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Abstract. In the former part of this paper, we give functional equations
for Barnes multiple zeta-functions and consider some relevant results. In
particular, we show that Ramanujan’s classical formula for the Riemann
zeta values can be derived from functional equations for Barnes zeta-
functions. In the latter half part, we generalize some evaluation formulas
for certain series involving hyperbolic functions in terms of Bernoulli
polynomials. The original formulas were classically given by Cauchy,
Mellin, Ramanujan, and later recovered and reformulated by Berndt. From
our consideration, we give multiple versions of these known formulas.

2000 Mathematics Subject Classification. 11M41, 11B68.

1. Introduction

Let N be the set of natural numbers, Z the ring of rational integers, Q the
field of rational numbers, R the field of real numbers, C the field of complex
numbers, and N0 := N ∪ {0}.
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We begin with the classical work of Cauchy [10] who studied the series
defined by

∑

m∈Z\{0}

(−1)m

sinh(mπ)ms
(s ∈ Z), (1.1)

where sinh x = (ex − e−x)/2. He showed that several values at s = 4k + 3
(k ∈ N0) can be written in terms of π . After his work, this series was consi-
dered by Mellin, Ramanujan, and several other authors (see [8,9,15,16]), and
the following fascinating formula was proved:

∑

m∈Z\{0}

(−1)m

sinh(mπ)m4k+3
= (2π)4k+3

×
2k+2∑

j=0

(−1) j+1 B2 j(1/2)

(2 j)!

B4k+4−2 j (1/2)

(4k + 4 − 2 j)!
(1.2)

for k ∈ N0, where B j(y) is the j th Bernoulli polynomial defined by

F(t, y) = tety

et − 1
=

∞∑

j=0

B j (y)
t j

j !
(1.3)

(see [11]). As a result related to (1.2), it is also known that

∑

m∈Z\{0}

coth(mπ)

m4k+3
= (2π)4k+3

2k+2∑

j=0

(−1) j+1 B2 j (0)

(2 j)!

B4k+4−2 j (0)

(4k + 4 − 2 j)!
(1.4)

for k ∈ N0, which is written in Ramanujan’s notebooks (see Berndt [8, (25.3)
p. 293]), where coth x = (ex + e−x)/(ex − e−x). In fact, (1.4) can be easily
derived from Ramanujan’s famous formula (see Berndt [8, p. 275]):

α−N

{
1

2
ζ(2N + 1) +

∞∑

k=1

1(
e2kα − 1

)
k2N+1

}

= (−β)−N

{
1

2
ζ(2N + 1) +

∞∑

k=1

1(
e2kβ − 1

)
k2N+1

}

− 22N
N+1∑

k=0

(−1)k B2k(0)

(2k)!

B2N+2−2k(0)

(2N + 2 − 2k)!
αN+1−kβk, (1.5)

where N is any non-zero integer, α and β are positive numbers such that
αβ = π2 and ζ(s) is the Riemann zeta-function.
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In the 1970’s, Berndt [4,5] studied generalized Eisenstein series and proved
transformation formulas for them. Using those results, he gave a family of
evaluation formulas for certain Dirichlet series in [6,7], including (1.2), (1.4)
and (1.5) (see also Remark 6.6).

What is the meaning of the above infinite series involving hyperbolic
functions? We can find that they are connected with Barnes multiple zeta-
functions. In fact, in the former half part of this paper, we first show functional
equations for Barnes zeta-functions. Those functional equations imply that
some infinite series involving hyperbolic functions are the “dual” of Barnes
zeta-functions, in the sense that they appear on the right-hand side of func-
tional equations for Barnes zeta-functions (see (2.7)).

Then we show two expressions of the Barnes zeta-functions or their
residues at integers. We observe that Ramanujan’s formula (1.5) (and hence
(1.4)) can be deduced by combining these two expressions in the double case.
Hence in the multiple cases, the combination of these expressions may be
regarded as generalizations of Ramanujan’s formula (see Corollary 2.4).

Motivated by this observation, in the latter half part, we first give a very
general form of evaluation formulas (see Theorem 5.1), which is out of the
frame of Barnes zeta-functions. From this form, we deduce a certain explicit
evaluation formula with a parameter y ∈ [0, 1] (see Theorem 6.1) which
may be regarded as a relation of several Barnes zeta-functions at non-positive
integers. This formula especially implies (1.2) and (1.4) (see Corollaries 6.2
and 6.3) and also implies a lot of presumably new formulas, for example,

∑

m∈Z\{0}

1

sinh(mπ i/ρ)2m4 = − 1

2835
π4, (1.6)

∑

m∈Z\{0}

coth(mπ i/ρ)2

m4
= 62

2835
π4, (1.7)

where i = √−1 and ρ = (−1+√−3)/2, the cube root of unity, and the same
type of formulas including higher power roots of unity (see Corollary 6.4,
Example 6.5).

2. Functional equations for Barnes zeta-functions

For θ ∈ R let H(θ) = {z = rei(θ+φ) ∈ C | r > 0, −π/2 < φ < π/2} be the
open half plane whose normal vector is eiθ . We recall the Barnes zeta-function
defined by the following multiple Dirichlet series:

ζn(s, a;ω1, . . . , ωn) =
∞∑

m1=0

· · ·
∞∑

mn=0

1

(a + ω1m1 + · · · + ωnmn)s
, (2.1)
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where all a, ω1, . . . , ωn ∈ H(θ) for some θ . Then it is known that this
Dirichlet series converges absolutely uniformly on any compact subset in
�s > n.

Assume at first that �s > n. For x ∈ H(θ), we have the formula for the
gamma function

x−s = 1


(s)

∫ e−iθ ∞

0
e−xt ts−1dt. (2.2)

Since
a + ω1m1 + · · · + ωnmn ∈ H(θ) (2.3)

for m1, . . . , mn ∈ N0, we can apply (2.2) to each term in (2.1) to get

ζn(s, a;ω1, . . . , ωn)

=
∞∑

m1=0

· · ·
∞∑

mn=0

1


(s)

∫ e−iθ ∞

0
e−(a+ω1m1+···+ωnmn)t t s−1dt

= 1


(s)

∫ e−iθ ∞

0

e(ω1+···+ωn−a)t

(eω1t − 1) · · · (eωnt − 1)
ts−1dt

= 1


(s)(e2π is − 1)

∫

C(θ)

e(ω1+···+ωn−a)t

(eω1t − 1) · · · (eωnt − 1)
ts−1dt, (2.4)

where the argument of t is taken in −θ ≤ arg t ≤ −θ + 2π and C(θ) is
a contour which starts at e−iθ∞, goes counterclockwise around the origin
with sufficiently small radius, and ends at e−iθ∞. Let 0 ≤ y1, . . . , yn < 1
and put

a = a(y1, . . . , yn) = ω1(1 − y1) + · · · + ωn(1 − yn) ∈ H(θ).

Then

ζn(s, a(y1, . . . , yn);ω1, . . . , ωn)

= 1


(s)(e2π is − 1)

∫

C(θ)

e(ω1 y1+···+ωn yn)t

(eω1t − 1) · · · (eωnt − 1)
ts−1dt

=
∏n

j=1 ω−1
j


(s)(e2π is − 1)

∫

C(θ)

⎛

⎝
n∏

j=1

F(ω j t, y j )

⎞

⎠ ts−n−1dt. (2.5)

If t ∈ C(θ) is sufficiently far from the origin, then �(ω j t) > 0 (1 ≤
j ≤ n). Therefore the integral on the rightmost side converges absolutely uni-
formly on the whole space C, so (2.5) gives the meromorphic continuation of
ζn(s, a(y1, . . . , yn);ω1, . . . , ωn) to the whole space C.
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In the following, we assume that n ≥ 2 and 	(ω j/ωk) 
= 0 for any pair
( j, k) with j 
= k. From the above integral expression we obtain the following
functional equations for Barnes zeta-functions. When y1 = · · · = yn = y,
we write a(y, . . . , y) = a(y) for brevity.

Theorem 2.1 (functional equations). We have

ζn(s, a(y);ω1, . . . , ωn)

= − 2π i


(s)(e2π is − 1)

×
n∑

k=1

∑

m∈Z\{0}
ω−1

k

(( n∏

j=1
j 
=k

e(2mπ iω j/ωk )y

e2mπ iω j/ωk − 1

))
(2mπ iω−1

k )s−1e2mπ iy,

(2.6)

where −θ < arg(2mπ iω−1
k ) < −θ + π and the right-hand side converges

absolutely uniformly on the whole space C if 0 < y < 1, and on the region
�s < 0 if y = 0.

In particular, if y = 1/2, we have

ζn(s, (ω1 + · · · + ωn)/2;ω1, . . . , ωn)

= − 1

2n−1

2π i


(s)(e2π is − 1)

×
n∑

k=1

∑

m∈Z\{0}
ω−1

k (−1)m
( n∏

j=1
j 
=k

1

sinh(mπ iω j/ωk)

)
(2mπ iω−1

k )s−1.

(2.7)

In the case y = 0 of Theorem 2.1, the series expression (2.6) is valid only
for �s < 0. In order to remove this restriction, we decompose the series into
the terms involving the Riemann zeta-function and the remaining parts. For
k ∈ {1, . . . , n}, let I +

k = { j ∈ {1, . . . , n}\{k}|	(ω j/ωk) > 0} and I −
k = { j ∈

{1, . . . , n}\{k}|	(ω j/ωk) < 0}. Let

δ(J ) =
⎧
⎨

⎩
0 (J 
= ∅)

(−1)n+1 (J = ∅)
(2.8)

for J ⊂ {1, . . . , n}.



54 Yasushi Komori, et al.

Corollary 2.2. We have

ζn(s, a(0);ω1, . . . , ωn)

= − 2π i


(s)(e2π is − 1)

×
n∑

k=1

ω−1
k

{∑

m>0

(2mπ iω−1
k )s−1

(( n∏

j=1
j 
=k

1

e2mπ iω j /ωk − 1

)
− δ(I −

k )
)

+
∑

m>0

(−2mπ iω−1
k )s−1

(( n∏

j=1
j 
=k

1

e−2mπ iω j /ωk − 1

)
− δ(I +

k )
)

+ δ(I −
k )(2π iω−1

k )s−1ζ(1 − s) + δ(I +
k )(−2π iω−1

k )s−1ζ(1 − s)

}
,

(2.9)

where the series on the right-hand side converge absolutely uniformly on the
whole space C.

Proofs of Theorem 2.1 and Corollary 2.2 will be given in Section 4.
In the following, the empty sum should be understood as 0.

Corollary 2.3. For l ∈ Z (or l > n if y = 0), we have

n∑

k=1

∑

m∈Z\{0}
ω−1

k

( n∏

j=1
j 
=k

e(2mπ iω j /ωk )y

e2mπ iω j /ωk − 1

)
(2mπ iω−1

k )n−l−1e2mπ iy

=
⎧
⎨

⎩

(−1)l−n+1

(l−n)! ζn(n − l, a(y);ω1, . . . , ωn) (l ≥ n)

−(n − l − 1)! Ress=n−l ζn(s, a(y);ω1, . . . , ωn) (l < n).
(2.10)

On the other hand, this is equal to

−
∑

m1,...,mn≥0
m1+···+mn=l

n∏

j=1

Bm j (y)

m j !
ω

m j −1
j . (2.11)

Proof. For k ∈ Z, the expansion


(s)(e2π is − 1)

2π i
=

⎧
⎨

⎩

(−1)k

(−k)! + O(|s − k|) (k ≤ 0)

(k − 1)!(s − k) + O((|s − k|2)) (k > 0)
(2.12)
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holds when s is near to k. Using this and Theorem 2.1, we obtain (2.10).
On the other hand, by use of the integral representation (2.5), we see that the
left-hand side of (2.10) is equal to

−
⎛

⎝
n∏

j=1

ω−1
j

⎞

⎠ Res
t=0

⎧
⎨

⎩

⎛

⎝
n∏

j=1

F(ω j t, y)

⎞

⎠ t−l−1

⎫
⎬

⎭ , (2.13)

which yields (2.11). �

Similarly we have the following.

Corollary 2.4. For l ∈ Z\{n}, we have

n∑

k=1

ω−1
k

(∑

m>0

(2mπ iω−1
k )n−l−1

(( n∏

j=1
j 
=k

1

e2mπ iω j/ωk − 1

)
− δ(I −

k )

)

+
∑

m>0

(−2mπ iω−1
k )n−l−1

(( n∏

j=1
j 
=k

1

e−2mπ iω j/ωk − 1

)
− δ(I +

k )

)

+ δ(I −
k )(2π iω−1

k )n−l−1ζ(1 − n + l)

+ δ(I +
k )(−2π iω−1

k )n−l−1ζ(1 − n + l)

)

=
⎧
⎨

⎩

(−1)l−n+1

(l−n)! ζn(n − l, a(0);ω1, . . . , ωn) (l > n)

−(n − l − 1)! Ress=n−l ζn(s, a(0);ω1, . . . , ωn) (l < n)

= −
∑

m1,...,mn≥0

m1+···+mn=l

n∏

j=1

Bm j (0)

m j !
ω

m j−1
j . (2.14)

In the next section we will show that Ramanujan’s formula (1.5) is a con-
sequence of the case n = 2 of (2.14). Therefore Corollary 2.4 can be regarded
as generalizations of Ramanujan’s formula.

Here we give historical remarks. A kind of functional equations for the
Barnes zeta-functions was first proved by Hardy and Littlewood [13] in the
case n = 2, and a generalization to the case of general n was discussed in
Egami’s lecture note [12]. Our proof of Theorem 2.1 is essentially the same as
those of them. On the other hand, by calculating explicitly the residue (2.13),
we showed an expression of ζn(n − l, a(y);ω1, . . . , ωn) or its residues in
terms of Bernoulli polynomials. This type of results is also classical, already



56 Yasushi Komori, et al.

studied by Barnes himself [2], [3] (see also [1], [14]). In this sense, both of
the two equalities in (2.10) and (2.11) are classical. The novel point in the
present paper is to combine these two equalities. A consequence of such a
combination is the observation concerning Ramanujan’s formula in the next
section.

3. Ramanujan’s formula

In this section, we show that Ramanujan’s formula (1.5) can be obtained by
combining two equalities given in Corollary 2.4. In Corollary 2.4, consider
the case n = 2, ω1 = α1/2, ω2 = iβ1/2 with α, β ∈ R. Let N ∈ Z\{0}.

The last member of (2.14) is

Cl = −(iα1/2β1/2)−1
l∑

k=0

i k Bl−k(0)

(l − k)!

Bk(0)

k!
α(l−k)/2βk/2. (3.1)

In particular, for l = 2N + 2, we have

C2N+2 = −(iα1/2β1/2)−1
2N+2∑

j=0

i j B2N+2− j (0)

(2N + 2 − j)!

B j(0)

j !
α(2N+2− j)/2β j/2

= −(iα1/2β1/2)−1
N+1∑

k=0

(−1)k B2N+2−2k(0)

(2N + 2 − 2k)!

B2k(0)

(2k)!
αN+1−kβk,

(3.2)

where we have used B2 j+1(0) = 0 (for j ≥ 1).
Next we compute the first member of (2.14). Since δ(I +

1 ) = δ(I −
2 ) = 0

and δ(I −
1 ) = δ(I +

2 ) = −1, this is equal to

α−1/2
∑

m>0

(2mπ iα−1/2)1−l
(

1

e−2mπβ1/2α−1/2 − 1
+ 1

)

+ α−1/2
∑

m>0

(−2mπ iα−1/2)1−l 1

e2mπβ1/2α−1/2 − 1

− iβ−1/2
∑

m>0

(2mπβ−1/2)1−l 1

e2mπα1/2β−1/2 − 1

− iβ−1/2
∑

m>0

(−2mπβ−1/2)1−l
(

1

e−2mπα1/2β−1/2 − 1
+ 1

)

− α−1/2(2π iα−1/2)1−lζ(l − 1) + iβ−1/2(−2πβ−1/2)1−lζ(l − 1). (3.3)
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In particular, in the case α1/2β1/2 = π , we see that this is equal to

− α−1/2
∑

m>0

(2mπ iα−1/2)1−l 1

e2mβ − 1

+ α−1/2
∑

m>0

(−2mπ iα−1/2)1−l 1

e2mβ − 1

− iβ−1/2
∑

m>0

(2mπβ−1/2)1−l 1

e2mα − 1

+ iβ−1/2
∑

m>0

(−2mπβ−1/2)1−l 1

e2mα − 1

− α−1/2(2π iα−1/2)1−lζ(l − 1) + iβ−1/2(−2πβ−1/2)1−lζ(l − 1)

= (2π)1−l i1−lα(l−2)/2

×
(

−ζ(l − 1) + ((−1)l−1 − 1)

∞∑

m=1

1

(e2mβ − 1)ml−1

)

− (2π)1−l iβ(l−2)/2

×
(

(−1)lζ(l − 1) + (1 − (−1)l−1)

∞∑

m=1

1

(e2mα − 1)ml−1

)
. (3.4)

Further in the case l = 2N + 2, we see that (3.4) reduces to

(π i)−1(2π)−2N (−α)N

(
−1

2
ζ(2N + 1) −

∞∑

m=1

1

(e2mβ − 1)m2N+1

)

+ (π i)−1(2π)−2NβN

(
1

2
ζ(2N + 1) +

∞∑

m=1

1

(e2mα − 1)m2N+1

)
. (3.5)

By equating (3.2) and (3.5), we finally obtain

− 22N
N+1∑

k=0

(−1)k B2N+2−2k(0)

(2N + 2 − 2k)!

B2k(0)

(2k)!
αN+1−kβk

= (−β)−N

(
−1

2
ζ(2N + 1) −

∞∑

m=1

1

(e2mβ − 1)m2N+1

)

+ α−N

(
1

2
ζ(2N + 1) +

∞∑

m=1

1

(e2mα − 1)m2N+1

)
, (3.6)

which recovers (1.5).
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4. Proofs

Proof of Theorem 2.1. For z ∈ C and ε > 0, let D(z, ε) be the closed disk
whose center is z with radius ε. We use the notation x+ = max{x, 0} for
x ∈ R. We first note that for any ε > 0, there exists M ′ = M ′(ε) > 0 such
that for t ∈ C\ ⋃

m∈Z
D(2mπ i, ε) the inequality

∣∣∣∣
1

et − 1

∣∣∣∣ ≤ M ′e−(�t)+ (4.1)

holds. Hence for t ∈ C\ ⋃n
j=1

⋃
m∈Z

D(2mπ iω−1
j , ε), we have

∣∣∣∣∣∣

n∏

j=1

F(ω j t, y)

∣∣∣∣∣∣
≤ M|t|ne

∑n
j=1(�(ω j t)y−�(ω j t)+) (4.2)

with a certain M = M(ε, ω1, . . . , ωn) > 0. Since

�(ω j t)y − �(ω j t)+ ≤ 0 (4.3)

for 1 ≤ j ≤ n, we see that there exists T = T (ε) ≥ 0 such that for all t ∈ C

with |t| = 1,
n∑

j=1

((�ω j t)y − (�ω j t)+) ≤ −T . (4.4)

Hence we see that for all t ∈ C\ ⋃n
j=1

⋃
m∈Z

D(2mπ iω−1
j , ε),

∣∣∣∣∣∣

n∏

j=1

F(ω j t, y)

∣∣∣∣∣∣
≤ M|t|ne−T |t |. (4.5)

If 0 < y < 1, then we can choose T > 0. In fact, since 	(ω j/ωk) 
= 0
for j 
= k and n ≥ 2, for any t with |t| = 1 we find at least one j for
which �(ω j t) 
= 0 holds. Then, using 0 < y < 1 we see that �(ω j t)y −
�(ω j t)+ < 0, from which T > 0 easily follows.

From (4.5), we see that the integral on the rightmost side of (2.5) converges
to 0 when the radius of the contour goes to infinity if 0 < y < 1 or, y = 0
with �s < 0. Namely, there is a sequence Rl → ∞ such that

lim
l→∞

∫

|t |=Rl

∣∣∣∣∣∣

n∏

j=1

F(ω j t, y)

∣∣∣∣∣∣
|ts−n−1||dt| = 0. (4.6)

Hence we can calculate the integral by counting all the residues on the
whole space. Since by the assumption the poles of the integrand are all simple
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except the origin, we obtain

ζn(s, a(y);ω1, . . . , ωn)

= 1


(s)(e2π is − 1)

∫

C(θ)

e(ω1+···+ωn)yt

(eω1t − 1) · · · (eωnt − 1)
ts−1dt

= − 2π i


(s)(e2π is − 1)

×
n∑

k=1

∑

m∈Z\{0}
ω−1

k

( n∏

j=1
j 
=k

e(2mπ iω j /ωk )y

e2mπ iω j /ωk − 1

)
(2mπ iω−1

k )s−1e2mπ iy, (4.7)

whose absolute and uniform convergence follows from the explicit form of
the series. Therefore we obtain (2.6). �

Proof of Corollary 2.2. We observe that as m → +∞, F(2π imω j/ωk, 0) =
O(m) if j ∈ I +

k while F(2π imω j/ωk, 0) decays exponentially if j ∈ I −
k .

Thus we see that if I −
k 
= ∅, the series

∑

m>0

( n∏

j=1
j 
=k

1

e2mπ iω j/ωk − 1

)
(2mπ iω−1

k )s−1

converges absolutely uniformly for whole s ∈ C.
Next consider the case I −

k = ∅. We have

∑

m>0

( n∏

j=1
j 
=k

1

e2mπ iω j /ωk − 1

)
(2mπ iω−1

k )s−1

=
∑

m>0

(−1)n−1(2mπ iω−1
k )s−1

( n∏

j=1
j 
=k

(
1 + 1

e−2mπ iω j/ωk − 1

))

=
∑

m>0

(−1)n−1(2mπ iω−1
k )s−1

(
1 +

∑

J⊂{1,...,n}\{k}
|J |≥1

(∏

j∈J

1

e−2mπ iω j /ωk − 1

))

= (−1)n−1(2π iω−1
k )s−1ζ(1 − s)

+ (−1)n−1
∑

J⊂{1,...,n}\{k}
|J |≥1

∑

m>0

(2mπ iω−1
k )s−1

(∏

j∈J

1

e−2mπ iω j /ωk − 1

)
.

(4.8)
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Since all j ∈ I +
k , we see that the rightmost side of the above can be contin-

ued to the whole of C, and is equal to

(−1)n−1(2π iω−1
k )s−1ζ(1 − s)

+
∑

m>0

(2mπ iω−1
k )s−1

(( n∏

j=1
j 
=k

1

e2mπ iω j/ωk − 1

)
− (−1)n−1

)
. (4.9)

For the series with m < 0, by exchanging the roles of I +
k and I −

k , we have
the same type of conclusions as follows: If I +

k 
= ∅, the series corresponding
to m < 0 converges absolutely uniformly for whole s ∈ C, and if I +

k = ∅,

∑

m<0

( n∏

j=1
j 
=k

1

e2mπ iω j/ωk − 1

)
(2mπ iω−1

k )s−1

= (−1)n−1(−2π iω−1
k )s−1ζ(1 − s)

+
∑

m>0

(−2mπ iω−1
k )s−1

(( n∏

j=1
j 
=k

1

e−2mπ iω j /ωk − 1

)
− (−1)n−1

)
.

(4.10)

�

5. A general formulation

In the previous sections, we established some relations between Barnes
zeta-functions and certain series involving hyperbolic functions (see (2.7)).
In order to study this relationship further, it is convenient to introduce a
general framework to evaluate more general series.

Let g(t) be a meromorphic function on C which has possible poles only on
2π iZ. For example, we will consider g(t) = (t/2)/ sinh(t/2) (see (6.8)).

Let n ∈ N with n ≥ 2 and η = eπ i/n, that is, the primitive 2n-th root of
unity. Let

G(t) =
n∏

j=1

g(η j t).

We assume that there exist real numbers γ1, γ2 with γ1 > 0 and a small
positive number ε such that

|G(t)| ≤ γ1|t|−γ2

for all t ∈ C\ ⋃n−1
l=0

⋃
m∈Z

D(2mπ iηl, ε). Then we have the following theo-
rem, which is a simple consequence of residue calculus, but is a key result in
the present paper.
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Theorem 5.1. For h ∈ Z with h + γ2 > 1,

∑

m∈Z\{0}
(2mπ i)−h

(n−1∑

l=0

ηl(1−h)
n∏

j=1
j+l 
=n

g(2mπ iη j+l)
)

Res
t=2mπ i

g(−t)

= − Res
t=0

⎧
⎨

⎩t−h
n∏

j=1

g(η j t)

⎫
⎬

⎭ . (5.1)

In particular when g is an even function,

Zh

∑

m∈Z\{0}
(2mπ i)−h

⎛

⎝
n−1∏

j=1

g(2mπ iη j)

⎞

⎠ Res
t=2mπ i

g(t)

= − Res
t=0

⎧
⎨

⎩t−h
n−1∏

j=0

g(η j t)

⎫
⎬

⎭ , (5.2)

where

Zh =
n−1∑

j=0

η j (1−h) =

⎧
⎪⎨

⎪⎩

n if h ≡ 1 (mod 2n),

0 if h 
≡ 1 (mod 2n) and 2 
 | h,
2

1−η1−h if h 
≡ 1 (mod 2n) and 2 | h.

(5.3)

Proof. Let h ∈ Z with h + γ2 > 1. For R ∈ N, we have

Res
t=0

{G(t)t−h} = 1

2π i

∫

|t |=2ε
G(t)t−hdt

= −
n−1∑

l=0

∑

0<|m|≤R

Res
t=2mπ iηl

{G(t)t−h}

+ 1

2π i

∫

|t |=2π R+2ε
G(t)t−hdt

= −
n−1∑

l=0

∑

0<|m|≤R

Res
t=2mπ i

{G(ηlt)(ηl t)−hηl}

+ 1

2π i

∫

|t |=2π R+2ε
G(t)t−hdt. (5.4)
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Since G(t)t−h ≤ γ1|t|−h−γ2 , we have
∣∣∣∣
∫

|t |=2π R+2ε
G(t)t−hdt

∣∣∣∣ ≤
∫

|t |=2π R+2ε
|G(t)t−h ||dt|

≤ γ1

∫

|t |=2π R+2ε
|t|−h−γ2 |dt|

≤ 2πγ1(2π R + 2ε)−h−γ2+1

→ 0 (5.5)

as R → ∞. Hence by letting R → ∞, we obtain

Res
t=0

{G(t)t−h} = −
n−1∑

l=0

ηl(1−h)
∑

m∈Z\{0}
Res

t=2mπ i
{G(ηl t)t−h} (5.6)

because
∣∣∣ Res
t=2mπ i

G(ηl t)t−h
∣∣∣ ≤ 1

2π

∫

|t−2mπ i |=2ε
|G(ηl t)t−h ||dt|

≤ γ1

2π

∫

|t−2mπ i |=2ε
|t|−h−γ2 |dt|

≤ 2εγ1(2π |m| − 2ε)−h−γ2 (5.7)

and hence the convergence is absolute.
Since η is the primitive 2n-th root of unity, we see that for l ∈ Z with

0 ≤ l ≤ n − 1, the residue of

t−h G(ηl t) = t−h
n∏

j=1

g(η j+lt)

at t = 2mπ i is equal to

(2mπ i)−h
n∏

j=1
j+l 
=n

g(2mπ iη j+l) × Res
t=2mπ i

g(−t),

which gives (5.1).
In particular when g is even, we have G(ηl t) = G(t) (0 ≤ l ≤ n − 1),

because g(ηr t) = g(−ηr−nt) = g(ηr−nt) for n + 1 ≤ r < 2n. Therefore

n−1∑

l=0

ηl(1−h)
∑

m∈Z\{0}
Res

t=2mπ i
{t−hG(ηl t)} = Zh

∑

m∈Z\{0}
Res

t=2mπ i
{t−hG(t)}.

This completes the proof. �
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It is to be noted that the original method of Cauchy [10] is essentially
similar.

6. Explicit formulas

We recall the Bernoulli polynomials {B j(y)} defined by (1.3):

F(t, y) = tety

et − 1
=

∞∑

j=0

B j(y)
t j

j !
.

For y ∈ R, let

H(t, y) = F(t, y) + F(−t, y)

2
= t

2

et (y−1/2) + e−t (y−1/2)

et/2 − e−t/2

= t

2

cosh(t(y − 1/2))

sinh(t/2)
. (6.1)

Then we see that

H(t, y) =
∞∑

m=0

B2m(y)
t2m

(2m)!
. (6.2)

It follows from (6.1) that H(t, y) has simple poles at t = 2mπ i (m ∈ Z\{0})
and its residue is

Res
t=2mπ i

H(t, y) = 2mπ i

2

e2mπ i(y−1/2) + e−2mπ i(y−1/2)

(−1)m
= 2mπ i cos(2mπy).

(6.3)
By (5.2), we have the following result which includes the known formu-
las (1.2) and (1.4) given by Cauchy, Mellin, Ramanujan and so on (see
Section 1.).

Theorem 6.1. Assume 0 < y < 1 and p ∈ Z, or y = 0, 1 and p > n/2.
For n ∈ N with n ≥ 2 and η = eπ i/n,

Z2p+1

∑

m∈Z\{0}

cos(2mπy)

m2p+1−n

⎛

⎝
n−1∏

j=1

cosh(2mπ iη j (y − 1/2))

sinh(mπ iη j)

⎞

⎠

= −2n−1(2π i)2p+1−n

ηn(n−1)/2

∑

m1,...,mn≥0

m1+···+mn=p

n∏

ν=1

B2mν (y)

(2mν)!
η2(ν−1)mν , (6.4)
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where Zh is defined by (5.3). Furthermore, assume 0 < y < 1 and p ≥ n/2.
Then the both sides of (6.4) are also equal to

(2π i)2p+1−n(−1)1−n

2(2p − n)!

×
∑

y0∈{y,1−y}
· · ·

∑

yn−1∈{y,1−y}
ζn

⎛

⎝n − 2p,

n−1∑

j=0

η j y j ; 1, η, . . . , ηn−1

⎞

⎠ .

(6.5)

Proof. Since H(−t, y) = H(t, y), we can apply (5.2) with g(t) = H(t, y)

and h = 2p+1. In this case γ2 is arbitrarily large for 0 < y < 1 and γ2 = −n
for y = 0, 1, and hence the condition h + γ2 > 1 is satisfied because we
assume p > n/2 if y = 0, 1. By (6.2), we have

H(η j t, y) =
∞∑

m=0

B2m(y)
η2 jmt2m

(2m)!
.

Hence we obtain

Res
t=0

⎧
⎨

⎩t−2p−1
n−1∏

j=0

H(η j t, y)

⎫
⎬

⎭ =
∑

m1,...,mn≥0
m1+···+mn=p

n∏

ν=1

B2mν (y)

(2mν)!
η2(ν−1)mν .

Therefore, by using (6.1) and (6.3), we have

Z2p+1

∑

m∈Z\{0}
(2mπ i)−2p−1

×
⎛

⎝
n−1∏

j=1

mπ iη j cosh(2mπ iη j (y − 1/2))

sinh(mπ iη j )

⎞

⎠ 2mπ i cos(2mπy)

= −
∑

m1,...,mn≥0
m1+···+mn=p

n∏

ν=1

B2mν (y)

(2mν)!
η2(ν−1)mν .

Thus we obtain (6.4).
Assume 0 < y < 1 and p ≥ n/2. Then h = 2p + 1 ≥ n + 1. Note that

F(−t, y) = −te−t y

e−t − 1
= tet (1−y)

et − 1
= F(t, 1 − y).
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Then we have

G(t) =
n−1∏

j=0

H(η j t, y) =
n−1∏

j=0

F(η j t, y) + F(η j t, 1 − y)

2

= 2−n
∑

y0∈{y,1−y}
· · ·

∑

yn−1∈{y,1−y}

n−1∏

j=0

F(η j t, y j ). (6.6)

Hence

Res
t=0

{G(t)t−h}

= 2−n

2π i

∑

y0∈{y,1−y}
· · ·

∑

yn−1∈{y,1−y}

∫

|t |=ε

⎛

⎝
n−1∏

j=0

F(η j t, y j)

⎞

⎠ t (n+1−h)−n−1dt.

(6.7)

Since 0 < y < 1, we see that 1, η, . . . , ηn−1 and
∑n−1

j=0 η j (1− y j) are belong-
ing to the half plane H(θn), where θn = π/2 −π/(2n). Therefore, deforming
the path |t| = ε to C(θn), we find that each integral on the right-hand side of
(6.7) is of the same form as the integral on the right-hand side of (2.5) with
s = n + 1 − h. Using (2.5) and (2.12), we obtain that the right-hand side of
(6.7) is equal to

2−nηn(n−1)/2

2π i

∑

y0∈{y,1−y}
· · ·

∑

yn−1∈{y,1−y}

2π i(−1)h−n−1

(h − n − 1)!

× ζn

⎛

⎝n + 1 − h,

n−1∑

j=0

η j (1 − y j); 1, η, . . . , ηn−1

⎞

⎠

= 2−n(−1)h−n−1ηn(n−1)/2

(h − n − 1)!

∑

y0∈{y,1−y}
· · ·

∑

yn−1∈{y,1−y}

× ζn

⎛

⎝n + 1 − h,

n−1∑

j=0

η j y j; 1, η, . . . , ηn−1

⎞

⎠ ,

which implies (6.5). �

In particular when y = 1
2 in (6.4) and (6.5), we have the following formula,

which can be regarded as a multiple generalization of (1.2).
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Corollary 6.2. For p ∈ Z, n ∈ N with n ≥ 2 and η = eπ i/n,

Z2p+1

∑

m∈Z\{0}

(−1)m
(∏n−1

j=1 sinh(mπ iη j)
)

m2p+1−n

= −2n−1(2π i)2p+1−n

ηn(n−1)/2

∑

m1,...,mn≥0
m1+···+mn=p

n∏

ν=1

B2mν (1/2)

(2mν)!
η2(ν−1)mν . (6.8)

Furthermore if p ≥ n/2, then (6.8) is equal to

(2π i)2p+1−n(−1)1−n2n−1

2(2p − n)!
ζn(n − 2p, 1/(1 − η); 1, η, . . . , ηn−1). (6.9)

Now we consider the case n = 2, η = eπ i/2 = i and p = 2k + 2 in (6.4).
Then we obtain the following.

Corollary 6.3. For k ∈ N0 and 0 ≤ y ≤ 1,

∑

m∈Z\{0}

cos(2mπy)

m4k+3

(
cosh(2mπ(y − 1/2))

sinh(mπ)

)

= (2π)4k+3
2k+2∑

j=0

(−1) j+1 B2 j(y)

(2 j)!

B4k+4−2 j (y)

(4k + 4 − 2 j)!
. (6.10)

In particular when y = 0 and y = 1
2 , we obtain (1.4) and (1.2), respectively.

Next we consider the case n = 3. Let η = eπ i/3 = −ρ2 with ρ = e2π i/3

and p = 3k + 3. Then we have η3(3−1)/2 = −1 and Z6(k+1)+1 = 3 by (5.3).
From (6.4), we have

∑

m∈Z\{0}

cos(2mπy)

m6k+4

(
cosh(2mπ i(−ρ2)(y − 1/2)) cosh(2mπ iρ(y − 1/2))

sinh(mπ i(−ρ2)) sinh(mπ iρ)

)

= −22(2π i)6k+4

−3

∑

m1,m2,m3≥0
m1+m2+m3=3k+3

3∏

ν=1

B2mν (y)

(2mν)!
ρ2(ν−1)mν . (6.11)

Note that ρ2 = 1/ρ and ρ = −1/ρ − 1. Hence, by using

sinh(mπ iρ) = −(−1)m sinh(mπ i/ρ),

we can rewrite (6.11) as follows.
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Corollary 6.4. For k ∈ N0 and 0 ≤ y ≤ 1,

∑

m∈Z\{0}

(−1)m cos(2mπy)

m6k+4

×
(

cosh((2mπ i/ρ)(y − 1/2)) cosh(2mπ iρ(y − 1/2))

sinh(mπ i/ρ)2

)

= 4(−1)k(2π)6k+4

3

∑

m1,m2,m3≥0
m1+m2+m3=3k+3

B2m1(y)

(2m1)!

B2m2(y)

(2m2)!

B2m3(y)

(2m3)!
ρm2+2m3 .

(6.12)

In particular when y = 0 and y = 1
2 , the following equations hold:

∑

m∈Z\{0}

coth(mπ i/ρ)2

m6k+4

= 4(−1)k(2π)6k+4

3

∑

m1,m2,m3≥0
m1+m2+m3=3k+3

B2m1(0)

(2m1)!

B2m2(0)

(2m2)!

B2m3(0)

(2m3)!
ρm2+2m3 ,

(6.13)

∑

m∈Z\{0}

1

sinh(mπ i/ρ)2m6k+4

= 4(−1)k(2π)6k+4

3

∑

m1,m2,m3≥0
m1+m2+m3=3k+3

B2m1(1/2)

(2m1)!

B2m2(1/2)

(2m2)!

B2m3(1/2)

(2m3)!
ρm2+2m3 .

(6.14)

Example 6.5. From (6.13) and (6.14), we obtain

∑

m 
=0

coth(mπ i/ρ)2

m4 = 62

2835
π4, (6.15)

∑

m 
=0

coth(mπ i/ρ)2

m10
= 40247

1915538625
π10, (6.16)

∑

m 
=0

1

sinh(mπ i/ρ)2m4
= − 1

2835
π4, (6.17)

∑

m 
=0

1

sinh(mπ i/ρ)2m10 = − 703

1915538625
π10. (6.18)
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Additionally, by setting (p, n) = (4, 4), (5, 5) in equation (6.8), we obtain

∑

m 
=0

(−1)m

sinh(mπ) sinh(mπ iζ8) sinh(mπ iζ−1
8 )m5

= 1

37800
π5,

(6.19)

∑

m 
=0

(−1)m

sinh(mπ iζ5) sinh(mπ iζ 2
5 ) sinh(mπ iζ 3

5 ) sinh(mπ iζ 4
5 )m6

=− 1

467775
π6,

(6.20)

where ζk = e2π i/k (k ∈ N).

Remark 6.6. By using the same method as introduced in this paper, we can
recover the known formulas, for example,

∞∑

m=0

(−1)m

cosh((2m + 1)π/2)((2m + 1)/2)4k+1

= (2π)4k+1

8

2k∑

j=0

(−1) j E2 j (1/2)

(2 j)!

E4k−2 j (1/2)

(4k − 2 j)!
,

∞∑

m=0

(−1)m

cosh((2m + 1)
√

3π/2)((2m + 1)/2)6k+1

= (−1)k+1(2π)6k+1

2

3k∑

j=0

E2 j+1(0)

(2 j + 1)!

B6k−2 j (0)

(6k − 2 j)!
cos

(
(2 j + 1)π

3

)

for k ∈ N0 (see Watson [17] and Berndt [7]), where {En(x)} are the Euler
polynomials defined by

2ext

et + 1
=

∞∑

n=0

En(x)
tn

n!
.

More generally, we can give relevant analogues of these results like those in
Example 6.5.
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