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1. Introduction

The theory of multiple zeta-functions has a long history, from the
work of Barnes and Mellin at the beginning of the 20th century, or
even from the days of Euler. A new stream of research of multiple zeta-
functions began in 1990s, when some fascinating connections between
the theory of multiple zeta-functions and various branches of mathe-
matics and mathematical physics were discovered. An epoch-making
paper is Zagier [33], in which two types of multiple zeta-functions are
discussed. One is the r-fold zeta-function of the form

ζEZ,r(s1, . . . , sr) =

∞
∑

m1=1

· · ·
∞

∑

mr=1

m−s1

1 (m1 + m2)
−s2

× · · · × (m1 + · · ·+ mr)
−sr ,

(1.1)

which is now sometimes called the Euler-Zagier r-ple zeta-function.
Zagier [33] considered the values of (1.1) when s1, . . . , sr are positive
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integers and sr ≥ 2. Note that Hoffman [5] independently studied the
same values at about the same time.

Another type of multiple zeta-functions discussed in Zagier’s paper
is the class of Witten’s zeta-functions. Let g be a complex semisimple
Lie algebra. The Witten zeta-function associated with g is defined as

ζW (s; g) =
∑

ϕ

(dim ϕ)−s,(1.2)

where ϕ runs over all finite dimensional irreducible representations of
g. Special values of this series were first studied by Witten [32] in con-
nection with a problem in quantum gauge theory. As we will see later,
we can write down a more explicit form of ζW (s; g) by using Weyl’s
dimension formula. We will find that the explicit form of ζW (s; g) is
an r-fold sum, where r is the rank of g. Therefore ζW (s; g) is a kind of
multiple zeta-functions.

The original form of ζW (s; g) is a function in one variable, though the
sum in the definition is multiple. However it has been noticed recently
that, for deeper investigations of ζW (s; g), it is convenient to introduce
the multi-variable generalization of ζW (s; g) and discuss its properties.
This is the main theme of the present article.

Since the present lecture is of introductory nature, we begin with the
explanation of the basic theory of Lie algebras. It is impossible to give
the full account of the theory here; for the details, see, for example, [2],
[7], or [20].

The present article is an extended written version of a lecture of the
first-named author at the French-Japanese Winter School on Zeta and
L-functions (at Miura, Japan, January 2008).

In what follows, N, N0, Z, Q, R, and C denote the set of positive in-
tegers, non-negative integers, integers, rational numbers, real numbers,
and complex numbers, respectively.

The authors express their sincere gratitude to the referee for many
useful comments and suggestions.

2. Fundamentals of the theory of Lie algebras

In this article by Lie algebra we mean a finite dimensional vector
space g over C, with a bilinear map [ , ] : g × g → g, satisfying the
skew-symmetry [X, X] = 0 for any X ∈ g and the Jacobi identity

[X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y ]] = 0

for any X, Y, Z ∈ g. The skew-symmetry implies

0 = [X + Y, X + Y ] = [X, Y ] + [Y, X],
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hence [X, Y ] = −[Y, X]. In particular, we call g Abelian if [X, Y ] = 0
for any X, Y ∈ g.

A subspace a of g is called a Lie subalgebra if it is closed under the
above bracket operation. The normalizer N(a) of a is the set of all
X ∈ g for which

[X, a] = {[X, Y ] | Y ∈ a} ⊂ a

holds. If N(a) = g, we call a an ideal of g.
The derived Lie subalgebra g′ of g is the ideal [g, g], spanned by all

[X, Y ] (X, Y ∈ g). Define the series

g ⊃ g′ ⊃ g′′ ⊃ · · · ⊃ g(n) ⊃ · · ·
by g(n) = (g(n−1))′. If this series (the derived series) goes down to zero
for some finite n, we call g solvable. We also define the lower central
series, by replacing g(n) in the derived series by gn = [g, gn−1], and call
g nilpotent if the lower central series goes down to zero.

A Cartan subalgebra of a Lie algebra g is a nilpotent Lie subalgebra
h of g, with the property N(h) = h. (It follows that h is maximal
nilpotent.) This is not uniquely determined, but its dimension does
not depend on the choice of h. We call this dimension the rank of g.

A representation of a Lie algebra g on a complex vector space U is
a homomorphism ϕ of g into the general linear algebra GL(U). We
denote by dim ϕ the dimension of the representation space U . The
most fundamental representation is the adjoint representation ad : g →
GL(g) defined by (adX)Y = [X, Y ] for any X, Y ∈ g. By using the
adjoint representation we define the symmetric bilinear form

〈X, Y 〉 = κ(X, Y ) = Tr(adX ◦ adY ),

which is called the Killing form.
It is known that any g contains the unique maximal solvable ideal r,

the radical of g. We call a Lie algebra g (6= {0}) semisimple if its radical
is zero. Since an Abelian ideal is solvable, semisimplicity implies that
g has no non-zero Abelian ideal. If a non-Abelian Lie algebra g has no
non-trivial ideals, g is called simple. A simple Lie algebra is semisimple.
It is known that any semisimple Lie algebra can be written as a direct
sum of simple Lie algebras. It is also known that g is semisimple if and
only if the Killing form is non-degenerate.

From now on we assume that g is semisimple. Then any Cartan sub-
algebra is Abelian, and hence is maximal Abelian. We fix one Cartan
subalgebra h of g, and write r = rank g = dim h. Let α be a non-zero
element of the dual space h∗ of h. We call α a root of g (with respect
to h) if there exists a non-zero X ∈ g such that ad(H)X = α(H)X
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for any H ∈ h. Denote the set of all such X by gα. There are only
finitely many roots, and they span h∗. We denote the set of all roots
by ∆ = ∆(g). The decomposition

g = h⊕
⊕

α∈∆

gα(2.1)

holds. Note that dimgα = 1 for any α ∈ ∆.
Let α ∈ ∆. Then there exists a unique element α′ ∈ h satisfying

〈α′, H〉 = α(H) for any H ∈ h. By this correspondence α ↔ α′ we
can identify h∗ with h, and transfer the Killing form to h∗ by putting
〈α, α〉 = 〈α′, α′〉. Let h0 be the real subspace of h formed by all real
linear combinations of α′, for α ∈ ∆. Then h0 and its dual space h∗0
can be identified by the above way.

Since α′ is clearly non-zero, we can define

α∨ =
2

〈α′, α′〉α
′,(2.2)

which we call the coroot associated with α. Clearly α(α∨) = 2. More
generally, the values

a(β, α) = β(α∨) =
2〈β, α〉
〈α, α〉(2.3)

for any α, β ∈ ∆ are integers, which we call the Cartan integers of g.
It can be shown that β − a(β, α)α is again a root. Another important
property is that if both α and cα (c ∈ C) are roots, then c = ±1.

For any α, β ∈ ∆, there exist p, q ∈ N0, such that β + tα ∈ ∆ if
and only if −q ≤ t ≤ p. The sequence β − qα, . . . , β + pα is called the
α-string through β. It is known that

a(β, α) = q − p.(2.4)

Now we define the notion of (abstract) reduced root systems. Let V
be an r-dimensional real vector space with an inner product 〈 , 〉. For
any α ∈ V \ {0}, define σα : V → V by σα(β) = β − a(β, α)α. A finite
non-empty subset R of V , not containing 0, is called a reduced root
system if it spans V and satisfies

(i) for α, β ∈ R, a(β, α) = 2〈β, α〉/〈α, α〉 ∈ Z,
(ii) for α, β ∈ R, the vector σα(β) is also in R,
(iii) if both α and cα (c ∈ R) are in R, then c = ±1.

We call r the rank of the root system R. Obviously ∆ is a reduced root
system with the vector space V = h∗0.

For α ∈ V \ {0}, let Pα = {β ∈ V | 〈β, α〉 = 0}. This is the
hyperplane orthogonal to α. Since R is a finite set, it is obvious that
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V \⋃

α∈R Pα is non-empty. The elements of this set are called regular.
If γ ∈ V is regular, then R = R+(γ) ∪ (−R+(γ)), where

R+(γ) = {α ∈ R | 〈γ, α〉 > 0}.
We call α ∈ R+(γ) decomposable if α = β1 + β2 for some β1, β2 ∈
R+(γ), and indecomposable otherwise. Denote by Ψ = Ψγ the set of
all indecomposable elements of R+(γ). Then it is known that Ψ is a
basis of V , and each root β can be written as β =

∑

α∈Ψ kαα with
integral coefficients kα, all non-negative or all non-positive. We call
β positive (resp. negative) if all kα ≥ 0 (resp. ≤ 0). The elements
of Ψ are called simple or fundamental, and |Ψ| = r. We call Ψ a
base, or a fundamental system, of R. When R = ∆ = ∆(g), we write
Ψ = Ψ(∆) = Ψ(g).

Two root systems R1 and R2 (with the underlying vector spaces V1

and V2, respectively) are equivalent when there is a similarity (constant
multiple of an isometry) V1 → V2 which sends R1 onto R2. A very
important fact is that there is a bijection between the set of equivalence
classes of reduced root systems and the set of isomorphism classes of
semisimple Lie algebras. Therefore, hereafter, we assume that the root
system R is corresponding to a semisimple Lie algebra g, the inner
product is given by the Killing form, and write R = ∆ = ∆(g). We
also write ∆+ = R+(γ), ∆− = −(R+(γ)). Therefore ∆ = ∆+ ∪ ∆−.
Note that Ψ, ∆+ and ∆− depend on the choice of γ.

Let γ′ be the element of h0 corresponding to γ ∈ h∗0. Then α ∈ ∆+

if and only if α(γ′) > 0. This suggests the definition of the following
partial order in h∗0; for λ, µ ∈ h∗0, we define λ > µ (resp. λ ≥ µ) if
λ(γ′) > µ(γ′) (resp. λ(γ′) ≥ µ(γ′)). The definition of this order also
depends on γ.

The mapping σα is the reflection with respect to Pα. All σα, α ∈ ∆,
generates a group W = W (∆) of isometries of V , which is called the
Weyl group of ∆. This group is generated by all the elements of Ψ. If
Ψ′ is another fundamental system of ∆, then there exists an element
w ∈ W for which Ψ′ = w(Ψ) holds.

3. Examples of simple Lie algebras

A root system ∆ is called irreducible if it cannot be written as the
union of two proper subsets, each root in one of them is orthogonal to
each root in the other. Irreducible root systems have been completely
classified by the Cartan-Killing theory. The result can be written as
the list of all irreducible root systems, that is, Ar (r ≥ 1), Br (r ≥ 2),
Cr (r ≥ 3), Dr (r ≥ 4), and the five exceptional systems E6, E7, E8,
F4, and G2. This list exactly corresponds to the list of possible simple
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Lie algebras. Hereafter, when g corresponds to the root system of type
Xr (X = A, B, C, D, E, F or G), we sometimes write ∆(g) = ∆(Xr),
Ψ(g) = Ψ(Xr), ζr(s; g) = ζr(s; Xr), etc. (The subscript r indicates the
rank of g as in the preceding section.)

The root system of type Ar corresponds to the Lie algebra

sl(r + 1) = {X ∈ Mr+1(C) | TrX = 0},
where Mm(C) denotes the set of all m × m matrices with complex
entries. The bracket operation is given by [X, Y ] = X ·Y −Y ·X, where
the “dot” on the right-hand side is the usual matrix multiplication. By
diag(a1, . . . , ar+1) we mean the (r +1)× (r +1) matrix whose diagonal
entries are a1, . . . , ar+1 and all other entries are 0. When g = g(Ar) =
sl(r + 1), the set h of all diag(a1, . . . , ar+1) with a1 + · · ·+ ar+1 = 0 is
a Cartan subalgebra of g. Then

∆ = ∆(Ar) = {εi − εj | 1 ≤ i, j ≤ r + 1, i 6= j},
where εi is defined by εi(diag(a1, . . . , ar+1)) = ai.

Choose γ′ = diag(a1, . . . , ar+1) with a1 > a2 > · · · > ar > 0 and
ar+1 = −(a1 + · · · + ar). Then εi − εj > 0 implies ai − aj > 0, which
further implies i < j. Therefore

∆+(Ar) = {εi − εj | 1 ≤ i, j ≤ r + 1, i < j}.
The fundamental system is Ψ(Ar) = {αi | 1 ≤ i ≤ r}, where αi =
εi−εi+1. It can be shown that the Killing form on sl(r+1) is 〈X, Y 〉 =
2(r + 1)Tr(X · Y ). Therefore α′

i = (2(r + 1))−1(ei − ei+1), where ei is
the matrix whose (i, i)-entry is 1 and all other entries are 0. Hence the
coroot corresponding to αi is α∨

i = ei − ei+1. All positive roots and
coroots can be written as

εi − εj =
∑

i≤k<j

αk(3.1)

and

ei − ej =
∑

i≤k<j

α∨
k ,(3.2)

respectively.
Such explicit descriptions of positive roots can be done for other

types of simple Lie algebras. Here we only mention the case of Br

type, which corresponds to the algebra

o(2r + 1) = {X ∈ M2r+1(C) | tX + X = 0}.
A Cartan subalgebra h of o(2r + 1) is the set of all matrices of the

form
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















0
0 a1

−a1 0
. . .

0 ar

−ar 0

















(where all elements in the empty blocks are 0), but we may identify
this h with

{diag(a1, . . . , ar) | a1, . . . , ar ∈ C} ⊂ Cr.

Positive roots are εi (1 ≤ i ≤ r) and εi ± εj (1 ≤ i < j ≤ r). The
fundamental system Ψ(Br) consists of αi = εi−εi+1 (1 ≤ i ≤ r−1) and
αr = εr. The corresponding coroots are α∨

i = ei − ei+1 (1 ≤ i ≤ r − 1)
and α∨

r = 2er. The list of positive coroots is

2ei = 2
∑

i≤k<r

α∨
k + α∨

r (1 ≤ i ≤ r),

ei − ej =
∑

i≤k<j

α∨
k (1 ≤ i < j ≤ r),

and

ei + ej =
∑

i≤k<j

α∨
k + 2

∑

j≤k<r

α∨
k + α∨

r (1 ≤ i < j ≤ r).

4. Weyl’s dimension formula

Now we return to the general situation. Let ϕ : g → GL(U) be a
representation, where U is a finite dimensional complex vector space.
We call u ∈ U a weight vector if it is a joint eigenvector of all the
operators ϕ(H), H ∈ h. Hence ϕ(H)u = λ(H)u, where λ(H) ∈ C.
Then λ : H 7→ λ(H) is an element of h∗. We call λ the weight of u.

For each λ ∈ h∗, let Uλ be the subspace of U consisting of 0 and
all weight vectors u with weight λ. When Uλ is non-zero, we call λ a
weight of ϕ. There is only a finite number of weights. A weight λ is
called dominant if λ(α∨) ≥ 0 for all α ∈ Ψ. If the strict inequality
holds for all α ∈ Ψ, then we call strongly dominant.

Write Ψ = {α1, . . . , αr}, and define λi ∈ h∗ by λi(α
∨
j ) = δij (Kro-

necker’s delta). Then clearly λi (1 ≤ i ≤ r) are dominant. We call
them fundamental weights, and write Λ = {λ1, . . . , λr}. The weight
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ρ = λ1 + · · · + λr is called the lowest strongly dominant form. It is
known that any dominant weight λ can be written as

λ = n1λ1 + · · ·+ nrλr (n1, . . . , nr ∈ N0).(4.1)

A representation (ϕ, U) is irreducible if there is no non-trivial in-
variant subspace of U . A principal result is that there is a bijection
between the set of (equivalence classes of) irreducible representations
and the set of dominant weights. Let ϕ a finite dimensional irreducible
representation of g, and λ the corresponding dominant weight. Then
Weyl’s dimension formula asserts

dim ϕ =
∏

α∈∆+

〈α∨, λ + ρ〉
〈α∨, ρ〉

=
∏

α∈∆+

〈α∨, (n1 + 1)λ1 + · · ·+ (nr + 1)λr〉
〈α∨, λ1 + · · ·+ λr〉

.

(4.2)

(Here we use the notation 〈α∨, ρ〉 = ρ(α).) At a first glance it seems
that the right-hand side depends on the choice of h and γ. It is possible,
however, to show directly that the right-hand side is independent of
those choices, by using the fact that any two Cartan subalgebras are
conjugate, and the aforementioned transitivity of the Weyl group on
the set of fundamental systems.

Since each ϕ corresponds to each (n1, . . . , nr) ∈ Nr
0, substituting

(4.2) into (1.2), we now obtain the following explicit form of Witten
zeta-functions:

ζW (s; g) = K(g)s

∞
∑

m1=1

· · ·
∞

∑

mr=1

∏

α∈∆+

〈α∨, m1λ1 + · · ·+ mrλr〉−s
,(4.3)

where

K(g) =
∏

α∈∆+

〈α∨, λ1 + · · ·+ λr〉.(4.4)

To investigate the analytic behaviour of the multiple sum part of (4.3),
it is convenient to introduce the following multi-variable version. Let
s = (sα)α∈∆+

∈ Cn, where n = |∆+|. Let

ζr(s; g) =

∞
∑

m1=1

· · ·
∞

∑

mr=1

∏

α∈∆+

〈α∨, m1λ1 + · · ·+ mrλr〉−sα.(4.5)

Then

ζW (s; g) = K(g)sζr((s, . . . , s); g).(4.6)
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If g is a direct sum of two Lie algebras g1 and g2, then

ζW (s; g) = ζW (s; g1)ζW (s; g2).(4.7)

This follows easily from the fact that any irreducible representation ϕ
of g is equivalent to the tensor product of two irreducible represen-
tations ϕ1 of g1 and ϕ2 of g2, and conversely, if ϕi is an irreducible
representation of gi (i = 1, 2) then ϕ1⊗ϕ2 is an irreducible representa-
tion of g1⊕g2. Therefore it is sufficient to study Witten zeta-functions
only in the case when g is simple. And when g is simple, by using the
data of the classification theory, we can give a more explicit form of
ζW (s; g) and ζr(s; g). We will discuss some low-rank cases in the next
section.

5. The cases A1, A2 and B2

Let g be of Ar type, that is, g = sl(r + 1). Since any positive coroot
α∨ of sl(r + 1) can be written as (3.2), we have

〈α∨, m1λ1 + · · ·+ mrλr〉
=

∑

i≤k<j

〈α∨
k , m1λ1 + · · ·+ mrλr〉 = mi + · · ·+ mj−1.

(5.1)

Therefore

ζr(s; Ar) =
∞

∑

m1=1

· · ·
∞

∑

mr=1

∏

1≤i<j≤r+1

(mi + · · ·+ mj−1)
−sij(5.2)

where sij corresponds to the coroot ei − ej.

Remark 1. If we put sij = 0 for all (i, j) with i ≥ 2, then (5.2) is reduced
to (1.1). Therefore ζr(s; g) is not only a multi-variable version of Witten
zeta-functions, but also a generalization of Euler-Zagier sums.

When r = 1, it is clear from (5.2) that ζ1(s; A1) is nothing but the
Riemann zeta-function ζ(s). The case r = 2 is also a classical object.
In this case we find that

ζ2(s1, s2, s3; A2) =
∞

∑

m1=1

∞
∑

m2=1

m−s1

1 m−s2

2 (m1 + m2)
−s3(5.3)

(s = (s1, s2, s3), here we use a suffix system different from that used
in (5.2)), which is sometimes called the Mordell-Tornheim (or simply
Tornheim) double zeta-function and denoted by ζMT,2(s1, s2, s3). It is
Tornheim [24] who first introduced the double series (5.3) and studied
its values when s1, s2, s3 are positive integers. He proved various evalua-
tion formulas, which express special values of (5.3) in terms of Bernoulli
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numbers. Mordell [19] considered the case when s1 = s2 = s3 = k ∈ N,
and proved that if k is even then

ζ2(k, k, k; A2) = C(k, k, k; A2)π
3k, C(k, k, k; A2) ∈ Q.(5.4)

In particular, when k = 2, Mordell obtained

ζ2(2, 2, 2; A2) =
1

2835
π6.(5.5)

The explicit value of C(k, k, k; A2) for even k ≥ 4 was obtained by
Subbarao and Sitaramachandrarao [21], and by Zagier [33]. An evalu-
ation formula for the value ζ2(k, k, k; A2) when k is odd was obtained
by Huard, Williams and Zhang [6].

Subbarao and Sitaramachandrarao [21] discovered a kind of reci-
procity relation. They proved that if k1, k2, k3 are positive even inte-
gers, then

ζ2(k1, k2, k3; A2) + ζ2(k2, k3, k1; A2) + ζ2(k3, k1, k2; A2)

can be expressed in terms of Bernoulli numbers. The third-named
author [25] proved the following more general result.

Theorem 1 ([25]). Let k1, k2, k3 ∈ N0 satisfying k1+k2 ≥ 2 and k3 ≥ 2.
Then

ζ2(k1, k2, k3; A2) + (−1)k2ζ2(k2, k3, k1; A2) + (−1)k2+k3ζ2(k3, k1, k2; A2)

is a polynomial in ζ(j), 2 ≤ j ≤ k1 +k2 +k3, with rational coefficients.
When k1 + k2 + k3 is even, then the above quantity can be expressed in
terms of Bernoulli numbers.

The second assertion of Theorem 1 is not explicitly stated in [25],
but it can be seen from the expression given in Theorem 3.1 of [15].

The basic idea in [25] (“u-method”) is to introduce the parameter
u > 1, and consider the series

∞
∑

m1=1

∞
∑

m2=1

(−u)−m1−m2

ms1

1 ms2

2 (m1 + m2)s3

(or some variant of it). Because of the existence of the factor (−u)−m1−m2 ,
the above series has nice convergence properties, so we can treat it much
easier than the original series (5.3). Then finally take the limit u → 1
carefully to obtain various formulas on (5.3).

A typical example of formulas given by Theorem 1 is as follows:

ζ2(4, 5, 3; A2)− ζ2(5, 3, 4; A2) + ζ2(3, 4, 5; A2) =
19

182432250
π12.(5.6)
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Subbarao and Sitaramachandrarao [21] raised the problem of evalu-
ating the special values of the following alternating analogues of ζ2(s; A2):

∞
∑

m1=1

∞
∑

m2=1

(−1)m2

ms1

1 ms2

2 (m1 + m2)s3
,

∞
∑

m1=1

∞
∑

m2=1

(−1)m1+m2

ms1

1 ms2

2 (m1 + m2)s3
.

This problem was solved in some cases by the third-named author [26],
[27], [29], again by the u-method. In [27], [29], he introduced the partial
Tornheim series

∞
∑

m1=0

∞
∑

m2=0

(2m1 + b1)
−s1(2m2 + b2)

−s2(2m1 + 2m2 + b1 + b2)
−s3(5.7)

where b1, b2 ∈ {1, 2}, reduced the problem to the evaluation of special
values of (5.7), and applied the u-method to (5.7).

The above are the results on the special values of the series. Next
we consider ζ2(s; A2) as a function of complex variables. The mero-
morphic continuation of ζ2(s1, s2, s3; A2) to C3 was first established by
S. Akiyama and also by S. Egami in 1999, but both of their proofs are
unpublished. The second-named author proved the following theorem
in [16].

Theorem 2 ([16]). The function ζ2(s1, s2, s3; A2) can be continued
meromorphically to the whole space C3, and its singularities are s1 +
s3 = 1− l, s2 + s3 = 1− l (l ∈ N0), and s1 + s2 + s3 = 2.

The key to the proof of Theorem 2 in [16] is the Mellin-Barnes inte-
gral formula

(1 + λ)−s =
1

2π
√
−1

∫

(c)

Γ(s + z)Γ(−z)

Γ(s)
λzdz,(5.8)

where s, λ ∈ C, λ 6= 0, | arg λ| < π, <s > 0, c is real with −<s < c < 0,
and the path of integration is the vertical line from c −

√
−1∞ to

c +
√
−1∞. To prove Theorem 2, at first assume that <sj (j = 1, 2, 3)

are sufficiently large. Applying (5.8) with λ = m2/m1, we have

m−s1

1 m−s2

2 (m1 + m2)
−s3 = m−s1−s3

1 m−s2

2

(

1 +
m2

m1

)−s3

=
1

2π
√
−1

∫

(c)

Γ(s3 + z)Γ(−z)

Γ(s3)
m−s1−s3−z

1 m−s2+z
2 dz,

(5.9)
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where −<s3 < c < 0, and hence

ζ2(s1, s2, s3; A2)

=
1

2π
√
−1

∫

(c)

Γ(s3 + z)Γ(−z)

Γ(s3)
ζ(s1 + s3 + z)ζ(s2 − z)dz.

(5.10)

The meromorphic continuation can be shown by shifting the path of
integration on the right-hand side of (5.10) sufficiently to the right.
This shifting is possible, because applying Stirling’s formula to the
gamma factors of the integrand one can see that the integrand is of
rapid decay when |=z| → ∞. Let M be a sufficiently large positive
integer, ε be a small positive number. When we shift the path of
integration to <z = M−ε, the relevant poles are at z = 0, 1, . . . , M−1
and z = s2 − 1. Therefore we have

ζ2(s1, s2, s3; A2)

=
Γ(s2 + s3 − 1)Γ(1− s2)

Γ(s3)
ζ(s1 + s2 + s3 − 1)

+

M−1
∑

k=0

(−s3

k

)

ζ(s1 + s3 + k)ζ(s2 − k)

+
1

2π
√
−1

∫

(M−ε)

Γ(s3 + z)Γ(−z)

Γ(s3)
ζ(s1 + s3 + z)ζ(s2 − z)dz.

(5.11)

The last integral is holomorphic in the region <s3 > −M + ε, <(s1 +
s3) > 1−M +ε, <s2 < 1+M−ε. Since M is arbitrary, this implies the
meromorphic continuation of ζ2(s1, s2, s3; A2) to C3. Moreover, we find
that s1+s3 = 1−l, s2+s3 = 1−l, and s1+s2+s3 = 2 are singularities of
the residue terms on the right-hand side of (5.11). Apparently s2 = 1+l
also seems singular, but this singularity is cancelled. The proof of
Theorem 2 is complete.

Recently the first-named author [9] obtained an alternative proof of
the meromorphic continuation of ζ2(s1, s2, s3; A2), whose main tool is
surface integration.
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Next consider the Br case. We have

ζr(s; Br)

=

∞
∑

m1=1

· · ·
∞

∑

mr=1

∏

1≤i≤r

(2(mi + · · ·+ mr−1) + mr)
−si

×
∏

1≤i<j≤r

(mi + · · ·+ mj−1)
−s−ij

×
∏

1≤i<j≤r

(mi + · · ·+ mj−1 + 2(mj + · · ·+ mr−1) + mr)
−s+

ij ,

(5.12)

where si, s
−
ij, s

+
ij correspond to 2ei, ei − ej, ei + ej, respectively. In par-

ticular,

ζ2(s1, s2, s3, s4; B2)

=
∞

∑

m1=1

∞
∑

m2=1

m−s1

1 m−s2

2 (m1 + m2)
−s3(2m1 + m2)

−s4
(5.13)

(s = (s1, s2, s3, s4)). This multi-variable zeta-function for B2 was intro-
duced by the second-named author in [17], which inspired the general
definition (4.5) of ζr(s; g), given in [18] (in the Ar case), [10], and [11].
In [17], similarly to (5.11), it has been shown that

ζ2(s1, s2, s3, s4; B2) =
1

2π
√
−1

∫

(c)

Γ(s4 + z)Γ(−z)

Γ(s4)

× ζ2(s1, s2 − z, s3 + s4 + z; A2)dz.

(5.14)

The analytic properties of ζ2(s; B2), which can be derived from (5.14),
are discussed in [11].

In [28], the third-named author showed that ζ2(r1, r2, r3, r4; B2), where
r1, r2, r3, r4 ∈ N0 for which the series is convergent, can be expressed
as a sum of special values of ζ2(s; A2) and the series (5.7). Therefore,
using the results in [6] and [29], we can deduce evaluation formulas for
ζ2(r1, r2, r3, r4; B2). A typical example is

ζ2(2, 2, 1, 2; B2) = −185

16
ζ(7) +

55

48
π2ζ(5).(5.15)

6. Mellin-Barnes reductions

In the preceding section, we gave the Mellin-Barnes integral ex-
pressions of ζ2(s; A2) and ζ2(s; B2) ((5.10) and (5.13), respectively),
from which the meromorphic continuation of those functions can be
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proved. In [17], this argument has been much more generalized. Let
Mnr = (aij)1≤i≤n,1≤j≤r be an n× r matrix, where aij are non-negative
real numbers. Assume that all rows and all columns of Mnr include at
least one non-zero element. Define

ζr(s1, . . . , sn; Mnr) =
∞

∑

m1=1

· · ·
∞

∑

mr=1

(a11m1 + · · ·+ a1rmr)
−s1

× · · · × (an1m1 + · · ·+ anrmr)
−sn.

(6.1)

Then

Theorem 3 ([17]). The function ζr(s1, . . . , sn; Mnr) can be continued
meromorphically to the whole space Cn.

From this theorem it immediately follows that ζr(s; g), defined by
(4.5), can be continued meromorphically to Cn.

Note that Essouabri [3] [4] developed a method of proving the con-
tinuation of very general form of multiple Dirichlet series, which is
quite different from our Mellin-Barnes argument. The continuation of
ζr(s; g), and even the above Theorem 3, is actually included in Es-
souabri’s theorem.

However, our argument has an advantage; from the Mellin-Barnes
integral expression it is not difficult to deduce various explicit informa-
tion, such as location of singularities. Another important point is that,
by our method, we can find a recursive structure among the family
of multiple zeta-functions. In fact, (5.10) is an expression of ζ2(s; A2)
by a “simpler” zeta-function, that is ζ(s). Similarly, (5.14) expresses
ζ2(s; B2) by ζ2(s; A2), which is “simpler” than ζ2(s; B2). We may un-
derstand that there is the recursive structure

A2 → (A1, A1), B2 → A2.(6.2)

The same structure can be found in higher-rank situation. For this
purpose, now we introduce the notion of multiple zeta-functions of root
sets. Let ∆∗ be a subset of ∆+ = ∆+(g). We call ∆∗ a root set if for any
λj (1 ≤ j ≤ r) there exists an element α ∈ ∆∗ such that 〈α∨, λj〉 6= 0.
If ∆∗ is a root set, we can define

ζr(s; ∆
∗) =

∞
∑

m1=1

· · ·
∞

∑

mr=1

∏

α∈∆∗

〈α∨, m1λ1 + · · ·mrλr〉−sα,(6.3)
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where s = s(∆∗) = (sα)α∈∆∗ ∈ Cn∗ with n∗ = |∆∗|. We call ζr(s; ∆
∗)

the zeta-function of the root set ∆∗. When ∆∗ = ∆+(g), ζr(s; ∆
∗) co-

incides with ζr(s; g) defined by (4.5). From this viewpoint it is suitable
to call ζr(s; g) the zeta-function of the root system ∆.

Consider the zeta-function of Ar-type, that is (5.3). Define the root
set

∆∗
h(Ar) = {ε1 − εj | 2 ≤ j ≤ h} ∪ {εi − εj | 2 ≤ i < j ≤ r + 1}(6.4)

for 2 ≤ h ≤ r + 1 and

∆∗(Ar) = {εi − εj | 2 ≤ i < j ≤ r + 1}.(6.5)

The term (m1 + · · ·+mr)
−s1,r+1 corresponds to the coroot e1− er+1, or

the root ε1 − εr+1. Applying the Mellin-Barnes formula (5.8) we have

(m1 + · · ·+ mr)
−s1,r+1 = (m1 + · · ·+ mr−1)

−s1,r+1

× 1

2π
√
−1

∫

(c)

Γ(s1,r+1 + z)Γ(−z)

Γ(s1,r+1)

(

mr

m1 + · · ·+ mr−1

)z

dz,
(6.6)

and hence

ζr(s; Ar) =
1

2π
√
−1

∫

(c)

Γ(s1,r+1 + z)Γ(−z)

Γ(s1,r+1)

× ζr(s
∗(Ar, z); ∆∗

r(Ar))dz,

(6.7)

where

s∗(Ar, z) = (s12, . . . , s1,r−1, s1r + s1,r+1 + z, s23, . . . , sr,r+1 − z).(6.8)

The formula (6.7) gives the recursive relation ζr(· ; Ar) → ζr(· ; ∆∗
r(Ar)),

which corresponds to removing one root ε1 − εr+1 from ∆+(Ar). Sim-
ilarly, ζr(· ; ∆∗

r(Ar)) can be expressed as the Mellin-Barnes integral
involving ζr(· ; ∆∗

r−1(Ar)). Repeating this procedure, we finally arrive
at ζr(· ; ∆∗

2(Ar)). In the definition of ζr(· ; ∆∗
2(Ar)), the only term

including m1 is m−s12

1 , so the sum with respect to m1 can be com-
pletely separated. Hence ζr(· ; ∆∗

2(Ar)) can be written as a product
of ζr−1(· ; ∆∗(Ar)) and ζ(·). However the root set ∆∗(Ar) is actually
equivalent to ∆+(Ar−1). Therefore, corresponding to the reduction of
root sets

∆+(Ar) = ∆∗
r+1(Ar) ⊃ ∆∗

r(Ar) ⊃ ∆∗
r−1(Ar) ⊃ · · ·

· · · ⊃ ∆∗
2(Ar) ⊃ ∆∗(Ar) = ∆+(Ar−1),

(6.9)

the recursive structure among zeta-functions

ζr(· ; Ar) → ζr(· ; ∆∗
r(Ar)) → · · · → ζr(· ; ∆∗

3(Ar))

→ ζr(· ; ∆∗
2(Ar)) = ζr−1(· ; Ar−1)ζ(·)(6.10)
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exists, which can be described by Mellin-Barnes integrals. The conclu-
sion of (6.10) can be summarized as

Ar → (Ar−1, A1),(6.11)

a generalization of the first relation of (6.2).
The same type of recursive structures can be found for zeta-functions

of the other root systems. For the details, see [11].

7. Dynkin diagrams and Dynkin reductions

In this section we introduce the notion of Dynkin diagrams, and
explain the recursive structure given in the preceding section in terms
of Dynkin diagrams.

Let g be a semisimple Lie algebra, and Ψ = Ψ(g) = {α1, . . . , αr} be
a fundamental system. We define the Dynkin diagram Γ = Γ(g) asso-
ciated with g as follows. First, to each αi, we associate a vertex, with
the weight 〈αi, αi〉. Any two different vertices αi and αj are connected
by aij · aji edges, where aij = a(αj, αi) is the Cartan integer defined by
(2.3). In particular, if 〈αi, αj〉 = 0, then there is no edge which con-
nects αi and αj. The number of edges connecting two vertices are 1, 2,
or 3. In the case when number of edges are 2 or 3, we add an arrow,
pointing from the vertex of higher weight to that of lower weight.

Since simple Lie algebras are corresponding to irreducible root sys-
tems, it is easy to see that Γ(g) is connected if and only if g is simple.
Therefore the problem of the classification of simple Lie algebras can
be reduced to that of the classification of connected Dynkin diagrams.

In the case of Ar type, the fundamental system consists of αi =
εi − εi+1 (1 ≤ i ≤ r). For i 6= j,

αi + tαj = εi − εi+1 + t(εj − εj+1)

is a root if and only if t = 0 or t = 1, i + 1 = j or t = 1, j + 1 = i.
Therefore if |i − j| = 1, then the αi-string through αj consists of just
two elements, so by (2.4) we have aji = −1. Hence the vertices αi and
αj are connected by just one edge. If |i − j| ≥ 2, then a(αj, αi) = 0,
or in other words αi and αj are orthogonal to each other, and there
is no edge between the corresponding vertices. Therefore the Dynkin
diagram Γ(Ar) is as follows:

(Ar)
α1
c

α2
c c

�
��
�

�
��
�

c c c
αr
c

Figure 1
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The Mellin-Barnes reduction process for Ar, described in the preced-
ing section, is actually the process of removing all terms corresponding
to the roots ε1 − εh (2 ≤ h ≤ r + 1). These roots are exactly the roots
which include the term α1 when one writes them as sums of fundamen-
tal roots. Therefore we can summarize that the process is to separate
α1 from the other fundamental roots, that is, to cut off the leftmost
edge of the above Dynkin diagram. Then the resulting diagram has
two connected components, which are diagrams of A1 and Ar−1.

(Ar)
α1
c

α2
c c

�
��
�

�
��
�

c c c
αr
c

Figure 2

Therefore the above cutting process expresses the recursive relation
(6.11).

The cutting of some other edge gives a different recursive relation. If
one cuts the edge between αl−1 and αl, one finds that the two connected
components of the resulting diagram are the diagrams of Al−1 and
Ar−l+1. This implies that ζr(s; Ar) can be expressed as an integral
of the Mellin-Barnes type whose integrand includes ζl−1(· ; Al−1) and
ζr−l+1(· ; Ar−l+1). We write this structure as Ar → (Al−1, Ar−l+1). In
general, we can show the following theorem.

Theorem 4 ([11]). By cutting off any edge of a Dynkin diagram, we
find that the zeta-function of the corresponding root system can be writ-
ten as a (multiple) integral, whose integrand includes zeta-functions of
every connected components of the resulting Dynkin diagram.

Examine the Br case. In this case, for 1 ≤ i, j ≤ r−1, i 6= j, we have
aij = 1 if |i − j| = 1 and aij = 0 otherwise. Also we have ar−1,r = 1.
However ar,r−1 = 2, because

αr−1 + tαr = εr−1 − εr + tεr

is a root for t = 0, 1, 2. Moreover, since 〈αi, αi〉 = 1/(2r − 1) (1 ≤ i ≤
r− 1) and 〈αr, αr〉 = 1/2(2r− 1) (see (4.4.49) of [30]), the direction of
the arrow is from αr−1 to αr. Therefore the Dynkin diagram for Br is
as follows.

(Br)
α1
c

α2
c c

�
��
�

�
��
�

c c c 〉 αr
c

Figure 3
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If one cuts the leftmost edge, one obtains the recursive structure
Br → (Br−1, A1). This is an analogue of (6.11). On the other hand,
if one cuts the rightmost two edges, one obtains a different recursive
structure, that is Br → (Ar−1, A1). Another way is to cut only one
of the rightmost edges. In this case the resulting diagram is still con-
nected, that is the diagram of Ar. Therefore the corresponding recur-
sive relation is Br → Ar.

We do not mention the recursive structures for the Cr and Dr cases,
but those are also discussed in [11]. Those structures give a way of
expressing zeta-functions of higher-rank root systems as a (multiple)
integral involving zeta-functions of lower-rank root systems. There-
fore, analytic properties of zeta-functions of root systems can be ob-
tained inductively, by going upstream the arrows in the recursive struc-
tures. Following this way, we have determine all the singularity sets of
ζ3(s; A3) in [18]. The list of possible singularity sets of ζ3(s; B3) and
ζ3(s; C3) are given in [11].

Among the five exceptional algebras, the most accessible one is G2.
It is known that the Dynkin diagram of G2 is as follows.

(G2)
α1
c 〉 α2

c

Figure 4

Therefore, by cutting one edge we have G2 → B2. By using this
structure we can study the properties of the zeta-function of G2, which
will be given in [13].

8. The Weyl group symmetry

It is known that in Lie theory, the Weyl groups play essential roles.
For example, Weyl’s dimension formula is derived by using this sym-
metry. Therefore it is natural to investigate the Weyl group symmetry
of zeta-functions of root systems. Our starting point is functional re-
lations among Lerch zeta-functions ϕ(s, y) and Bernoulli polynomials
Bk(y), namely,

(8.1) ϕ(k, y) + (−1)kϕ(k,−y) = −Bk({y})
(2π

√
−1)k

k!
,

where k ∈ Z≥2, y ∈ R, ϕ(s, y) is the Lerch zeta-function defined by

(8.2) ϕ(s, y) =
∞

∑

m=1

e2π
√
−1my

ms
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and

(8.3)
tet{y}

et − 1
=

∞
∑

k=0

Bk({y})
tk

k!
,

with {y} = y − [y] (i.e. fractional part).
Motivated by this observation, we introduce Lerch-type generaliza-

tions of (4.5) as

ζr(s,y; g) =
∞

∑

m1=1

· · ·
∞

∑

mr=1

e2π
√
−1〈y,m1λ1+···+mrλr〉

×
∏

α∈∆+

〈α∨, m1λ1 + · · ·+ mrλr〉−sα,
(8.4)

where y ∈ h0. To define an action of the Weyl group, we identify
s = (sα)α∈∆+

with (sα)α∈∆ by sα = s−α. Since w(−α) = −w(α) for
α ∈ ∆ and w ∈ W , an action of the Weyl group is naturally induced
on any function f in s and y as follows: For w ∈ W ,

(8.5) (wf)(s,y) = f(w−1s, w−1y),

where for β ∈ ∆,

(σβs)α = sσβα,(8.6)

σβy = y − 〈y, β〉β∨.(8.7)

We define a main object of the following sections as follows:

(8.8) S(s,y; g) =
∑

w∈W

(

∏

α∈∆+∩w∆−

(−1)−sα

)

(wζr)(s,y; g).

Here we give two examples, from which we will observe that the func-
tion S(s,y; g) plays an role of periodic Bernoulli functions in the clas-
sical theory.

Example 1. In the A1 case, we have ∆+ = {α = α1} and W = {id, σα}.
By putting y = yα∨ and s = (k) with k ∈ Z≥2, we obtain

(8.9) ζ1(s,y; A1) =
∞

∑

m=1

e2π
√
−1mym−k = ϕ(k, y)

and

(8.10) S(s,y; A1) = ϕ(k, y) + (−1)−kϕ(k,−y),

which is reduced to the left-hand side of (8.1).
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Example 2. In the A2 case with y = 0, we have ∆+ = {α1, α2, α1 +α2}
and W = {id, σ1, σ2, σ1σ2, σ2σ1, σ1σ2σ1 = σ2σ1σ2}, where σ1 = σα1

and
σ2 = σα2

. For simplicity we set sα1
= k1, sα2

= k2, sα1+α2
= k3 with

k1, k2, k3 ∈ Z≥2 and we abbreviate ζ2(s, 0; A2) = ζ2(s1, s2, s3; A2). We
obtain

∆+ ∩ id ∆− = ∅,
∆+ ∩ σ1∆− = {α1},
∆+ ∩ σ2∆− = {α2},

∆+ ∩ σ1σ2∆− = {α1, α1 + α2},
∆+ ∩ σ2σ1∆− = {α2, α1 + α2},

∆+ ∩ σ1σ2σ1∆− = {α1, α2, α1 + α2},

(8.11)

which implies

S(s,y; A2)

= ζ2(k1, k2, k3; A2) + (−1)−k1ζ2(k1, k3, k2; A2)

+ (−1)−k2ζ2(k3, k2, k1; A2) + (−1)−k1−k3ζ2(k2, k3, k1; A2)

+ (−1)−k2−k3ζ2(k3, k1, k2; A2)

+ (−1)−k1−k2−k3ζ2(k2, k1, k3; A2)

= (1 + (−1)k1+k2+k3)

× (ζ2(k1, k2, k3; A2) + (−1)k2ζ2(k2, k3, k1; A2)

+ (−1)k1ζ2(k3, k1, k2; A2))

(8.12)

by use of ζ2(k1, k2, k3; A2) = ζ2(k2, k1, k3; A2). When k1+k2+k3 is even,
then (8.12) coincides with the linear combination in Theorem 1 up to
a constant factor. Hence they can be expressed in terms of Bernoulli
numbers.

From these examples, we can expect that S(k,y; g) has nice prop-
erties when all kα are positive integers. In fact, in the next section
we will construct multiple generalizations of periodic Bernoulli func-
tions P (k,y; g), so that S(k,y; g) is expressed in terms of them. More
precisely we have

Theorem 5 ([12]).

(8.13) S(k,y; g) = (−1)n

(

∏

α∈∆+

(2π
√
−1)kα

kα!

)

P (k,y; g).

That is, the value at s = k of the Weyl group symmetric linear com-
bination of ζr(s,y; g) can be expressed in terms of generalized periodic
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Bernoulli functions P (s,y; g). Since P (s,y; g) can be explicitly calcu-
lated (see the next section), Theorem 5 gives relations among special
values of ζr(s,y; g).

We omit the proof of Theorem 5 and admit this statement because
it is quite lengthy. For the details, see [12].

It should be noted that in [22, 23], Szenes studied generalizations of
Bernoulli polynomials from the viewpoint of the theory of arrangement
of hyperplanes which include P (k,y; g) appearing above, and that he
also gave an algorithm for calculating them by use of iterated residues
of meromorphic functions at the points of indeterminacy.

Corollary 1. Assume that k = (kα)α∈∆+
∈ 2Nn satisfies k = wk for

all w ∈ W . Then

(8.14) ζr(k, 0; g) =
1

|W |(−1)n

(

∏

α∈∆+

(2π
√
−1)kα

kα!

)

P (k, 0; g).

If all kα = k, then k = wk for all w ∈ W and hence Corollary 1 im-
plies ζr((k, k, ..., k), 0; g) ∈ Qπ|k|, where |k| = ∑

α∈∆+
kα. This is called

Witten’s volume formula [32, 33]. Our (8.14) gives the explicit value
of the rational coefficient, which was not determined in the original
formula of Witten.

Example 3. We have

(8.15) ζ2((2, 2, 2), 0; A2) =
1

6
(−1)3 (2π

√
−1)6

(2!)3

1

3780
=

π6

2835
,

where the rational number 1/3780 is P ((2, 2, 2), 0; A2) and calculated
by using the explicit form of the generating function given in Example
8 in the next section. This recovers Mordell’s result (5.5).

In an irreducible root system, k = wk for all w ∈ W is equivalent to
kα = kβ if 〈α, α〉 = 〈β, β〉. Hence if the root system is non-simply laced,
that is, in the cases of Br, Cr, F4, G2, then by Corollary 1, we can also
obtain generalizations of Witten’s volume formula. The following is a
typical example.

Example 4. In the root system of type B2, we have ∆+ = {α1, α2, α1 +
α2, α1 +2α2} and (α1 +α2)

∨ = 2α∨
1 +α∨

2 , (α1 +2α2)
∨ = α∨

1 +α∨
2 . Hence
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by setting kα1
= kα1+2α2

= 4, kα2
= kα1+α2

= 2, we obtain

ζ2(k, 0; B2)

=

∞
∑

m1,m2=1

1

m4
1m

2
2(m1 + m2)4(2m1 + m2)2

=
(−1)4

222!

(

(2π
√
−1)2

2!

)2(
(2π

√
−1)4

4!

)2
53

1513512000

=
53π12

6810804000
.

(8.16)

Before proceeding to the construction of generating functions of gen-
eralized periodic Bernoulli functions, we discuss the Weyl symmetry of
the function S(k,y; g) and its consequence. Denote by Z≥2 the set of
integers ≥ 2.

Theorem 6 ([12]). For k ∈ Zn
≥2 and y ∈ h0, and for w ∈ W , we have

(8.17) (wS)(k,y; g) =
(

∏

α∈∆+∩w∆−

(−1)−kα

)

S(k,y; g).

This theorem can be easily derived from definition (8.8). Further-
more direct calculations yield the following corollary.

Corollary 2. For k ∈ Zn
≥2 and y ∈ h0, we have S(k,y; g) = 0 if there

exists an element w ∈ Wk ∩Wy such that

(8.18)
∑

α∈∆+∩w∆−

kα 6∈ 2Z,

where Wk and Wy are the stabilizers of k and y respectively by regarding
y ∈ h0 (mod

⊕r
j=1 Zα∨

j ).

Example 5. In the A1 case, choosing an odd k(> 1) and w = σα in
Example 1, we see that

(8.19) (wS)(k,y; A1) = −S(k,y; A1),

by Theorem 6. Let y = jα∨/2 ∈ (α∨/2)Z. Then wy = −y =
−jα∨/2 = jα∨/2 (mod Q∨), and so

(wS)(k,y; A1) = S(k,−jα∨/2; A1) = S(k, jα∨/2; A1).

This and (8.19) imply S(k,y; A1) = 0. This is the simplest case of
Corollary 2, and is nothing but the classical result Bk(0) = Bk(1/2) = 0
when k(> 1) is odd.
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Example 6. In the root system of type A2, we set y = y1α
∨
1 + y2α

∨
2

and consider S((3, 2, 2), (y1, y2); A2). We see that ∆+ ∩ σ1∆− = {α1},
σ1(s1, s2, s3) = (s1, s3, s2) and σ1y = y − 〈y, α1〉α∨

1 . Hence if 〈y, α1〉 ∈
Z, then σ1y ≡ y (mod Q∨), which is equivalent to

(8.20) y1 =
2n + y

3
, y2 =

n + 2y

3
,

where n ∈ Z and y ∈ R. Therefore we see that

(8.21) S
(

(3, 2, 2),
(2n + y

3
,
n + 2y

3

)

; A2

)

= 0

for all n ∈ Z and y ∈ R by Corollary 2.
In fact, (8.21) is directly checked by use of the explicit form of

S((3, 2, 2), (y1, y2); A2). We have

(8.22) S((3, 2, 2), (y1, y2); A2) = −128
√
−1π7×

( 1

840
{y1}7 +

1

240
{y2 − y1}{y1}6 − 1

160
{y1}6 +

1

240
{y2 − y1}2{y1}5

− 1

60
{y2 − y1}{y1}5 +

1

90
{y1}5 − 1

96
{y2 − y1}2{y1}4 +

1

48
{y2 − y1}{y1}4

− 1

144
{y1}4 +

1

144
{y2 − y1}2{y1}3 − 1

144
{y2 − y1}{y1}3 − {y1}3

4320

− 1

480
{y2 − y1}{y1}2 +

1

960
{y1}2 − {y2 − y1}2{y1}

1440
+
{y2 − y1}{y1}

1440

+
{y1}
12096

+
{y2}7

1260
+

1

240
{y1 − y2}{y2}6 − 7{y2}6

1440

+
1

120
{y1 − y2}2{y2}5 − 1

48
{y1 − y2}{y2}5 +

1

96
{y2}5 +

1

144
{y1 − y2}3{y2}4

− 1

32
{y1 − y2}2{y2}4 +

5

144
{y1 − y2}{y2}4 − 5

576
{y2}4 − {y1 − y2}3

4320

− 1

72
{y1 − y2}3{y2}3 +

5

144
{y1 − y2}2{y2}3 − 1

48
{y1 − y2}{y2}3 +

1

720
{y2}3

+
{y1 − y2}2

2880
+

1

144
{y1 − y2}3{y2}2 − 1

96
{y1 − y2}2{y2}2 +

1

720
{y1 − y2}{y2}2

+
1

960
{y2}2 − {y1 − y2}

60480
− 1

720
{y1 − y2}2{y2}+

1

720
{y1 − y2}{y2}

− {y2}
10080

+
{y2 − y1}

10080
− 1

10080

)

,

which can be calculated by use of the generating function. (See the
next section.)
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9. Generating functions and Bernoulli polynomials of

root systems

As mentioned in the previous section, we construct the generating
functions of multiple periodic Bernoulli functions. To this end, we
prepare some definitions.

Let V be the set of all bases V ⊂ ∆+. For V ∈ V , let V∨ = {β∨}β∈V

and V∗ = {µV
β }β∈V, the dual basis of V∨, that is, 〈α∨, µV

β 〉 = δαβ for
α, β ∈ V. Let Q∨ =

⊕r
i=1 Zα∨

i be the coroot lattice and L(V∨) =
⊕

β∈V Zβ∨. Then we see that L(V∨) is a sublattice of Q∨ with finite
index.

Besides these definitions, we need to define a fractional part of y ∈
h0. There are two possibilities of the “fractional part” even in the
one-dimensional case, namely, for y ∈ R,

{y}r = y − byc,
{y}l = 1 + y − dye = 1− (−y) + b−yc = 1− {−y}r,

(9.1)

where

byc = max{m ∈ Z | m ≤ y},
dye = min{m ∈ Z | m ≥ y}.(9.2)

Note that {y}r is right-continuous while {y}l is left-continuous and
that {y}r = {y}l for y ∈ R \ Z. Although {y}r is usually called the
fractional part {y} of y and used extensively, we may work with {y}l

instead. In multiple cases, there are more possibilities and no standard
choice. Hence we need to fix a direction from which the “fractional
part” is continuous. To do so, we fix φ ∈ h0 such that 〈φ, µV

β 〉 6= 0 for
all V ∈ V and all β ∈ V, and we define

(9.3) {y}V,β =

{

{〈y, µV
β 〉} (〈φ, µV

β 〉 > 0),

1− {−〈y, µV
β 〉} (〈φ, µV

β 〉 < 0)

for y ∈ h0, where {y} = {y}r denotes the fractional part of y in the
usual sense. It is clear that {y}V,β depends on a specific choice of
φ. However it can be shown that the generating functions F (t,y; g)
defined just below with this symbol, are independent of φ if the root
system is not of type A1.

Now we are in position to define the generating functions of multiple
analogues of periodic Bernoulli functions. By introducing new variables
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t = (tα)α∈∆+
and using the definitions above, we define

F (t,y; g)

=
∑

V∈V

(

∏

γ∈∆+\V

tγ
tγ −

∑

β∈V tβ〈γ∨, µV
β 〉

)

× 1

|Q∨/L(V∨)|
∑

q∈Q∨/L(V∨)

(

∏

β∈V

tβ exp(tβ{y + q}V,β)

etβ − 1

)

.

(9.4)

It seems that F (t,y; g) has a singularity at the origin with respect to
t. However, F (t,y; g) is indeed holomorphic in the neighborhood of
the origin. (In fact, this statement follows from its construction. See
[14].) Hence this function is expanded as

(9.5) F (t,y; g) =
∑

k∈Nn
0

P (k,y; g)
∏

α∈∆+

tkα
α

kα!
,

by which we define the periodic Bernoulli function P (k,y; g) of type g.

Example 7. With the same notation as in Example 1, we put t = (t).
Then we have V = {V} with

(9.6) V∨ = {α∨}, V∗ = {λ}.
We choose φ = α∨, so that 〈φ, λ〉 = 1 > 0 and

(9.7) {y}V,α = {〈y, λ〉} = {y}.
Therefore we obtain

(9.8) F (t,y; A1) =
tet{y}

et − 1
=

∞
∑

k=0

P (k, y; A1)
tk

k!
,

where P (k, y; A1) = Bk({y}).
Here we observe what will happen if we choose φ = −α∨. Then (9.7)

is replaced by

(9.9) {y}V,α = 1− {−〈y, λ〉} = 1− {−y}
and the resulting periodic Bernoulli functions are

(9.10) P (k, y; A1) = Bk(1− {−y}) = Bk({y}),
due to the property Bk(0) = Bk(1) if k 6= 1, which coincide with
those of (9.8) if k 6= 1. Hence the replacement (9.9) only affects the
definition of P (1, y; A1). In the case of the root systems other than
A1, this phenomenon does not happen. Namely, P (k,y; Xr) does not
depend on φ if Xr 6= A1.
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Example 8. We treat the A2 case. As in Example 2, we put t =
(tα1

, tα2
, tα1+α2

) = (t1, t2, t3) and set y = y1α
∨
1 +y2α

∨
2 . Fix φ = α∨

1 +εα∨
2

with a sufficiently small ε > 0. Since ∆∨
+ = {α∨

1 , α∨
2 , α∨

1 +α∨
2 }, we have

V = {V1,V2,V3}, where

V∨
1 = {α∨

1 , α∨
2 }, V∗

1 = {λ1, λ2},(9.11a)

V∨
2 = {α∨

1 , α∨
1 + α∨

2 }, V∗
2 = {λ1 − λ2, λ2},(9.11b)

V∨
3 = {α∨

2 , α∨
1 + α∨

2 }, V∗
3 = {λ2 − λ1, λ1}.(9.11c)

Correspondingly we obtain

F (t,y; A2) =
t3

t3 − t1 − t2

t1e
t1{y1}

et1 − 1

t2e
t2{y2}

et2 − 1
(9.12a)

+
t2

t2 + t1 − t3

t1e
t1{y1−y2}

et1 − 1

t3e
t3{y2}

et3 − 1
(9.12b)

+
t1

t1 + t2 − t3

t2e
t2(1−{y1−y2})

et2 − 1

t3e
t3{y1}

et3 − 1
.(9.12c)

For example, we have

(9.13) P ((2, 2, 2), (y1, y2); A2) =
1

3780
+

1

90
({y1} − {y1 − y2} − {y2})

+
1

90
(−{y1}2 − 2{y1 − y2}{y1}+ {y1 − y2}2 − {y2}2 + 2{y1 − y2}{y2})

+
1

18
(−{y1}3 + 3{y1 − y2}{y1}2 + 3{y2}3 + 3{y1 − y2}{y2}2)

+
1

18
({y1}4 − 2{y1 − y2}{y1}3 − 3{y1 − y2}2{y1}2

− 5{y2}4 − 10{y1 − y2}{y2}3 − 3{y1 − y2}2{y2}2)

+
1

30
({y1}5 − 5{y1 − y2}{y1}4 + 10{y1 − y2}2{y1}3

+ 5{y2}5 + 15{y1 − y2}{y2}4 + 10{y1 − y2}2{y2}3)

+
1

30
(−{y1}6 + 4{y1 − y2}{y1}5 − 5{y1 − y2}2{y1}4

− {y2}6 − 4{y1 − y2}{y2}5 − 5{y1 − y2}2{y2}4).

In particular, by putting y1 = y2 = 0, we obtain

(9.14) P ((2, 2, 2), 0; A2) =
1

3780
,

which implies (8.15).

From this example, we see that if we can remove the fractional parts
symbolically in P ((2, 2, 2), (y1, y2); A2), then it is indeed a polynomial
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in y1 and y2 and is of total degree 6. This fact holds in the case of any
root system and is formulated as follows.

Theorem 7 ([12, 14]). The function P (k,y; g) is analytically continued
to a polynomial function on the whole space C ⊗ h0 ' h with its total
degree at most |k|.

We call the polynomials obtained in Theorem 7 Bernoulli polynomi-
als of type g, which are multiple generalizations of classical Bernoulli
polynomials.

10. L-functions of root systems

In the previous section, we obtained the explicit form of generating
functions of multiple periodic Bernoulli functions of root systems. Here
we apply them to the calculation of special values of L-functions of root
systems.

For comparison, first we review some results about classical L-functions.
For a primitive Dirichlet character χ of conductor f , g(χ) denotes the
Gauss sum defined by

(10.1) g(χ) =

f−1
∑

m=0

χ(m)e2π
√
−1m/f .

The Dirichlet L-function associated with χ is defined by

(10.2) L(s, χ) =

∞
∑

n=1

χ(n)

ns
.

Then it is known that special values of the L-function are given in terms
of Bernoulli polynomials by the following formula: For k satisfying
(−1)−kχ(−1) = 1,

(10.3) L(k, χ)g(χ) =
−1

2

(2π
√
−1)k

k!

f
∑

a=1

χ(a)Bk(a/f).

This formula can be rewritten in terms of the classical generalized
Bernoulli numbers. Let Bk,χ be the k-th classical generalized Bernoulli
number given by

(10.4) Bk,χ = f k−1

f
∑

a=1

χ(a)Bk(a/f)
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(see [31, Proposition 4.1], [8, p.10]), which is also given in terms of the
generating function as

(10.5)

f
∑

a=1

χ(a)teta

eft − 1
=

∞
∑

k=0

Bk,χ
tk

k!
.

Then we have the formula

(10.6) L(k, χ) =
(−1)k+1

2

(2π
√
−1)k

k!f k
g(χ)Bk,χ

(see [8, p.12]). It is also known that the following parity result holds
for generalized Bernoulli numbers:

(10.7) Bk,χ = 0

if (−1)−kχ(−1) 6= 1 and χ is non-trivial.
In the following, we will observe how these classical results are gen-

eralized to the case of L-functions of root systems.
Let χα be a Dirichlet character modulo fα ∈ N for α ∈ ∆ with

χα = χ−α. Set χ = (χα)α∈∆. We define an action of W on characters
by

(10.8) (wχ)α = χw−1α

and define the multiple L-function by

(10.9) Lr(s, χ; g) =

∞
∑

m1=1

· · ·
∞

∑

mr=1

∏

α∈∆+

χα(〈α∨, m1λ + · · ·+ mrλr〉)
〈α∨, m1λ1 + · · ·+ mrλr〉sα

.

It is possible to show that Lr(s, χ; g) can be continued meromorphi-
cally to the whole space ([14]). In the case of multiple L-functions of
Euler-Zagier type (that is, series of type (1.1) with Dirichlet charac-
ters), the meromorphic continuation and the location of possible sin-
gularities were already studied by Akiyama and Ishikawa [1].

Now we state a formula for the special value Lr(k, χ; g) in terms of
multiple periodic Bernoulli functions P (k,y; g). Set

(10.10) cα(m) =
1

fα

fα
∑

aα=1

χα(aα)e−2π
√
−1aαm/fα .

Then we have

(10.11) χα(m) =

fα
∑

aα=1

cα(aα)e2π
√
−1aαm/fα .
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Note that if χα is a primitive character of conductor fα, we have

(10.12) cα(m) =
χα(m)

g(χα)
,

so that

(10.13) χα(m)g(χα) =

fα
∑

aα=1

χα(aα)e2π
√
−1aαm/fα .

For a = (aα)α∈∆+
∈ Zn and f = (fα)α∈∆+

∈ Nn, let

(10.14) y(a; f) =
∑

α∈∆+

aαα∨/fα.

Then we have the following result, which is regarded as a generalization
of (10.3).
Theorem 8 ([14]). Let kα ∈ Z≥2 for α ∈ ∆+, and assume

(10.15)
kα = kβ, χα = χβ if 〈α, α〉 = 〈β, β〉,

(−1)−kαχα(−1) = 1.

Then we have

(10.16) Lr(k, χ; g)

=
(−1)n

|W |

(

∏

α∈∆+

(2π
√
−1)kα

kα!

) fα
∑

aα=1
α∈∆+

(

∏

α∈∆+

cα(aα)
)

P (k,y(a; f); g),

and in particular, if all χα’s are primitive,

(10.17) Lr(k, χ; g)
∏

α∈∆+

g(χα)

=
(−1)n

|W |

(

∏

α∈∆+

(2π
√
−1)kα

kα!

) fα
∑

aα=1
α∈∆+

(

∏

α∈∆+

χα(aα)
)

P (k,y(a; f); g).

We define the generalized Bernoulli numbers Bk,χ(g) of type g, by
its generating function G(t, χ; g) as

G(t, χ; g) =

fα
∑

aα=1
α∈∆+

(

∏

α∈∆+

χα(aα)/fα

)

F (f t,y(a; f); g)

=
∑

k∈Nn
0

Bk,χ(g)
∏

α∈∆+

tkα
α

kα!
,

(10.18)



30 YASUSHI KOMORI, KOHJI MATSUMOTO AND HIROFUMI TSUMURA

where f t = (fαtα)α∈∆+
. Then we have a multiple generalization of

(10.4).

Theorem 9 ([14]). We have

(10.19) Bk,χ(g) =
(

∏

α∈∆+

fkα−1
α

)

fα
∑

aα=1
α∈∆+

(

∏

α∈∆+

χα(aα)
)

P (k,y(a; f); g).

By combining Theorems 8, 9 and the formula

(10.20) χ(−1)g(χ)g(χ) = f

for a primitive character χ of conductor f , we immediately obtain the
following theorem corresponding to (10.6).

Theorem 10 ([14]). Assume (10.15) and that all χα’s are primitive.
Then

(10.21) Lr(k, χ; g) =
(−1)|k|+n

|W |

(

∏

α∈∆+

(2π
√
−1)kα

kα!fkα
α

g(χα)

)

Bk,χ(g).

We give a sufficient condition for Bk,χ(g) = 0 by use of the action of
the Weyl group. For w ∈ W , we define

(10.22) (wG)(t, χ; g) = G(w−1t, w−1
χ; g).

Theorem 11 ([14]). Assume that g is simple. Moreover assume that
fα > 1 if g is of type A1. Then for w ∈ W ,

(wG)(t, χ; g) =
(

∏

α∈∆+∩w∆−

χα(−1)
)

G(t, χ; g),(10.23)

Bw−1k,w−1χ(g) =
(

∏

α∈∆+∩w∆−

(−1)−kαχα(−1)
)

Bk,χ(g).(10.24)

As a direct consequence of this theorem, we obtain a multiple ana-
logue of the parity result (10.7).

Theorem 12 ([14]). Under the same assumptions as in Theorem 11,
we have Bk,χ(g) = 0 if there exists an element w ∈ Wk ∩Wχ such that

(10.25)
∏

α∈∆+∩w∆−

(−1)−kαχα(−1) 6= 1,

where Wk and Wχ are the stabilizers of k and χ respectively.

The above theorems show that basic properties of classical L-functions
and Bernoulli numbers (polynomials) can be successfully generalized in
our framework.
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Example 9. For the quadratic character ρ5 of conductor 5, namely
ρ5(1) = ρ5(4) = 1, ρ5(2) = ρ5(3) = −1, we have

L2((2, 2, 2), (ρ5, ρ5, ρ5); A2) =
(−1)6+3

6

(

(2πi)2

2!52

√
5

)3(

− 28

125

)

= − 112
√

5

1171875
π6,

(10.26)

by Theorem 10. As seen in Example 6, we have ∆+ ∩ σ1∆− = {α1}.
Furthermore, ρ5(−1) = 1 and (−1)kα1 = −1. Hence by Theorem 12,
we have

(10.27) B(3,2,2),(ρ5 ,ρ5,ρ5)(A2) = 0.

This can be directly checked by (8.22), Theorems 5 and 9.

As Corollary 1 follows from Theorem 5, we obtain Theorem 8 from
an L-analogue of Theorem 5, which we omitted in this article. As
generalizations of Theorem 5 and its L-analogue, we can show certain
functional relations which include those theorems as special cases. This
is another important topic in our theory, but here we have no room for
discussing this direction. For the details, see [12, 14, 15].
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