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1 Introduction

Let s = σ + it be a complex variable, and ζ(s) the Riemann zeta-function. The mean square
formula of the form

∫ T

0
|ζ(1

2
+ it)|2dt = T log T − (log 2π − 2γ + 1)T + E(T )

for T ≥ 2, where γ is Euler’s constant and E(T ) is the error term, has been known from
1920’s. The estimate

E(T ) = O(T α+ε)(1.1)

with α < 1
3

was first proved by Balasubramanian [2]. Here, and throughout this paper, ε
denotes an arbitrarily small positive number, not necessarily the same on each occurrence.
Balasubramanian’s argument, based on the Riemann-Siegel formula, is quite involved. Sev-
eral years later, Jutila [10] found a simple elegant way of deriving (1.1) from the explicit
formula of E(T ) proved by Atkinson [1]. At present α = 72

227
is known (Huxley [6]).

Atkinson’s method is useful not only on the critical line σ = 1
2
, but also in the critical

strip 1
2

< σ < 1. As an analogue of (1.1), the second author [18] proved, among other things,

Eσ(T ) = O
(
T 1/(1+4σ)(log T )2

)
(1.2)

for 1
2

< σ < 3
4
, where

Eσ(T ) =
∫ T

0
|ζ(σ + it)|2dt− ζ(2σ)T − (2π)2σ−1 ζ(2− 2σ)

2− 2σ
T 2−2σ,

and the implied constant depends only on σ. To show (1.2), the second author proved
an analogue of Atkinson’s explicit formula for 1

2
< σ < 3

4
; a similar analogue was also

discussed by Laurinčikas [13] [14]. Motohashi then proved that (1.2) holds for any σ satisfying
1
2

< σ < 1. His manuscript [25] is unpublished, but a modified version of his argument
is presented in Section 2.7 of Ivić [8]. The fundamental idea of this method is to apply
Atkinson’s dissection device to the weighted integral

1

∆
√

π

∫ ∞

−∞
ζ(u + iy)ζ(v − iy)e−(y/∆)2dy,(1.3)

∗The first author was supported in part by Grant-in-Aid for Scientific Research (No. 09740035), Ministry
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where u and v are complex and ∆ > 0. The explicit formula of Atkinson’s type itself is not
necessary here. For further improvements and refinements of (1.2), see Ivić-Matsumoto [9],
Kačėnas [11] [12] and Laurinčikas [16].

It is the purpose of the present paper to prove a generalization of the estimates (1.1) and
(1.2) to the case of Dirichlet L-functions. Let q be a positive integer, χ a Dirichlet character
mod q, and L(s, χ) the corresponding Dirichlet L-function. Define

E(T, χ) = E 1

2

(T, χ) =
∫ T

0
|L(1

2
+ it, χ)|2dt− ϕ(q)

q
T log T(1.4)

−ϕ(q)

q


log

q

2π
+ 2γ − 1 + 2

∑

p|q

log p

p− 1


T,

where ϕ(q) is Euler’s function and p runs over all prime divisors of q, and

Eσ(T, χ) =
∫ T

0
|L(σ + it, χ)|2dt− L(2σ, χ0)T(1.5)

−
(

2π

q

)2σ−1
L(2− 2σ, χ0)

2− 2σ
T 2−2σ

for 1
2

< σ < 1, where χ0 is the principal character mod q. We shall prove

Theorem 1. Let q = p be a prime, and χ a primitive character mod p. Then

E(T, χ) = O
{
(pT )

1

3 (log pT )2 + p
1

2 (log pT )3 log T
}

.(1.6)

Theorem 2. Let q = p be a prime, and χ a primitive character mod p. Then, for
1
2

< σ < 1,

Eσ(T, χ) = O
{
(pT )1/(1+4σ) log pT + p

1

2 (log pT )1+2σ
}
.(1.7)

Remark. In the above theorems we should restrict ourselves to the case that q = p is a
prime, because we use Weil’s estimate in Section 9 (see Lemma 10). Our arguments are
given for general modulus q up to Section 8. See also the end of this paper.

To prove these theorems, we introduce the weighted integral

1

∆
√

π

∫ ∞

−∞
L(u + iy, χ)L(v − iy, χ)e−(y/∆)2dy

as a generalization of (1.3), where χ is the complex conjugate of χ, and apply the argument
similar to that given in Section 2.7 of Ivić’s monograph [8]. The analogue of Ivić’s Lemma 2.5
is our Lemma 4, stated at the end of Section 4, which reduces our problem to the evaluation
of certain integrals. Then we evaluate them by Atkinson’s saddle point lemma, the first and
the second derivative tests, and Weil’s estimate [28] of Kloosterman sums.

The usefulness of Weil’s estimate in the present problem was already noticed in the second
author’s note [17], in which E(T, χ) is estimated by a generalization of Balasubramanian’s
method [2]. However, [17] includes a serious error. The corrected version [19] was published

later, which includes the assertion E(T, χ) = O((qT )
1

3
+ε) for any odd integer q, when T �

q20. The details of the lengthy proof are given in [20] (unpublished).
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Motohashi [23] announced that if q = p is a prime, then

E(T, χ) = O
{(

(pT )
1

3 + p
1

2

)
(log pT )4

}
(1.8)

holds. He described a very brief sketch of his method in [23], which is a variant of Atkinson’s
method, combined with Weil’s estimate. Actually he treated the error term

Ẽ(T, χ) =
1

2

∫ T

−T
|L(1

2
+ it, χ)|2dt− ϕ(q)

q
T log T

−ϕ(q)

q



log
q

2π
+ 2γ − 1 + 2

∑

p|q

log p

p− 1



T,

hence (1.8) should be read as the estimate for Ẽ(T, χ) instead of E(T, χ). If χ is real, then
Ẽ(T, χ) = E(T, χ), but in general equality does not hold. The details of Motohashi’s method
are written in his unpublished manuscript [24], but it includes several gaps. (It is possible
to fill these gaps.)

At about the same time, Meurman considered the same problem by Atkinson’s method,
but his manuscript [22] is also unpublished.

We mention that Atkinson’s explicit formula has been satisfactorily generalized by Meur-
man [21] to the mean square of the form

∑

χ( mod q)

∫ T

0
|L(1

2
+ it, χ)|2dt,

and its analogue for σ > 1
2

was studied by Laurinčikas [15]. It is highly desirable to establish
the explicit formula of Atkinson’s type for our E(T, χ) and Eσ(T, χ).

The authors would like to thank the referee for valuable comments.

2 Atkinson’s dissection

Let q be a positive integer, χ a primitive Dirichlet character mod q, ∆ a positive parameter,
and define

I(u, v; ∆) =
1

∆
√

π

∫ ∞

−∞
L(u + iy, χ)L(v − iy, χ)e−(y/∆)2dy(2.1)

for any complex u and v. At first we assume Re u > 1 and Re v > 1. Then

I(u, v; ∆) =
1

∆
√

π

∞∑

m=1

∞∑

n=1

χ(m)χ(n)
∫ ∞

−∞
m−u−iyn−v+iye−(y/∆)2dy.

We divide this double sum into three parts according to the conditions m = n, m < n and
m > n to obtain

I(u, v; ∆) = L(u + v, χ0) + I1(u, v; ∆) + I1(v, u; ∆),(2.2)

where χ0 is the principal character mod q and

I1(u, v; ∆) =
1

∆
√

π

∑∑

m<n

χ(m)χ(n)m−un−v
∫ ∞

−∞

(
n

m

)iy

e−(y/∆)2dy.
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Applying the well-known formula

∫ ∞

−∞
exp(At− Bt2)dt =

(
π

B

) 1

2

exp

(
A2

4B

)
(Re B > 0)

(see (A.38) of Ivić [7]), and then putting m = kq + a and n = m + lq + b, we obtain

I1(u, v; ∆) =
q∑

a,b=1

χ(a)χ(a + b)
∞∑

k,l=0

(qk + a)−u−v(2.3)

×
(

1 +
ql + b

qk + a

)−v

exp

(
−1

4
∆2 log2

(
1 +

ql + b

qk + a

))
.

Let, for Re v > Re s > 0,

M(s, v; ∆) =
1

∆
√

π

∫ ∞

−∞

Γ(s)Γ(v + iy − s)

Γ(v + iy)
e−(y/∆)2dy.(2.4)

Then M(s, v; ∆) has the following properties, which have been shown in Section 5.2 of Ivić
[8]:

(i) For Re s > 0 and any v, we have

M(s, v; ∆) =
∫ ∞

0
xs−1(1 + x)−v exp

(
−1

4
∆2 log2(1 + x)

)
dx.(2.5)

(ii) M(s, v; ∆) is entire in v, and can be continued to a meromorphic function of s, holomor-
phic except for the poles at s = 0,−1,−2, . . ..

(iii) For any fixed c > 0, we have

M(s, v; ∆) = O
(
(1 + |s|)−c

)

as | Im s| → +∞, uniformly for bounded v and bounded Re s.

(iv) If Re v > α > 0 and x > 0, then

1

2πi

∫

(α)
M(s, v; ∆)x−sds = (1 + x)−v exp

(
−1

4
∆2 log2(1 + x)

)
,(2.6)

where the path of integration is the vertical line from α− i∞ to α + i∞.

From (2.3) and (2.6) we have, for Re u > 1 and Re v > α > 1,

I1(u, v; ∆) =
q∑

a,b=1

χ(a)χ(a + b)
1

2πi

∫

(α)
M(s, v; ∆)(2.7)

×
∞∑

k,l=0

(qk + a)−u−v+s(ql + b)−sds

= q−u−v
q∑

a,b=1

χ(a)χ(a + b)
1

2πi

∫

(α)
M(s, v; ∆)

×ζ(u + v − s, a/q)ζ(s, b/q)ds,
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where ζ(s, x) =
∑∞

n=0(n + x)−s (Re s > 1) is the Hurwitz zeta-function.
Let β > α, and temporarily assume that Re u > 1, Re v > α > 1, Re(u + v) < β + 1.

Shifting the path of integration in (2.7) to Re s = β, we obtain

I1(u, v; ∆) = q−u−vM(u + v − 1, v; ∆)(2.8)

×
q∑

a,b=1

χ(a)χ(a + b)ζ(u + v − 1, b/q) + P (u, v; ∆)

where

P (u, v; ∆) = q−u−v
q∑

a,b=1

χ(a)χ(a + b)
1

2πi

∫

(β)
M(s, v; ∆)(2.9)

×ζ(u + v − s, a/q)ζ(s, b/q)ds.

We note that
q∑

a=1

χ(a)χ(a + b) =
∑

d|(q,b)

µ(q/d)d,(2.10)

where µ(n) denotes the Möbius function. In fact, denoting by a the integer satisfying aa ≡ 1
(mod q), we have

q∑

a=1

χ(a)χ(a + b) =
q∑

a=1
(a,q)=1

χ(a)χ(a(1 + ab)) =
q∑

a=1
(a,q)=1

χ(1 + ab)

= τ(χ)−1
q∑

a=1
(a,q)=1

q∑

c=1

χ(c)e((1 + ab)c/q),

where τ(χ) =
∑q

k=1 χ(k)e(k/q) is the Gauss sum and e(x) = exp(2πix). Here the last
equality follows from the well-known property of the Gauss sum (cf. formula (2) in Chapter
9 of Davenport [3]). Changing the order of summation, we find that the resulting inner sum
is equal to Ramanujan’s sum

q∑

r=1
(r,q)=1

e(rb/q) =
∑

d|(q,b)

µ(q/d)d,

hence (2.10) follows.
From (2.8) and (2.10) we obtain

I1(u, v; ∆) = q1−u−vM(u + v − 1, v; ∆)ζ(u + v − 1)(2.11)

×
∏

p|q
(1− pu+v−2) + P (u, v; ∆),

because

q∑

b=1

∑

d|(q,b)

µ(q/d)d · ζ(u + v − 1, b/q)
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=
∑

d|q
µ(d)

q

d

d∑

c=1

ζ(u + v − 1, c/d)

= q
∑

d|q
µ(d)du+v−2ζ(u + v − 1)

= qζ(u + v − 1)
∏

p|q
(1− pu+v−2).

The formula (2.11) gives the meromorphic continuation of I1(u, v; ∆) to any (u, v) satisfying
Re(u + v) < β + 1. From (2.2) and (2.11) we obtain

I(u, v; ∆) = L(u + v, χ0) + q1−u−vζ(u + v − 1)
∏

p|q
(1− pu+v−2)(2.12)

×{M(u + v − 1, u; ∆) + M(u + v − 1, v; ∆)}
+P (u, v; ∆) + P (v, u; ∆)

for Re(u + v) < β + 1.

3 The weighted mean square

Let T ≥ 2, A0 a sufficiently large positive number, L = A0(log qT )
1

2 , and assume that ∆
satisfies

L ≤ ∆ ≤ T

A0L
.(3.1)

To ensure the existence of such a ∆, we need

A0L
2 ≤ T,(3.2)

which we assume hereafter. As for the opposite case, see Remark 2 at the end of this section.
Define

Jσ(t; ∆) =
1

∆
√

π

∫ ∞

−∞
|L(σ + i(t + y), χ)|2e−(y/∆)2dy.

Lemma 1. We have

Jσ(t; ∆) = L(2σ, χ0) +
(

qt

2π

)1−2σ

L(2− 2σ, χ0)(3.3)

+Pσ(t; ∆) + Pσ(t; ∆) + O(q1−2σT−2σ∆)

for 1
2

< σ < 1 and t � T (i.e. T � t � T ), where

Pσ(t; ∆) = P (σ + it, σ − it; ∆).

Proof: Putting u = σ + it and v = σ − it in (2.12), we have

Jσ(t; ∆) = L(2σ, χ0) + q1−2σζ(2σ − 1)
∏

p|q
(1− p2σ−2)(3.4)

×{M(2σ − 1, σ + it; ∆) + M(2σ − 1, σ − it; ∆)}
+Pσ(t; ∆) + Pσ(t; ∆).
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By the definition (2.4) we have

M(2σ − 1, σ + it; ∆) + M(2σ − 1, σ − it; ∆)

= 2 ReM(2σ − 1, σ + it; ∆)

=
2Γ(2σ − 1)

∆
√

π
Re

∫ ∞

−∞

Γ(1− σ + i(t + y))

Γ(σ + i(t + y)
e−(y/∆)2dy.

Hence, in view of the functional equation

ζ(2σ − 1) =
(2π)2σ−1ζ(2− 2σ)

2 sin(πσ)Γ(2σ − 1)
,

it suffices to show

1

∆
√

π
Re

∫ ∞

−∞

Γ(1− σ + i(t + y)

Γ(σ + i(t + y))
e−(y/∆)2dy = t1−2σ sin(πσ) + O

(
∆

t2σ

)
.(3.5)

To show this, we divide the integral as

∫ −∆L

−∞
+
∫ ∆L

−∆L
+
∫ ∞

∆L
.

The first and the third integrals can be easily seen to be small. By using Stirling’s formula,
we have

∫ ∆L

−∆L
= e

1

2
πi(1−2σ)

∫ ∆L

−∆L
t1−2σ

{
1 + O

(
t−1(|y|+ 1)

)}
e−(y/∆)2dy

= e
1

2
πi(1−2σ)t1−2σ∆

{√
π + O(e−L2

) + O(t−1∆)
}

,

hence (3.5) follows. Lemma 1 is proved. 2

Next we consider the case on the critical line. Put σ = 1
2

+ δ in (3.4), where δ is small.
Then

M(2σ − 1, σ + it; ∆) =
1

2δ
− B(t; ∆)− γ + O(δ),(3.6)

where

B(t; ∆) =
1

∆
√

π

∫ ∞

−∞

Γ′

Γ

(
1

2
+ i(t + y)

)
e−(y/∆)2dy.(3.7)

Hence, taking the limit δ → 0 in (3.4), with noting that

ζ(1 + 2δ) =
1

2δ
+ γ + O(δ),

ζ(2δ) = −1

2
− (log 2π)δ + O(δ2),

and
∏

p|q
(1− p−1−2δ) =

∏

p|q

(
1− 1

p

)
1 + 2

∑

p|q

log p

p− 1
δ + O(δ2)



 ,
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we obtain

J 1

2

(t; ∆) =
ϕ(q)

q

{
log

q

2π
+ 2γ + 2

∑

p|q

log p

p− 1
(3.8)

+
1

2
B(t; ∆) +

1

2
B(−t; ∆)

}
+ P 1

2

(t; ∆) + P 1

2

(t; ∆).

We can show

B(±t; ∆) = ±1

2
πi + log t + O

(
∆

t

)
(3.9)

for t � T . This can be proved similarly to (3.5) by using Stirling’s formula, so we omit the
details. Combining (3.8) and (3.9) we obtain

Lemma 2. For t � T we have

J 1

2

(t; ∆) =
ϕ(q)

q


log t + log

q

2π
+ 2γ + 2

∑

p|q

log p

p− 1




+P 1

2

(t; ∆) + P 1

2

(t; ∆) + O

(
ϕ(q)

q

∆

T

)
.

Remark 1. The error terms in (3.5) and (3.9) can be sharpened to O(t−2σ + t−1−2σ∆2) by
refining the argument.

Remark 2. Here we consider the case

A0L
2 > T.(3.10)

Let q = p be a prime as in our theorems. Heath-Brown’s estimate [5]

L(1
2

+ it, χ) = O{(p(|t|+ 1))
3

16
+ε},(3.11)

and the convexity argument show that

L(σ + it, χ) = O{(p(|t|+ 1))
3

8
(1−σ)+ε} (1

2
≤ σ < 1).(3.12)

From (3.12) and trivial estimation we obtain Eσ(T, χ) = O(T (pT )
3

4
(1−σ)+ε) for 1

2
≤ σ < 1,

which supersedes (1.6) and (1.7) when

p ≥ c0T
(7−3σ)/(−1+3σ)+η(3.13)

where η = η(ε) > 0 is arbitrarily small and c0 > 0. If c0 is small enough, then (3.10) implies
(3.13), hence Theorems 1 and 2 follow in the case of (3.10). Note that the classical convexity
bound (4.6) (below) is insufficient for the above argument.
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4 The integral of Jσ(t; ∆)

We first prove the following

Lemma 3. For 1
2
≤ σ < 1, we have

∫ 2T+L∆

T−L∆
Jσ(t; ∆)dt ≥

∫ 2T

T
|L(σ + it, χ)|2dt + O(e−L2

T (qT )1−σ+ε),(4.1)

and ∫ 2T−L∆

T+L∆
Jσ(t; ∆)dt ≤

∫ 2T

T
|L(σ + it, χ)|2dt + O(e−L2

T (qT )1−σ+ε).(4.2)

Proof: By the definition of Jσ(t; ∆) we have

∫ 2T±L∆

T∓L∆
Jσ(t; ∆)dt(4.3)

=
1

∆
√

π

∫ ∞

−∞
|L(σ + iη, χ)|2

∫ 2T±L∆

T∓L∆
exp

(
−
(

η − t

∆

)2
)

dtdη.

Hence

∫ 2T+L∆

T−L∆
Jσ(t; ∆)dt

≥ 1

∆
√

π

∫ 2T

T
|L(σ + iη, χ)|2

∫ 2T+L∆

T−L∆
exp

(
−
(

η − t

∆

)2
)

dtdη.

The inner integral is equal to
∆
√

π + O(∆e−L2

),(4.4)

hence

∫ 2T+L∆

T−L∆
Jσ(t; ∆)dt ≥

∫ 2T

T
|L(σ + iη, χ)|2dη(4.5)

+O

(
e−L2

∫ 2T

T
|L(σ + iη, χ)|2dη

)
.

The convexity bound

L(σ + it, χ) = O
(
(q(|t|+ 1))

1

2
(1−σ)+ε

)
(4.6)

is valid for 0 ≤ σ ≤ 1. (see Prachar [26]). Estimating the error term in (4.5) by (4.6), we
obtain (4.1).

Next, from (4.3) we have

∫ 2T−L∆

T+L∆
Jσ(t; ∆)dt =

1

∆
√

π

(∫ T

−∞
+
∫ 2T

T
+
∫ ∞

2T

)
|L(σ + iη, χ)|2

×
∫ 2T−L∆

T+L∆
exp

(
−
(

η − t

∆

)2
)

dtdη

= J1 + J2 + J3,
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say. Consider J1. Changing the order of integration and then putting (t − η)/∆ = w, we
have

J1 =
1√
π

∫ 2T−L∆

T+L∆

∫ ∞

(t−T )/∆
|L(σ + i(t−∆w), χ)|2e−w2

dwdt

≤ 1√
π

∫ 2T−L∆

T+L∆

∫ ∞

L
|L(σ + i(t−∆w), χ)|2e−w2

dwdt

=
1√
π

∫ ∞

L
e−w2

∫ 2T−L∆−w∆

T+L∆−w∆
|L(σ + it, χ)|2dtdw.

Hence, using (4.6), we obtain

J1 �
∫ ∞

L
e−w2

T (q(T + |w|∆))1−σ+ε dw

� e−L2

T (qT )1−σ+ε,

and the same estimate also holds for J3. Lastly, we see that

J2 ≤
1

∆
√

π

∫ 2T

T
|L(σ + iη, χ)|2

∫ 2T+L∆

T−L∆
exp

(
−
(

η − t

∆

)2
)

dηdt,

and the inner integral is equal to (4.4). These results complete the proof of (4.2), hence of
Lemma 3.

Next we establish the connection between the integral of Jσ(t; ∆) and Eσ(T, χ) (or
E(T, χ)). In the case of 1

2
< σ < 1, from Lemma 1 we have

∫ 2T+L∆

T−L∆
Jσ(t; ∆)dt(4.7)

= L(2σ, χ0)(T + 2L∆) +
L(2− 2σ, χ0)

2− 2σ

(
q

2π

)1−2σ

t2−2σ
∣∣∣
2T+L∆

t=T−L∆

+
∫ 2T+L∆

T−L∆

{
Pσ(t; ∆) + Pσ(t; ∆)

}
dt + O

(
(qT )1−2σ∆

)

= L(2σ, χ0)T +
L(2− 2σ, χ0)

2− 2σ

(
q

2π

)1−2σ

t2−2σ
∣∣∣
2T

t=T

+
∫ 2T+L∆

T−L∆

{
Pσ(t; ∆) + Pσ(t; ∆)

}
dt + O(L∆).

Comparing this with the definition (1.5) of Eσ(T, χ), we find that

Eσ(2T, χ)− Eσ(T, χ) =
∫ 2T

T
|L(σ + it, χ)|2dt(4.8)

−
∫ 2T+L∆

T−L∆
Jσ(t; ∆)dt +

∫ 2T+L∆

T−L∆

{
Pσ(t; ∆) + Pσ(t; ∆)

}
dt + O(L∆).

In much the same way we can also derive

Eσ(2T, χ)− Eσ(T, χ) =
∫ 2T

T
|L(σ + it, χ)|2dt(4.9)

−
∫ 2T−L∆

T+L∆
Jσ(t; ∆)dt +

∫ 2T−L∆

T+L∆

{
Pσ(t; ∆) + Pσ(t; ∆)

}
dt + O(L∆).

10



Combining (4.8) with (4.1), we obtain

Eσ(2T, χ)− Eσ(T, χ) ≤
∫ 2T+L∆

T−L∆

{
Pσ(t; ∆) + Pσ(t; ∆)

}
dt(4.10)

+O(L∆).

Similarly, from (4.9) and (4.2) we obtain

Eσ(2T, χ)− Eσ(T, χ) ≥
∫ 2T−L∆

T+L∆

{
Pσ(t; ∆) + Pσ(t; ∆)

}
dt(4.11)

+O(L∆).

By (4.10) and (4.11) we finish the proof of the case 1
2

< σ < 1 of the following lemma. The
proof of the case σ = 1

2
can be done quite similarly, by using (1.4) and Lemma 2.

Lemma 4. For 1
2
≤ σ < 1 we have

|Eσ(2T, χ)− Eσ(T, χ)| ≤
∣∣∣∣∣

∫ 2T+L∆

T−L∆

{
Pσ(t; ∆) + Pσ(t; ∆)

}
dt

∣∣∣∣∣

+

∣∣∣∣∣

∫ 2T−L∆

T+L∆

{
Pσ(t; ∆) + Pσ(t; ∆)

}
dt

∣∣∣∣∣+ O
(
L1+2ω∆

)
,

where ω = 1 or 0 according as σ = 1
2

or 1
2

< σ < 1.

5 An infinite series expression of Pσ(t; ∆)

Now our problem is reduced to the evaluation of the integral of Pσ(t; ∆). In this section we
derive a useful infinite series expression of Pσ(t; ∆). From (2.9) we have

Pσ(t; ∆) = q−2σ
q∑

a,b=1

χ(a)χ(a + b)
1

2πi

∫

(β)
M(s, σ − it; ∆)

×ζ(2σ − s, a/q)ζ(s, b/q)ds

for σ < 1
2
(β + 1). Substituting the functional equation (cf. formula (2.17.3) of Titchmarsh

[27])

ζ(2σ − s, a/q) =
Γ(1− 2σ + s)

(2π)1−2σ+s

{
e−

1

2
πi(1−2σ+s)

∞∑

m=1

e(ma/q)m2σ−1−s

+e
1

2
πi(1−2σ+s)

∞∑

m=1

e(−ma/q)m2σ−1−s
}

into the above, and noting

ζ(s, b/q)
∞∑

m=1

e(mα)m2σ−1−s

= qs
∞∑

n=1

σ1−2σ(n; α, q, b)n2σ−1−s

11



with
σ1−2σ(n; α, q, b) =

∑

l|n
l≡b( mod q)

e(nα/l)l1−2σ,

we obtain

Pσ(t; ∆) = q−2σ
q∑

a,b=1

χ(a)χ(a + b)
1

2πi

∫

(β)
M(s, σ − it; ∆)

×Γ(1− 2σ + s)

(2π)1−2σ+s

{
e−

1

2
πi(1−2σ+s)qs

∞∑

n=1

σ1−2σ(n; a/q, q, b)n2σ−1−s

+e
1

2
πi(1−2σ+s)qs

∞∑

n=1

σ1−2σ(n;−a/q, q, b)n2σ−1−s
}
ds.

Changing the summation and integration, we have the following absolutely convergent infi-
nite series expression:

Pσ(t; ∆) = q−1
q∑

a,b=1

χ(a)χ(a + b)
∞∑

n=1

{
σ1−2σ(n; a/q, q, b)Q+

σ (t; n, q)(5.1)

+σ1−2σ(n;−a/q, q, b)Q−
σ (t; n, q)

}

=
∞∑

n=1

a1−2σ(n, χ)Q+
σ (t; n, q) +

∞∑

n=1

a1−2σ(n, χ)Q−
σ (t; n, q)

for σ < 1
2
(β + 1), where

Q±
σ (t; n, q) =

1

2πi

∫

(β)
M(s, σ − it; ∆)Γ(1− 2σ + s)(5.2)

×(e±
1

2
πiq−12πn)2σ−1−sds

and

a1−2σ(n, χ) = q−1
q∑

a=1

∑

l|n
χ(a)χ(l + a)e(an/ql)l1−2σ .(5.3)

Note that
|a1−2σ(n, χ)| ≤ σ1−2σ(n) = O(nε)(5.4)

for any ε > 0.
Let l(±θ) be the half-line which starts from the origin and proceeds to the direction e±iθ

(0 < θ < 1
2
π). It is easily seen that the path of the integral (2.5) may be rotated to l(±θ).

After this rotation, we substitute the resulting expression of M(s, σ − it; ∆) into (5.2), and
then change the order of integration by Fubini’s theorem to obtain

Q±
σ (t; n, q) =

1

2πi

∫

l(±θ)
y2σ−2(1 + y)−σ+it exp

(
−1

4
∆2 log2(1 + y)

)
(5.5)

×
∫

(β)
Γ(1− 2σ + s){e± 1

2
πi(qy)−12πn}2σ−1−sdsdy.

12



Applying the well-known formula

1

2πi

∫

(β)
Γ(s)X−sds = e−X (Re X > 0)

to the inner integral of (5.5), we obtain

Q±
σ (t; n, q) =

∫

l(±θ)
y2σ−2(1 + y)−σ+it exp

(
−1

4
∆2 log2(1 + y)

)
(5.6)

× exp{−e±
1

2
πi(qy)−12πn}dy.

6 The integral of Q±
σ (t; n, q)

We use the abbreviations T1 = T ∓L∆ and T2 = 2T ±L∆ respectively. We note that T1 � T
and T2 � T . Let 1

2
≤ σ < 1. From (5.1) we have

∫ T2

T1

Pσ(t; ∆)dt =
∞∑

n=1

a1−2σ(n, χ)
∫ T2

T1

Q+
σ (t; n, q)dt(6.1)

+
∞∑

n=1

a1−2σ(n, χ)
∫ T2

T1

Q−
σ (t; n, q)dt.

We have to evaluate the integrals on the right-hand side. Substituting (5.6) into those
integrals, and then using Fubini’s theorem, we obtain

∫ T2

T1

Q±
σ (t; n, q)dt =

∫

l(±θ)
y2σ−2(1 + y)−σ exp

(
−1

4
∆2 log2(1 + y)

)
(6.2)

× exp{−e±
1

2
πi(qy)−12πn} exp (it log(1 + y))

i log(1 + y)

∣∣∣∣∣

T2

t=T1

dy.

Now we claim that the path l(±θ) in the above can be rotated back to the positive real
axis. To prove this claim, denote the integrand on the right-hand side by W (y). Then

W (y) = i(T2 − T1)y
2σ−2 exp{−e±

1

2
πi(qy)−12πn} (1 + O(y))

for small y. Hence, putting y = εe±iϕ, we find that

∫ θ

0
W (εe±iϕ)εe±iϕdϕ

= i(T2 − T1)
∫ θ

0
(εe±iϕ)2σ−1 exp

(
2πn

qε
(− sin ϕ∓ i cos ϕ)

)
(1 + O(ε)) dϕ

� (T2 − T1)
∫ θ

0

{
ε2σ−1 exp

(
−2πn

qε
sin ϕ

)
+ ε2σ

}
dϕ

� (T2 − T1)ε
2σ,

which vanishes when ε tends to zero. This implies the above claim, hence we conclude that

∫ T2

T1

Q±
σ (t; n, q)dt =

1

i

∫ ∞

0

exp
(
−1

4
∆2 log2(1 + y)

)

y2−2σ(1 + y)σ log(1 + y)
(6.3)
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×
{
e
(

T2

2π
log(1 + y)

)
− e

(
T1

2π
log(1 + y)

)}
e(∓n/qy)dy

=
1

i

∫ ∞

0

exp
(
−1

4
∆2 log2(1 + 1

y
)
)

yσ(1 + y)σ log
(
1 + 1

y

)

×
{

e

(
T2

2π
log

(
1 +

1

y

))
− e

(
T1

2π
log

(
1 +

1

y

))}
e(∓ny/q)dy.

We may write
∫ T2

T1

Q±
σ (t; n, q)dt =

1

i
lim

Y→∞

{ ∫ Y

0
gσ(y)e (f(y; T2)∓ ny/q)dy(6.4)

−
∫ Y

0
gσ(y)e (f(y; T1)∓ ny/q) dy

}
,

where

gσ(y) =
exp

(
−1

4
∆2 log2(1 + 1

y
)
)

yσ(1 + y)σ log(1 + 1
y
)

and

f(y; T ) =
T

2π
log

(
1 +

1

y

)
.

7 Application of Atkinson’s saddle-point lemma

In this section we estimate the integrals on the right-hand side of (6.4) for large n, by
applying the saddle-point lemma of Atkinson [1]. First we quote the lemma of Atkinson
(Lemma 1 of [1]; see also Theorem 2.2 of Ivić [7]). In what follows, A denotes a positive
constant, not necessarily the same on each occurrence.

Lemma 5 (Atkinson). Let f(z), g(z) be two functions of the complex variable z, and
[a, b] a real interval, such that

(i) f(x) is real and f ′′(x) > 0 for a ≤ x ≤ b;

(ii) there exists a positive differentiable function µ(x) defined on [a, b], such that f(z), g(z)
are analytic in the region D = {z | |z − x| ≤ µ(x), a ≤ x ≤ b};

(iii) there exist positive functions F (x), G(x) defined on [a, b] such that g(z) = O(G(x)),
f ′(z) = O(F (x)µ−1(x)) and f ′′(z)−1 = O(µ2(x)F−1(x)) on D, where the implied con-
stants are absolute.

Let c be any real number, and if f ′(x) + c has a zero in [a, b] denote it by x0. Let the values
of f(x), g(x), etc., at a, x0, b be characterized by the suffixes a, 0 and b, respectively. Then

∫ b

a
g(x)e (f(x) + cx) dx = g0(f

′′
0 )−

1

2 e
(
f0 + cx0 +

1

8

)

+O

(∫ b

a
G(x) exp (−A|c|µ(x)− AF (x)) (dx + |dµ(x)|)

)

+O
(
G0µ0F

− 3

2

0

)
+ O

(
Ga

|f ′a + c|+ (f ′′a )
1

2

)
+ O

(
Gb

|f ′b + c|+ (f ′′b )
1

2

)
.
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If f ′(x) + c has no zero in [a, b] then the terms involving x0 are to be omitted.

Atkinson applied this lemma to the integral

∫ b

a
y−α(1 + y)−β

(
log

(
1 +

1

y

))−γ

e

(
T

2π
log

(
1 +

1

y

)
+ cy

)
dy,(7.1)

where α(6= 1), β and γ are positive, and obtained an asymptotic formula for (7.1) (Lemma 2
of Atkinson [1]). Save for the factor exp(− 1

4
∆2 log2(1+ 1

y
)), our integral is the same as (7.1),

therefore we can apply a modification of Atkinson’s argument to our case. We use Lemma
5 with f(z) = f(z; T ), g(z) = gσ(z), which are defined at the end of Section 6, [a, b] = [η, Y ]
where η is small positive and Y is large positive, c = ∓n/q, µ(x) = 1

4
x, F (x) = T/(1 + x)

and

G(x) = x−σ(1 + x)1−σ exp
(
− 1

20
∆2 log2

(
1 +

1

x

))
.

The conditions (i)–(iii) in Lemma 5 are clearly valid except for the inequality g(z) = O(G(x)).
To verify the last inequality, we notice that

(
arg

(
1 +

1

z

))2

≤ 1

5

(
log

∣∣∣∣1 +
1

z

∣∣∣∣
)2

(7.2)

and

log2
(
1 +

1

x

)
≤ 4

(
log

∣∣∣∣1 +
1

z

∣∣∣∣
)2

(7.3)

for any z ∈ D and a ≤ x ≤ b with |z−x| ≤ µ(x). To show these inequalities, put z = x1+iy1.
Then

log
∣∣∣∣1 +

1

z

∣∣∣∣ =
1

2
log

(
1 +

1 + 2x1

|z|2
)

.(7.4)

Note that |y1| ≤ 1
4
x and 3

4
x ≤ x1 ≤ 5

4
x. From (7.4) and

1 + 2x1

|z|2 ≥ 2x1

x2
1 + (x/4)2

= 2

(
x1 +

x2

16x1

)−1

≥ 3

2x
>

1

x
,

(7.3) follows. Let c1 = (e
√

5π − 1)−
1

2 . If |z| ≤ c1, then (7.2) follows from

log
∣∣∣∣1 +

1

z

∣∣∣∣ ≥ 1

2
log

(
1 +

1

|z|2
)
≥ 1

2
log

(
1 +

1

c2
1

)
≥
√

5 · π

2

>
√

5

∣∣∣∣arg
(
1 +

1

z

)∣∣∣∣ ,

where the first inequality comes from (7.4). If |z| > c1, then

1 + 2x1

|z|2 ≤ 1 + 2|z|
|z|2 <

1 + 2c1

c2
1

(= 0.06056 . . .),

so

log

(
1 +

1 + 2x1

|z|2
)
≥ c2 ·

1 + 2x1

|z|2 >
2c2x1

|z|2
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with c2 = c−1
1 log(1 + c1) = 0.97088 . . .. Hence we see

∣∣∣∣arg
(
1 +

1

z

)∣∣∣∣ =

∣∣∣∣∣arctan

(
y1

|z|2 + x1

)∣∣∣∣∣ ≤
|y1|

|z|2 + x1
<
|y1|
|z|2 ≤

x1

3|z|2

<
1

3c2

log
∣∣∣∣1 +

1

z

∣∣∣∣ ,

which implies (7.2). By using (7.2) and (7.3), we have

∣∣∣∣exp
(
−1

4
∆2 log2

(
1 +

1

z

))∣∣∣∣ = exp

{
− 1

4
∆2

(
log

∣∣∣∣1 +
1

z

∣∣∣∣
)2

+
1

4
∆2

(
arg

(
1 +

1

z

))2
}

≤ exp

(
−1

5
∆2

(
log

∣∣∣∣1 +
1

z

∣∣∣∣
)2
)

≤ exp
(
− 1

20
∆2 log2

(
1 +

1

x

))
,

hence the desired inequality g(z) = O(G(x)). Therefore we can use Lemma 5. Similarly to
Lemma 2 of Atkinson [1] (see also Lemma 15.1 of Ivić [7]), we can show the following

Lemma 6. For 1
2
≤ σ < 1 we have

∫ Y

η
gσ(y)e (f(y; T ) + cy) dy(7.5)

= δ(c)Λ(T ; c) + O

(∫ Y

η
G(y) exp

(
−A|c|y − AT

1 + y

)
dy

)

+O(η1−σT−1) + O(Y 1−2σ|c|−1) + δ(c)R(T ; c),

where δ(c) = 1 or 0 according as c > 0 or c < 0,

Λ(T ; c) =
T

1

2 exp(−1
4
∆2V 2)

2c
√

πV U
1

2 (U2 − 1/4)σ
e
(

TV

2π
+ cU − 1

2
c +

1

8
π
)

,

U = U(T ) =
(

T

2πc
+

1

4

) 1

2

,

V = V (T ) = 2 arsinh

√
πc

2T
,

R(T ; c) �





T
1

4
−σcσ− 7

4 exp(−A∆2cT−1) if c � T ,

T−
1

2
−σcσ−1 exp

(
− 1

20
∆2 log2

(
1 +

Ac

T

))
if c � T ,

(7.6)

and the implied constants in (7.5) and (7.6) are uniform for |σ − 1| > ε.
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First assume 1
2

< σ < 1, and take the limit η → 0, Y → ∞. Then the second and the
third error terms in (7.5) vanish. After this procedure, we take the limit σ → 1

2
+ 0 to get

the result for σ = 1
2
. Consequently, from (6.4), we obtain

∫ T2

T1

Q±
σ (t; n, q)dt =

1

i
δ

(
∓n

q

){
Λ

(
T2;∓

n

q

)
− Λ

(
T1;∓

n

q

)}
(7.7)

+O

(∫ ∞

0
G(y) exp

(
−A

ny

q
− AT2

1 + y

)
dy

)

+O

(∫ ∞

0
G(y) exp

(
−A

ny

q
− AT1

1 + y

)
dy

)

+
1

i
δ

(
∓n

q

){
R

(
T2;∓

n

q

)
− R

(
T1;∓

n

q

)}

for 1
2
≤ σ < 1.

Let N � qT∆−2L2, and now we estimate the subsum
∑

n>N on the right-hand side of
(6.1) by using (7.7). In view of (5.4), it is enough to estimate the sum

∑

n>N

σ1−2σ(n)δ

(
∓n

q

) ∣∣∣∣∣Λ
(
Tj;∓

n

q

)∣∣∣∣∣(7.8)

+
∑

n>N

σ1−2σ(n)
∫ ∞

0
G(y) exp

(
−An

q
y − ATj

1 + y

)
dy

+
∑

n>N

σ1−2σ(n)δ

(
∓n

q

) ∣∣∣∣∣R
(
Tj;∓

n

q

)∣∣∣∣∣

= Σ1(N) + Σ2(N) + Σ3(N),

say, for j = 1, 2.

Lemma 7. The above quantity (7.8) is estimated as O(q1+σ+εe−AT + (qT )−c), where c is
a large positive constant.

Proof: First consider Σ1(N). Since

U �
(

qT

n

) 1

2

, V ≥ A

(
πn

2qT

) 1

2

for n ≤ qTj, the contribution of the part N < n ≤ qTj to Σ1(N) is

�
∑

N<n≤qTj

q
1

2 (qT )
3

4
−σn−

5

4
+σ+ε exp

(
−A∆2n

qT

)
(7.9)

≤ q
1

2 (qT )
3

4
−σ exp

(
−A∆2N

qT

)
∑

N<n≤qTj

n−
5

4
+σ+ε

� q
1

2 (qT )
1

2
+εe−AL2

.

Also, noting
U � 1, V ≥ log(πn/2qTj) � 1
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for n > qTj, we find that the contribution of the remaining part is

�
∑

n>qTj

q
1

2 (qT )
1

2
−σnσ−1+ε exp


−1

4
∆2

(
log

πn

2qTj

)2

(7.10)

� q
1

2 (qT )
1

2
−σ
∫ ∞

qTj−1
xσ−1+ε exp


−1

4
∆2

(
log

πx

2qTj

)2

 dx

� q
1

2 (qT )
1

2
+ε exp(−A∆2) � q

1

2 (qT )
1

2
+ε exp(−AL2).

Here the last inequality follows by using (3.1). From (7.9) and (7.10) we obtain

Σ1(N) = O((qT )−c)(7.11)

if A0 is large enough.
Next consider Σ2(N). We have

Σ2(N)

�
∑

n>N

σ1−2σ(n)
∫ 1

0
y−σ exp

(
− 1

20
∆2 log2

(
1 +

1

y

)
− Any

q
− AT

)
dy

+
∑

n>N

σ1−2σ(n)
∫ ∞

1
y1−2σ exp

(
− 1

20
∆2 log2

(
1 +

1

y

)
− Any

q
− AT

1 + y

)
dy

= Σ21(N) + Σ22(N),

say. We put ny = η in the first integral and get

Σ21(N) � e−AT
∑

n>N

σ1−2σ(n)nσ−1

×
(∫ √

n

0
+
∫ n

√
n

)
η−σ exp

(
− 1

20
∆2 log2

(
1 +

n

η

)
− Aη

q

)
dη.

We see that

∫ √
n

0
≤ exp

(
− 1

20
∆2 log2(1 +

√
n)
) ∫ √

n

0
η−σe−Aη/qdη

� q1−σ exp
(
− 1

20
∆2 log2(1 +

√
n)
)

and

∫ n

√
n
≤ exp

(
−A

√
n

2q

)∫ n

√
n
η−σ exp

(
−Aη

2q

)
dη

≤ q1−σ exp

(
−A

√
n

2q

)
,

and the contribution of the latter integral to Σ21(N) can be estimated by the same manner
as in (7.10). Hence we have

Σ21(N) = O(q1+σ+εe−AT ).(7.12)
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As for
∑

22(N), we split the integral at y = TL−2. The contribution of the integral on the
interval [1, TL−2] to

∑
22(N) is

�
∑

n>N

σ1−2σ(n)TL−2 exp

(
−An

q
− AT

1 + TL−2

)

� TL−2e−AL2
∑

n>N

σ1−2σ(n)e−An/q

� q1+εTL−2e−AL2

.

By using the estimate

∫ ∞

X
u−αe−udu ≤ X−αe−X (X > 0, α ≥ 0),

we find that the contribution of the remaining integral is

�
∑

n>N

σ1−2σ(n)
∫ ∞

TL−2

y1−2σe−Any/qdy

� q(TL−2)1−2σ
∑

n>N

n−1+ε exp

(
−AnT

qL2

)

� q2(TL−2)−2σN−1+ε exp

(
−ANT

qL2

)

� q2(TL−2)−2σ(qT∆−2L2)−1+ε exp(−AL2).

Here the last inequality follows by using (3.1). Hence we have

Σ22(N) = O((qT )−c)(7.13)

if A0 is large enough.
Lastly consider Σ3(N). Using (7.6), we find that the contribution of the part N < n ≤ qTj

to Σ3(N) is

� q
3

2 (qT )
1

4
−σ exp

(
−A∆2 · N

qTj

)
∑

N<n≤qTj

nσ− 7

4
+ε

� q
3

2 e−AL2

.

The contribution of the remaining part is

� q
3

2 (qT )−
1

2
−σ

∑

n>qTj

nσ−1+ε exp

(
− 1

20
∆2 log2

(
1 +

An

qT

))

� q
3

2 (qT )−
1

2
+ε exp(−A∆2)

� q
3

2 exp(−AL2),

again by using (3.1). Hence we obtain Σ3(N) = O((qT )−c) if A0 is large enough. Combining
this with (7.11)–(7.13), we complete the proof of Lemma 7. 2
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8 Estimates for the integrals of Q±
σ (t; n, q)

We set

Σσ,N (T1, T2; χ) =
∑

n≤N

a1−2σ(n, χ)
∫ T2

T1

Q+
σ (t; n, q)dt(8.1)

+
∑

n≤N

a1−2σ(n, χ)
∫ T2

T1

Q−
σ (t; n, q)dt,

which is a truncation of (6.1), and define

h±σ (y; n) = gσ(y){e(f(y;±T2))− e(f(y;±T1))}e(−ny/q).

Then we see by (6.3) that

Σσ,N (T1, T2; χ) =
1

i

∑

n≤N

a1−2σ(n, χ)
∫ ∞

0
h+

σ (y; n)dy(8.2)

+
1

i

∑

n≤N

a1−2σ(n, χ)
∫ ∞

0
h−σ (y; n)dy.

The purpose of this section is to give an upper-bound estimate for the right-hand side of
(8.2).

We first show

Lemma 8. The estimates

∑

n≤N

a1−2σ(n, χ)
∫ L−1∆

0
h+

σ (y; n)dy = O(e−AL2

NT (log N log T )ω)(8.3)

and
∑

n≤N

a1−2σ(n, χ)
∫ L−1∆

0
h−σ (y, n)dy = O(e−AL2

NT (log N log T )ω)(8.4)

hold, where A is a positive absolute constant and ω is defined in the statement of Lemma 4.

Proof: Note that L−1∆ ≥ 1 by (3.1). Then using the inequalities

exp

(
−1

4
∆2 log2

(
1 +

1

y

))
� e−AL2

(0 < y ≤ L−1∆),

e(f(y; T2))− e(f(y; T1)) � y−1T (y ≥ 1),

and (5.4), we find that the left-hand side of (8.3) can be estimated as

�
∑

n≤N

σ1−2σ(n)

{∫ 1

0

e−AL2

yσ(| log y|+ 1)
dy +

∫ L−1∆

0

e−AL2

T

y2σ
dy

}

� e−AL2

TN(log T log N)ω.

Here the last inequality follows from
∑

n≤x

σ1−2σ(n) � x(log x)ω (σ ≥ 1
2
).(8.5)

Hence we obtain (8.3). The estimate (8.4) can be derived by the same manner. 2
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We next estimate the integrals over the interval [L−1∆,∞). Defining

ϕ±σ (y; n) =
∫ y

L−1∆

e(−nη/q)

(η(η + 1))σ− 1

2

{e(f(η;±T2))− e(f(η;±T1))}dη,

we have, by integration by parts,
∫ ∞

L−1∆
h±σ (y; n)dy = ϕ±σ (∞; n)−

∫ ∞

L−1∆
ϕ±σ (y; n)g′1

2

(y)dy(8.6)

with
ϕ±σ (∞; n) = lim

y→∞
ϕ±σ (y; n).

Here the existence of the limit is ensured by the fact

e(f(η;±T2))− e(f(η;±T1)) = ±i(T2 − T1)
1

η
+ O

(
T 2

η2

)
(η → +∞)

and the second mean value theorem.
To estimate the second term on the right-hand side of (8.6) we first prove, for y ≥ L−1∆,

ϕ±σ (y; n)(8.7)

�





(L−1∆)1−2σy
3

2 T−
1

2 if n ≤ qT1L
2∆−2,

(L−1∆)1−2σ
(

q

n
+ y

3

2 T−
1

2

)
if qT1L

2∆−2 < n ≤ qT2L
2∆−2,

(L−1∆)1−2σ q

n
if n > qT2L

2∆−2.

Setting

Φ±(η; Tj) = −2πn

q
η ± Tj log

(
1 +

1

η

)

and
Ψ(η) = (η(η + 1))

1

2
−σ,

we have

ϕ±σ (y; n) =
∫ y

L−1∆
Ψ(η) exp(iΦ±(η; T2))dη(8.8)

−
∫ y

L−1∆
Ψ(η) exp(iΦ±(η; T1))dη.

The inequalities

|Φ′+(η; Tj)| �
n

q
(j = 1, 2)

hold trivially for η > 0 and n ≥ 1. Hence by the first derivative test (cf. (2.3) of Ivić [7]) we
have ∫ y

L−1∆
Ψ(η) exp(iΦ+(η; Tj))dη � (L−1∆)1−2σ q

n
.(8.9)

Let ηj (j = 1, 2) be the unique positive zero of Φ−(η; Tj). If n > qT2L
2∆−2, then

Φ′−(L−1∆; Tj) = −2πn

q
+

Tj

L−1∆(L−1∆ + 1)
< 0,
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and so ηj < L−1∆. Hence we have, for η ∈ [L−1∆, y],

|Φ′−(η; Tj)| ≥ |Φ′−(L−1∆; Tj)| �
n

q
.

Therefore the same estimate as (8.9) holds for the integral involving Φ−(η; Tj) instead of
Φ+(η; Tj). The case n > qT2L

2∆−2 of (8.7) now follows. Next, to treat the case n ≤
qT1L

2∆−2, we apply the second derivative test (cf. (2.5) of Ivić [7]). Noting that

Φ′′±(η; Tj) = ∓2Tj

(
1

η3
− 1

(η + 1)3

)

are monotonic for η > 0, we have

|Φ′′±(η; Tj)| ≥ |Φ′′±(y; Tj)| � Ty−3

for η ∈ [L−1∆, y]. Hence the case n ≤ qT1L
2∆−2 of (8.7) follows. The result for the remaining

case can be derived by combining the estimates for the other cases.
It is easily seen that

g′1
2

(y) � ∆2y−3 (y ≥ 1).(8.10)

Using the bounds (8.7) and (8.10), we find that
∫ ∞

L−1∆
ϕ±σ (y; n)g′1

2

(y)dy(8.11)

�






∆2(L−1∆)
1

2
−2σT−

1

2 if n ≤ qT1L
2∆−2,

∆2(L−1∆)−1−2σ q

n
+∆2(L−1∆)

1

2
−2σT−

1

2 if qT1L
2∆−2 < n ≤ qT2L

2∆−2,

∆2(L−1∆)−1−2σ q

n
if n ≥ qT2L

2∆−2.

The treatment of ϕ±σ (∞; n) on the right-hand side of (8.6) is more involved. We show
the estimate

ϕ±σ (∞; n)(8.12)

�






(L−1∆)1−2σ q

n



1 +

(
nT

q

) 1

4



 if n ≤ qT2L
2∆−2,

(L−1∆)1−2σ q

n
if n > qT2L

2∆−2.

If n > qT2L
2∆−2, then the result immediately follows from (8.7). Suppose next that n ≤

qT1L
2∆−2. Let δ be a positive parameter which will be specified later, and we temporarily

assume that
L−1∆ < ηj − δ (j = 1, 2).(8.13)

We divide
∫ y

L−1∆
Ψ(η) exp(iΦ−(η; Tj))dη =

∫ ηj−δ

L−1∆
+
∫ ηj+δ

ηj−δ
+
∫ y

ηj+δ
(8.14)

= K1 + K2 + K3,
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say. We see that

Φ′−(ηj ± δ; Tj) = − Tjδ(δ ± (2ηj + 1))

ηj(ηj + 1)(ηj ± δ)(ηj ± δ + 1)
.(8.15)

Hence if δ ≤ 1
2
ηj then

|Φ′−(ηj ± δ; Tj)| � η−3
j Tjδ,

so by the first derivative test we have

K1, K3 � (L−1∆)1−2ση3
j (δTj)

−1.

Clearly K2 � (L−1∆)1−2σδ holds. Therefore if we can choose δ = η
3

2

j T
− 1

2

j , noting that

ηj � (qTj/n)
1

2 , we obtain

∫ y

L−1∆
Ψ(η) exp(iΦ−(η; Tj))dη � (L−1∆)1−2σ q

n

(
nT

q

) 1

4

.

From this estimate and (8.9), the case n ≤ qT1L
2∆−2 of (8.12) follows under the assumption

δ ≤ 1
2
ηj. The choice δ = η

3

2

j T
− 1

2

j agrees with this assumption only if ηj ≤ 1
4
Tj. If ηj > 1

4
Tj,

we choose δ = 1
2
ηj. Then from (8.15) we have

|Φ′−(ηj + δ; Tj)| � η−2
j Tj,

so that
∫ y

L−1∆
Ψ(η) exp(iΦ−(η; Tj))dη =

∫ ηj+δ

L−1∆
+
∫ y

ηj+δ
(8.16)

� (L−1∆)1−2σηj + (L−1∆)1−2ση2
j T

−1
j .

Using ηj � (qTj/n)
1

2 and the assumption ηj > 1
4
Tj, we see that

ηj �
q

n

(
nTj

q

) 1

4

and η2
j T

−1
j � q

n
.

Therefore, from these estimates and (8.9), the case n ≤ qT1L
2∆−2 of (8.12) follows under

the assumption ηj > 1
4
Tj. The remaining case qT1L

2∆−2 < n ≤ qT2L
2∆−2 of (8.12) can be

treated by combining the estimates for the other cases.
Finally, when the assumption (8.13) does not hold, we replace the lower (and upper)

limits ηj ± δ of the integrals appearing in (8.14) and (8.16) by max(ηj ± δ, L−1∆), and
proceed similarly. This completes the proof of (8.12).

We substitute the bounds (8.11) and (8.12) into the right-hand side of (8.6) to obtain
∫ ∞

L−1∆
h±σ (y; n)dy(8.17)

�






(L−1∆)1−2σ
{

q

n

(
1 +

(nT

q

) 1

4

)

+∆
3

2 L
1

2 T−
1

2

}
if n ≤ qT1L

2∆−2,

(L−1∆)1−2σ
{

q

n

(
L2 +

(nT

q

) 1

4

)

+∆
3

2 L
1

2 T−
1

2

}
if qT1L

2∆−2 < n ≤ qT2L
2∆−2,

(L−1∆)1−2σL2 q

n
if n > qT2L

2∆−2.
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This together with Lemma 8 gives

Lemma 9. For 1
2
≤ σ < 1 and N � qTL2∆−2, it holds that

∑

n≤N

a1−2σ(n, χ)
∫ ∞

0
h+

σ (y; n)dy

�
∑

n≤qT1L2∆−2

|a1−2σ(n, χ)|(L−1∆)1−2σ

×
{

q

n

(
1 +

(nT

q

) 1

4

)
+ ∆

3

2 L
1

2 T−
1

2

}

+
∑

qT1L2∆−2<n≤qT2L2∆−2

|a1−2σ(n, χ)|(L−1∆)1−2σ

×
{

q

n

(
L2 +

(nT

q

) 1

4

)
+ ∆

3

2 L
1

2 T−
1

2

}

+
∑

qT2L2∆−2<n≤N

|a1−2σ(n, χ)|(L−1∆)1−2σL2 q

n

+e−AL2

NT (log N log T )ω,

and the same estimate holds for

∑

n≤N

a1−2σ(n, χ)
∫ ∞

0
h−σ (y; n)dy.

9 Application of Weil’s estimate

In the last two sections we assume that q = p is a prime number. Then we have the following
lemma, which is a consequence of Weil’s estimate [28] of Kloosterman sums.

Lemma 10. Let q = p be a prime, and 1
2
≤ σ < 1. Then we have

|a1−2σ(n, χ)| ≤ 2σ1−2σ(n)(p, n)
1

2 p−
1

2 .

Proof: We write
a1−2σ(n, χ) = p−1

∑

d|n
d1−2σS(p; χ, d, n/d)(9.1)

where

S(p; χ, d, k) =
d−1∑

r=0

χ(r + d)χ(r)e(rk/p).

Heath-Brown [4] studied this sum in detail, and Lemma 8 of [4] asserts that, if (p, d) = 1,
then

|S(p; χ, d, k)| ≤ 2
√

p.(9.2)

Heath-Brown used Weil’s estimate essentially to prove (9.2). To obtain the assertion of
Lemma 10, we apply (9.2) to (9.1) when (p, n) = 1, while the trivial estimate

|S(p; χ, d, k)| ≤ p

is enough when p|n. 2
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Applying Lemma 10, we get

∑

n≤pTjL2∆−2

|a1−2σ(n, χ)|(9.3)

≤ 2p−
1

2





∑

n≤pTjL2∆−2

p|n

σ1−2σ(n)p
1

2 +
∑

n≤pTjL2∆−2

(p,n)=1

σ1−2σ(n)





≤ 2
∑

m≤TjL2∆−2

σ1−2σ(pm) + 2p−
1

2

∑

n≤pTjL2∆−2

σ1−2σ(n)

for j = 1, 2. We can show
σ1−2σ(pm) � σ1−2σ(m),(9.4)

where the implied constant depends only on σ. In fact, writing m = pam′ with a ≥ 0 and
(p, m′) = 1, we have

σ1−2σ(pm) =
a+1∑

j=0

∑

d′|m′

(pjd′)1−2σ

=





(a + 2)σ1−2σ(m′) if σ =
1

2
,

1− (p1−2σ)a+2

1− p1−2σ
σ1−2σ(m′) if σ >

1

2
.

Comparing this with the corresponding expression of σ1−2σ(m), we obtain (9.4).
Applying (8.5) and (9.4) to (9.3), we get

∑

n≤pTjL2∆−2

|a1−2σ(n, χ)| � p
1

2 TL2+2ω∆−2.

Similarly, with partial summation, we get

∑

n≤pTjL2∆−2

|a1−2σ(n, χ)|n− 3

4 � p−
1

4 T
1

4 L
1

2
+2ω∆− 1

2 ,

∑

n≤pTjL2∆−2

|a1−2σ(n, χ)|n−1 � p−
1

2 L2+2ω,

and ∑

pT2L2∆−2<n≤N

|a1−2σ(n, χ)|n−1 � p−
1

2 (log N)1+ω.

We combine these estimates with the assertion of Lemma 9. Then from (8.2) we obtain

Lemma 11. For 1
2
≤ σ < 1 and N � pTL2∆−2 we have

Σσ,N (T1, T2; χ)

� ∆
1

2
−2σp

1

2 T
1

2 L2σ+ 3

2
+2ω + ∆1−2σp

1

2 L2σ+3+2ω

+∆1−2σp
1

2 L2σ+1(log N)1+ω + e−AL2

NT (log N log T )ω.
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10 Completion of the proofs

We are now ready for the final stage of the proofs of Theorems 1 and 2. The collection of
Lemmas 4, 7 and 11, with noting (6.1), (7.7) and (8.1), implies that

Eσ(2T, χ)− Eσ(T, χ)(10.1)

� ∆
1

2
−2σp

1

2 T
1

2 L2σ+ 3

2
+2ω + ∆1−2σp

1

2 L2σ+3+2ω

+∆1−2σp
1

2 L2σ+1(log N)1+ω + e−AL2

NT (log N log T )ω

+p1+σ+εe−AT + (pT )−c + ∆L1+2ω

for 1
2
≤ σ < 1 and N � pTL2∆−2, with a large positive c.

We first prove Theorem 1. We take N = pT , and assume that T ≥ c1p
1

12 with some
c1 > 0, since otherwise the theorem follows trivially from Heath-Brown’s estimate (3.11)
(see Remark 2 at the end of Section 3). Then we find from (10.1) that

E(2T, χ)− E(T, χ) � ∆− 1

2 p
1

2 T
1

2 L
9

2 + p
1

2 L6 + ∆L3.(10.2)

If we can choose
∆ = p

1

3 T
1

3 L,(10.3)

we obtain
E(2T, χ)− E(T, χ) � (pT )

1

3 (log pT )2 + p
1

2 (log pT )3.(10.4)

The choice (10.3) agrees with (3.1) only when T 2 ≥ A3
0pL

6. Otherwise we take ∆ = T/A0L.

Then (10.2) implies the estimate E(2T, χ)− E(T, χ) � p
1

2 (log pT )3 in this case. Replacing
T by 2−jT in (10.4) with j = 1, 2, . . . , J(= [log(T/c1p

1/12)/ log 2]), and summing them up,
we have

E(T, χ)− E(2−JT, χ) � (pT )
1

3 (log pT )2 + p
1

2 (log pT )3 log T.

Noting the estimate E(2−JT, χ) � p47/96+ε (see Remark 2 at the end of Section 3), we obtain
the assertion of Theorem 1.

The proof of Theorem 2 is similar. We take N = pT and assume that T ≥ c2p
α with

some c2 > 0 where α = (−1 + 3σ)/(7.5 − 3σ). If T 4σ ≥ A1+4σ
0 pL2+8σ then we can choose

∆ = (pT )1/(1+4σ)L and obtain

Eσ(2T, χ)− Eσ(T, χ) � (pT )1/(1+4σ) log pT + (pT )(1−2σ)/(1+4σ)p
1

2 (log pT )2.

Otherwise we take ∆ = T/A0L to get

Eσ(2T, χ)− Eσ(T, χ) � T 1−2σp
1

2 (log pT )1+2σ.

Finally we carry out the summing up process similarly to the proof of Theorem 1, with
noting the estimate Eσ(2−JT, χ) � p

1

2
−(3σ−1)/12(5−2σ)+ε (J = [log(T/c2p

α)/ log 2]); in this
case the extra log-factor does not appear, because of the existence of the negative exponents
of T . This completes the proof of Theorem 2.

Finally we mention the case of arbitrary modulus q. The second author’s papers [17] [19]
[20] contain the treatment of the case of odd composite modulus q. Motohashi [24] discussed
the case of general q, including the even modulus case. Both of them are based on the idea
in Heath-Brown’s paper [4]. It is probably possible to combine Heath-Brown’s method with
our weighted integral approach to obtain the result for the general case.
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[14] A. Laurinčikas, The Atkinson formula near the critical line II, Liet. Mat. Rinkinys 33 (1993), 302–313
(in Russian); Lithuanian Math. J. 33 (1993), 234–242.
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