let

η be a random variable defined on a certain probability space (Ω̂,B(Ω̂), P) and
uniformly distributed on [0, 1]. Define, for j = 1, ..., r,

XT,N,j,n = XT,N,j,n(s) = LN,j,n(λj , αj , s + iTη),

which is an H(D) - valued random element defined on (Ω̂,B(Ω̂), P). Then by
Theorem 5

XT,N,n
def
= (XT,N,1,n, ..., XT,N,r,n) D−→

T→∞
XN,n, (1)

where XN,n = (XN,1,n, ..., XN,r,n) is an Hr(D)-valued random element with the

distribution PN,n, and D−→ means the convergence in distribution.
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For the investigation of the weak convergence of the measures PT,n and P̂T,n

we need a metric on Hr(D) which induces its topology. Let {Kn} be a sequence

of compact subsets of D such that
∞⋃

n=1
Kn = D, Kn ⊂ Kn+1, and if K is a com-

pact of D, then K ⊆ Kn for some n. Then

ρ(f, g) =
∞∑

n=1

2−n ρn(f, g)
1 + ρn(f, g)

, f, g ∈ H(D),

ρn(f, g) = sup
s∈Kn

|f(s)− g(s)|,

is a metric on H(D) which induces its topology. Then

ρr(f, g) = max
16j6r

ρ(fj , gj),

where f = (f1, ..., fn) ∈ Hr(D), g = (g1, ..., gn) ∈ Hr(D), is a desired metric on
Hr(D).

The series for Ln,j(λj , αj , s), j = 1, ..., r, converge absolutely for σ > 1
2 . There-

fore, for Mlj > 0, j = 1, ..., r, l ∈ N, and some σl > 1/2

lim sup
T→∞

P

(
sup
s∈Kl

|XT,N,j,n(s)| > Mlj for at least one j = 1, ..., r

)
6

6
r∑

j=1

lim sup
T→∞

P

(
sup
s∈Kl

|XT,N,j,n(s)| > Mlj

)
6

6
r∑

j=1

1
Mlj

sup
N>0

lim sup
T→∞

1
T

T∫
0

sup
s∈Kl

|LN,j,n(λj , αj , s + iτ)|dτ �l

�l

r∑
j=1

1
Mlj

sup
N>0

lim sup
T→∞

1
T

2T∫
0

|LN,j,n(λj , αj , σl + it)|dt �l

�l

r∑
j=1

1
Mlj

sup
N>0

lim sup
T→∞

(
1

2T

2T∫
0

|LN,j,n(λj , αj , σl + it)|2dt

)1/2

�l

r∑
j=1

1
Mlj

sup
N>0

( N∑
m=0

v2
j (m,n)

(m + αj)2σl

)1/2

6

6 Cl

r∑
j=1

1
Mlj

( ∞∑
m=0

1
(m + αj)2σl

)1/2
def
= Cl

r∑
j=1

Rlj

Mlj
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with a certain Cl > 0 and

Rlj =
( ∞∑

m=0

1
(m + αj)2σl

)1/2

< ∞.

Taking Mlj = ClRlj2lr/ε, hence we find that

lim sup
T→∞

P

(
sup
s∈Kl

|XT,N,j,n(s)| > Mlj for at least one j = 1, ..., r

)
6

ε

2l
. (2)

Now (1) and (2) show that, for all l ∈ N,

P( sup
s∈Kl

|XN,j,n(s)| > Mlj for at least one j = 1, ..., r) 6
ε

2l
. (3)

Define

Hr
ε = {(f1, ..., fr) ∈ Hr(D) : sup

s∈Kl

|fj(s)| 6 Mlj , j = 1, ..., r, l ∈ N}.

Then the set Hr
ε is compact, and by (3)

P(XN,n(s) ∈ Hr
ε ) > 1− ε,

or, by the definition of XN,n,

PN,n(Hr
ε ) > 1− ε

for all N ∈ N0. This proves the tightness of the family {PN,n : N ∈ N0}.
By the definition, for j = 1, ..., r,

lim
N→∞

LN,j,n(λj , αj , s) = Ln,j(λj , αj , s),

the convergence being uniform on compact subsets of D. Therefore, for every ε >
0,

lim
N→∞

lim sup
T→∞

ντ
T (ρr(LN,n(s + iτ), Ln(s + iτ)) > ε) 6

6 lim
N→∞

lim sup
T→∞

1
Tε

T∫
0

ρr(LN,n(s + iτ), Ln(s + iτ))dτ 6

6 lim
N→∞

lim sup
T→∞

1
Tε

r∑
j=1

T∫
0

ρ(LN,j,n(s + iτ), Ln,j(s + iτ))dτ = 0. (4)

Here
LN,n(s) = (LN,1,n(λ1, α1, s), ..., LN,r,n(λr, αr, s))
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and
Ln(s) = (Ln,1(λ1, α1, s), ..., Ln,r(λr, αr, s)).

Now define, for j = 1, ..., r,

XT,j,n = XT,j,n(s) = Ln,j(λj , αj , s + iTη),

and put
XT,n = (XT,1,n, ..., XT,r,n).

Then in view of (4)

lim
N→∞

lim sup
T→∞

P(ρr(XT,N,n, XT,n) > ε) = 0. (5)

Since the family {PN,n : N ∈ N0} is tight, by the Prokhorov theorem it is
relatively compact. Let {PN1,n} ⊂ {PN,n} be such that PN1,n converges weakly to
some measure Pn as N1 →∞. Then we have that

XN1,n
D−→

N1→∞
Pn. (6)

The space Hr(D) is separable, and (1), (5) and (6) show that the hypothesis of
Theorem 4.2 from [1] are satisfied. Consequently,

XT,n
D−→

T→∞
Pn, (7)

and this is equivalent to the weak convergence of the measure PT,n to Pn as T →
∞.

Formula (7) shows that the measure Pn is independent of the sequence N1.
Therefore, we have

XN,n
D−→

N→∞
Pn. (8)

Now, repeating the above arguments for the random elements

X̂T,N,n = (LN,1,n(λ1, α1, s + iTη, ω), ..., LN,r,n(λr, αr, s + iTη, ω))

and
X̂T,n = (Ln,1(λ1, α1, s + iTη, ω), ..., Ln,r(λr, αr, s + iTη, ω)),

and using (8) we similarly obtain that the measure P̂T,n also converges weakly to
Pn as T →∞. The theorem is proved.

2.3. Proof of Theorem 1. We start with approximation in mean of the
vectors (L(λ1, α1, s), ..., L(α1, λ1, s)) and (L(λ1, α1, s, ω1), ..., L(λr, αr, s, ωr)) by
the vectors (Ln,1(λ1, α1, s), ..., Ln,r(λr, αr, s, )) and (Ln,1(λ1, α1, s, ω1), ..., Ln,r(λr, αr, s, ωr)),
respectively. Let

L(s) = (L(λ1, α1, s), ..., L(λr, αr, s)),

L(s, ω) = (L(λ1, α1, s, ω1), ..., L(λr, αr, s, ωr))

and
Ln(s, ω) = (Ln,1(λ1, α1, s, ω1), ..., Ln,r(λr, αr, s, ωr)).
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LEMMA 7. We have

lim
n→∞

lim sup
T→∞

1
T

T∫
0

ρr(L(s + iτ), Ln(s + iτ))dτ = 0

and, for almost all ω ∈ Ωr,

lim
n→∞

lim sup
T→∞

1
T

T∫
0

ρr(L(s + iτ, ω), Ln(s + iτ, ω))dτ = 0.

Proof. Since α1, ..., αr are algebraically independent over Q, they are tran-
scendental. Therefore, for each j = 1, ..., r, Lemmas 5.2.11 and 5.2.13 of [4] imply

lim
n→∞

lim sup
T→∞

1
T

T∫
0

ρ(L(λj , αj , s + iτ), Ln,j(λj , αj , s + iτ))dτ = 0

and, for almost all ωj ∈ Ω,

lim
n→∞

lim sup
T→∞

1
T

T∫
0

ρ(L(λj , αj , s + iτ, ωj), Ln,j(λj , αj , s + iτ, ωj))dτ = 0.

From this and the definition of ρr the lemma follows.
For A ∈ B(Hr(D)), define

P̂T (A) = ντ
T ((L(λ1, α1, s + iτ, ω1), ..., L(λr, αr, s + iτ, ωr)) ∈ A).

THEOREM 8. On (Hr(D),B(Hr(D))) there exists a probability measure P

such that the measures PT and P̂T (for almost all ω) both converge weakly to P
as T →∞.

Proof. We use the same way as that in the proof of Theorem 6. First we will
show that the family of probability measures {Pn : n ∈ N0} is tight.

By Theorem 6
XT,n

D−→
T→∞

Xn, (9)

where Xn = (Xn,1, ..., Xn,r) is an Hr(D) - valued random element with the distri-
bution Pn.

Since Ln,j(λj , αj , s) is convergent absolutely for σ > 1/2, j = 1, ..., r, we have

lim
T→∞

1
T

T∫
0

|Ln,j(λj , αj , σ + it)|2dt =
∞∑

m=0

v2
j (m,n)

(m + αj)2σ
6

∞∑
m=0

1
(m + αj)2σ
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uniformly in n. Hence it is not difficult to see that, for some σl > 1/2,

lim sup
T→∞

1
T

T∫
0

sup
s∈Kl

|Ln,j(λj , αj , s+iτ)|dτ 6 Cl lim sup
T→∞

(
1

2T

2T∫
0

|Ln,j(λj , αj , σl+it)|2dt

)1/2

6 ClRlj < ∞

with a certain constant Cl > 0, where

Rlj =
( ∞∑

m=0

1
(m + αj)2σl

)1/2

.

Therefore, for Mlj = ClRlj2lr/ε, j = 1, ..., r, l ∈ N,

lim sup
T→∞

P( sup
s∈Kl

|XT,j,n(s)| > Mlj for at least one j = 1, ..., r) 6
ε

2l
.

This and (9) imply

P( sup
s∈Kl

|Xn,j(s)| > Mlj for at least one j = 1, ..., r) 6
ε

2l
.

Hence we find that
Pn(Hr

ε ) > 1− ε

for all n ∈ N0, that is the family {Pn : n ∈ N0} is tight.
Now let, for j = 1, ..., r,

XT,j = XT,j(s) = L(λj , αj , s + iTη),

and let
XT = (XT,1, ..., XT,r).

Then in view of Lemma 7, for every ε > 0,

lim
n→∞

lim sup
T→∞

ντ
T (ρr(L(s + iτ), Ln(s + iτ)) > ε) 6

6
1

εT

T∫
0

ρr(L(s + iτ), Ln(s + iτ))dτ = 0.

Hence
lim

n→∞
lim sup
T→∞

P(ρr(XT (s), XT,n(s)) > ε) = 0. (10)

The family {Pn : n ∈ N0} is relatively compact. Let {Pn1} ⊂ {Pn} be such
that Pn1 converges weakly to some measure P on (Hr(D),B(Hr(D))) as n1 →∞.
Then

Xn1

D−→
n1→∞

P.
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This, (10), (9) and Theorem 4.2 of [1] show that

XT
D−→

T→∞
P, (11)

that is PT converges weakly to P as T →∞.
By (11) the measure P is independent on the sequence n1. Therefore,

Xn
D−→

n→∞
P. (12)

By the same way as above, using (12), we obtain that the measure P̂T for al-
most all ω also converges weakly to P as T →∞.

To identify the limit measure in Theorem 8, we will apply some facts from er-
godic theory.

Let aτ,j = {(m + αj)−iτ : m ∈ N0}, τ ∈ R, j = 1, ..., r. Then {aτ,j : τ ∈ R},
for each j = 1, ..., r, is a one - parameter group. Define the one - parameter family
{Φτ : τ ∈ R} = {ϕτ,1, ..., ϕτ,r : τ ∈ R} of transformations on Ωr by ϕτ,j(ωj) =
aτ,jωj , ωj ∈ Ωj , j = 1, ..., r. Then we have a one - parameter group of measurable
transformations on Ωr.

LEMMA 9. The one - parameter group {Φτ : τ ∈ R} is ergodic.

Proof. Let χ : Ωr → γ be a character. Then

χ(ω) =
r∏

j=1

∞∏
m=0

ω
kmj
j (m), ω ∈ Ωr,

where only a finite number of integers kmj are distinct from zero. Suppose that χ
is a non - principal character. Then

χ(aτ,1, ..., aτ,r) =
r∏

j=1

∞∏
m=0

(m + αj)−iτkmj = exp{−iτ
r∑

j=1

∞∑
m=0

kmj log(m + αj)},

where only a finite number of integers kmj 6= 0. Since α1, ..., αr are algebraically
independent, we have that there exists a τ0 6= 0 such that

χ(aτ0,1, ..., aτ0,r) 6= 1.

The further proof runs in the same way as than in [3], Theorem 5.3.6.
Proof of Theorem 1. Let A ∈ B(Hr(D)) be a continuity set of the measure P

in Theorem 8. Then by Theorem 2.1 of [1] and Theorem 8

lim
T→∞

ντ
T ((L(λ1, α1, s + iτ, ω1), ..., L(λr, αr, s + iτ, ωr)) ∈ A) = P (A) (13)

for almost all ω ∈ Ωr. Now we fix the set A and define a random variable θ on
the space (Ωr,B(Ωr),mHr) by the formula

θ(ω) =
{

1 if L(s, ω) ∈ A,
0 if L(s, ω) /∈ A.
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Denote by E(θ) the expectation of θ. Then we have that

E(θ) =
∫
Ωr

θdmHr = mHr(ω ∈ Ωr : L(s, ω) ∈ A) = PL(A). (14)

In virtue of Lemma 9 the random process θ(Φτ (ω)) is ergodic. Therefore, by the
Birkhoff-Khinchine theorem

lim
T→∞

1
T

T∫
0

θ(Φτ (ω))dτ = E(θ) (15)

for almost all ω ∈ Ωr. On the other hand, by the definition of θ and Φτ we find

1
T

T∫
0

θ(Φτ (ω))dτ = ντ
T ((L(λ1, α1, s + iτ, ω1), ..., L(λr, αr, s + iτ, ωr)) ∈ A).

This and (14), (15) show that

lim
T→∞

ντ
T ((L(λ1, α1, s + iτ, ω1), ..., L(λr, αr, s + iτ, ωr)) ∈ A) = PL(A)

for almost all ω ∈ Ωr. Hence, by (13), P (A) = PL(A) for any continuity set
A of the measure P , and this implies the equality P (A) = PL(A) for all A ∈
B(Hr(D)). The theorem is proved.

3. PROOF OF THEOREM 2.

3.1. A limit theorem. The proof of Theorem 2 is based on a corollary of
Theorem 1. Denote by PL0

the restriction of the distribution PL of the random
element L(s, ω) to Hr(D0).

COROLLARY 10. Suppose that α1, ..., αr are algebraically independent over Q.
Then the probability measure

ντ
T ((L(λ1, α1, s + iτ), ..., L(λr, αr, s + τ)) ∈ A), A ∈ B(Hr(D0)),

converges weakly to PL0
as T →∞.

Proof. The function h : H(D) → Hr(D0) defined by h(g) = g|s∈D0 , g ∈
Hr(D), obviously, is continuous. Therefore, the corollary follows from Theorem 1
and Theorem 5.1 of [1].

3.2. The support of the measure PL0
. We recall that the support of the

measure PL0
is a minimal closed set SPL0

⊆ Hr(D0) such that PSPL0

= 1. The

set SPL0
consists of all g ∈ Hr(D) such that for every neighborhood G of g the

inequality PL0
(G) > 0 holds.
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THEOREM 10. Suppose that α1, ..., αr are algebraically independent over Q
and rank(A) = r. Then the support of PL0

is the whole of Hr(D0).

Let
L̂0(s, ω) = (L(λ1, α1, s, ω), ..., L(λr, αr, s, ω)), s ∈ D0,

where

L(λj , αj , s, ω) =
∞∑

m=0

e2πimλj ω(m)
(m + αj)s

,

ω ∈ Ω, j = 1, ..., r. Then, clearly, SPL0
⊇ SP

L̂0

. Therefore, it suffices to prove that

SP
L̂0

= Hr(D0).

The support of each ω(m) is the unit circle γ. Thus, the support of

e2πimλj ω(m)
(m + αj)s

is the set

{g ∈ H(D0) : g(s) =
e2πimλj a

(m + αj)s
, a ∈ γ}, m ∈ N0, j = 1, ..., r.

Since {ω(m) : m ∈ N0} is a sequence of independent random variables defined on
the probability space (Ω,B(Ω),mH),

{e2πimλj ω(m)
(m + αj)s

: m ∈ N0}, j = 1, ..., r,

is a sequence of independent H(D0) - valued random elements defined on the
above space. Therefore, by Lemma 5 of [7] the support SP

L̂0

is the closure of the

set of all convergent series

∞∑
m=0

(
e2πimλ1am

(m + α1)s
, ...,

e2πimλram

(m + αr)s

)
, (16)

where am ∈ γ. Thus, we have to show that the latter set is dense in Hr(D0). For
this we will use Lemma 6 of [7].

Let {bm : bm ∈ γ, m ∈ N0} be a sequence such that the series

∞∑
m=0

(
e2πimλ1bm

(m + α1)s
, ...,

e2πimλrbm

(m + αr)s

)
converges in Hr(D0). Such a sequence exists, since

∞∑
m=0

(
e2πimλ1ω(m)
(m + α1)s

, ...,
e2πimλrω(m)
(m + αr)s

)



16 A. Laurinčikas, K. Matsumoto

is an Hr(D0) - valued random element. By the definition of D0, for every com-
pact subset K of D0,

∞∑
m=0

r∑
j=1

sup
s∈K

1
(m + αj)2σ

< ∞.

Therefore, it remains to verify only the hypothesis a) of Lemma 6 from [7]. Let
µ1, ..., µr be complex measures on (C,B(C)) with compact supports contained in
D0 and such that

∞∑
m=0

∣∣∣∣ r∑
j=1

∫
C

e2πimλj

(m + αj)s
dµj(s)

∣∣∣∣ < ∞. (17)

Since (see [6])
(m + α)−s = m−s + O(m−1−σ|s|eO(|s|)),

(17) and the properties of the measures µ1, ..., µr show that

∞∑
m=0

∣∣∣∣ r∑
j=1

∫
C

e2πimλj

ms
dµj(s)

∣∣∣∣ < ∞.

Hence, by the periodicity of e2πimλj , for every l = 1, ..., k,

∞∑
m=0

m≡l(modk)

∣∣∣∣ r∑
j=1

∫
C

e2πilλj

ms
dµj(s)

∣∣∣∣ < ∞. (18)

Define

νl(A) =
r∑

j=1

e2πilλj µj(A), A ∈ B(C), l = 1, ..., k.

Then, clearly, ν1, ..., νl are complex measures on (C,B(C)) with compact supports
obtained in D0, and in view of (18)

∞∑
m=0

m≡l(modk)

∣∣∣∣ ∫
C

m−sdνl(s)
∣∣∣∣ < ∞, l = 1, ..., k. (19)

Now we put

ρl(z) =
∫
C

e−szdνl(s), z ∈ C, l = 1, ..., k.

Then by (19)
∞∑

m=0
m≡l(modk)

∣∣∣∣ρl(log m)
∣∣∣∣ < ∞, l = 1, ..., k. (20)
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Clearly, ρl(z) is an entire function of exponential type, l = 1, ..., k. Thus, by
Lemma 6.4.10 of [3], either ρl ≡ 0, or

lim sup
x→∞

log |ρl(x)|
x

> −1, l = 1, ..., k. (21)

Suppose that (21) is true. Then Lemma 5 of [6] (which is a version of the
”positive density method”) shows that

∞∑
m=0

m≡l(modk)

∣∣∣∣ρl(log m)
∣∣∣∣ = ∞, l = 1, ..., k,

and this contradicts (20). Therefore, we have that, for l = 1, ..., k, ρl(z) ≡ 0.
Hence, by the definition of the measures ν1, ..., νl,

r∑
j=1

e2πilλj

∫
C

e−szdµj(s) ≡ 0, l = 1, ..., k.

Since rank(A) = r, this implies∫
C

e−szdµj(s) ≡ 0, j = 1, ..., r,

and we easily deduce that ∫
C

sldµj(s) ≡ 0

for all j = 1, ..., r and l ∈ N0. Hence we obtain that all hypotheses of Lemma 6
from [7] are satisfied, and we have that the set of all convergent series

∞∑
m=0

(
e2πimλ1bmam

(m + α1)s
, ...,

e2πimλrbmam

(m + αr)s

)
with am ∈ γ is dense in Hr(D0). Clearly, the set of all convergent series (16) also
has the same property. The theorem is proved.

Proof of Theorem 2. The proof uses Theorem 10 and is the same that of The-
orem 1 from [6].
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Jungtinės reikšmiu̧ pasiskirstymo teoremos Lercho dzeta funkcijoms. II

A. Laurinčikas, K. Matsumoto.

Pateikti ǐstaisyti kai kuriu̧ teoremu̧ ǐs [5] ir [6] formulavimai apie jungtini̧ Lercho dzeta
funkciju̧ reikšmiu̧ pasiskirstyma̧ (ribinės teoremos, universalumas, funkcinis nepriklauso-

mumas). Be to, pateiktas naujas tiesioginis jungtinės ribinės teoremos analiziniu̧ funkciju̧

erdvėje i̧rodymas bei praplėsta jungtinė universalmuo teorema.
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