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Abstract. We study multiple zeta values (MZVs) from the viewpoint
of zeta-functions associated with the root systems which we have studied
in our previous papers. In fact, the r-ple zeta-functions of Euler-Zagier
type can be regarded as the zeta-function associated with a certain sub-
root system of type Cr. Hence, by the action of the Weyl group, we
can find new aspects of MZVs which imply that the well-known formula
for MZVs given by Hoffman and Zagier coincides with Witten’s volume
formula associated with the above sub-root system of type Cr. Also,
from this observation, we can prove some new formulas which especially
include the parity results of double and triple zeta values. As another
important application, we give certain refinement of restricted sum for-
mulas, which gives restricted sum formulas among MZVs of an arbitrary
depth r which were previously known only in the cases of depth 2, 3, 4.
Furthermore, considering a sub-root system of type Br analogously, we
can give relevant analogues of the Hoffman-Zagier formula, parity results
and restricted sum formulas.

1. Introduction

Let N, N0, Z, Q, R, C be the set of positive integers, non-negative integers,
rational integers, rational numbers, real numbers, and complex numbers,
respectively.

We define the Euler-Zagier r-ple zeta-function (simply called the Euler-
Zagier sum) by

(1.1) ζr(s1, . . . , sr) =
∑

0<n1<···<nr

1

ns1
1 ns2

2 · · ·nsr
r

,

where s1, . . . , sr are complex variables. When (s1, s2, . . . , sr) ∈ Nr (sr > 1),
this is called the multiple zeta value (MZV) of depth r first studied by
Hoffman [8] and Zagier[40]. Though the opposite order of summation in
the definition of ζr(s1, . . . , sr) is also used recently, we use the order in (1.1)
through this paper because it is natural in our study. In the research of
MZVs, the main target is to give non-trivial relations among them, in order
to investigate the structure of the algebra generated by them (for the details,
see Kaneko [12]).
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In our previous papers [14]-[21] and [29], as more general multiple series,
we defined and studied multi-variable zeta-functions associated with root
systems of type Xr (X = A,B,C,D,E, F,G) denoted by ζr(s1, . . . , sn;Xr)
where n is the number of positive roots of type Xr (see definition (2.1)). In
particular when s1 = · · · = sr = s, ζr(s, . . . , s;Xr) essentially coincides with
the Witten zeta-function (see Witten [38] and Zagier[40]). An important
fact is

(1.2) ζr(2k, 2k, . . . , 2k;Xr) ∈ Q · π2kn (k ∈ N),

which is a consequence of Witten’s volume formula given in [38]. Since we
considered multi-variable version of Witten zeta-function, we were able to
determine the rational coefficients in (1.2) explicitly in a generalized form
(see [20, Thoerem 4.6]).

Recently, in our previous paper [22], we regarded MZVs as special values
of zeta-functions of root systems of type Ar, and clarified the structure
of the shuffle product procedure for MZVs from this viewpoint. In fact,
we showed that the shuffle product procedure can be described in terms of
partial fraction decompositions of zeta-functions of root systems of type Ar.

The main idea in the present paper is to regard (1.1) as a specialization
of zeta-functions of root systems of type Cr (see below). It is essential in
our theory that Cr is not simply-laced. In fact, there exists a subset of
the root system of type Cr so that the Euler-Zagier sum (1.1) is the zeta-
function associated with this subset (see Section 4). This subset itself is
a root system, and hence the Weyl group naturally acts on (1.1). General
fundamental results will be stated in Section 3, and their proofs will be given
in Section 9. As a consequence, it can be shown that a kind of formula (1.2)
corresponding to this sub-root system implies the well-known result given
by Hoffman [8, Section 2] and Zagier [40, Section 9] independently:

(1.3) ζr(2k, 2k, . . . , 2k) ∈ Q · π2kr (k ∈ N)

(see Corollary 4.2).
Furthermore, based on this observation in the cases when r = 2, 3, we will

give explicit formulas for double series and for triple series (see Proposition
5.1 and Theorem 5.2) which include what is called the parity results for
double and triple zeta values (see Corollary 5.3).

Similarly we can consider analogues of those results corresponding to a
sub-root system of type Br. In fact, we can define a Br-type analogue of
ζr(s) by

ζ♯r(s) =
∞∑

m1,...,mr=1

r∏
i=1

1

(2
∑r−1

j=r−i+1mj +mr)si
,(1.4)

which is a “partial sum” of the series of ζr(s) (see Section 6). From the
viewpoint of root systems, we see that this has some properties similar to
those of ζr(s), because the root system of type Br is a dual of that of type
Cr. Actually we can obtain an analogue of (1.3) for this series (see Corollary
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6.2). We also prove a formula between the values of ζ♯2(s) and the Riemann
zeta values (see Theorem 6.4), which gives the parity result corresponding
to type Br (see Theorem 6.4). This result plays an important role in a
recent study on the dimension of the linear space spanned by double zeta
values of level 2 given by Kaneko and Tasaka (see [13]).

The fact that parity results hold in those classes implies that those are
“nice” classes. In Section 8 we will study those classes from the analytic
point of view, and prove that those classes, as well as the subclass of zeta-
functions of root systems of type Ar introduced in [22], are “closed” in a
certain analytic sense.

Another important consequence of our fundamental theorem in Section
3 is the “refined restricted sum formulas” for the values of ζr(s) and ζ♯r(s),
which are embodied in Corollaries 4.1 and 6.1. One of the famous formulas
among MZVs is the sum formula, which is, in the case of double zeta values,
written as

(1.5)
K−1∑
j=2

ζ2(K − j, j) = ζ(K) (K ∈ Z≥3).

Gangl, Kaneko and Zagier [7] obtained the following formulas, which “di-
vide” (1.5) for even K into two parts:∑

a,b∈N
a+b=N

ζ2(2a, 2b) =
3

4
ζ(2N) ∈ Q · π2N (N ∈ Z≥2),

∑
a,b∈N

a+b=N

ζ2(2a− 1, 2b+ 1) =
1

4
ζ(2N) ∈ Q · π2N (N ∈ Z≥2),

(1.6)

which are sometimes called the restricted sum formulas. More recently,
Shen and Cai [35] gave restricted sum formulas for triple and fourth zeta
values (see (7.1) and (7.2)). As we will discuss in Section 7, our Corollaries
4.1 and 6.1 give more refined restricted sum formulas for ζr(s) and for ζ♯r(s)
of an arbitrary depth r. From these refined formulas we can deduce the
restricted sum formulas for an arbitrary depth r, actually in a generalized
form involving a parameter d (see Theorems 7.1 and 7.3).

A part of the results in the present paper has been announced in [23].

2. Zeta-functions of root systems and root sets

In this section, we recall the definition of zeta-functions of root systems
studied in our papers [14]-[20]. For the details of basic facts about root
systems and Weyl groups, see [6, 9, 10].

Let V be an r-dimensional real vector space equipped with an inner prod-
uct ⟨·, ·⟩. The dual space V ∗ is identified with V via the inner product of
V . Let ∆ be a finite irreducible reduced root system, and Ψ = {α1, . . . , αr}
its fundamental system. We fix ∆+ and ∆− as the set of all positive roots
and negative roots respectively. Then we have a decomposition of the root
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system ∆ = ∆+

⨿
∆−. Let Q = Q(∆) be the root lattice, Q∨ the coroot

lattice, P = P (∆) the weight lattice, P∨ the coweight lattice, and P++ the
set of integral strongly dominant weights respectively defined by

Q =
r⊕

i=1

Zαi, Q∨ =
r⊕

i=1

Zα∨
i ,

P =
r⊕

i=1

Zλi, P∨ =
r⊕

i=1

Zλ∨
i , P++ =

r⊕
i=1

Nλi,

where the fundamental weights {λj}rj=1 and the fundamental coweights
{λ∨

j }rj=1 are the dual bases of Ψ∨ and Ψ satisfying ⟨α∨
i , λj⟩ = δij (Kro-

necker’s delta) and ⟨λ∨
i , αj⟩ = δij respectively.

Let σα : V → V be the reflection with respect to a root α ∈ ∆ defined by

σα : v 7→ v − ⟨α∨, v⟩α.
For a subset A ⊂ ∆, let W (A) be the group generated by reflections σα

for all α ∈ A. In particular, W = W (∆) is the Weyl group, and {σj :=
σαj

| 1 ≤ j ≤ r} generates W . For w ∈ W , denote ∆w = ∆+ ∩w−1∆−. The
zeta-function associated with ∆ is defined by

(2.1) ζr(s,y; ∆) =
∑

λ∈P++

e2πi⟨y,λ⟩
∏

α∈∆+

1

⟨α∨, λ⟩sα
,

where s = (sα)α∈∆+ ∈ C|∆+| and y ∈ V . This can be regarded as a multi-
variable version of Witten zeta-functions formulated by Zagier [40] based
on the work of Witten [38].

Let ∆∗ be a subset of ∆+. We call ∆∗ a root set (or a root subset of
∆+) if, for any λj (1 ≤ j ≤ r), there exists an element α ∈ ∆∗ for which
⟨α, λj⟩ ̸= 0 holds. We define the zeta-function associated with a root set
∆∗ by

(2.2) ζr(s,y; ∆
∗) =

∑
λ∈P++

e2πi⟨y,λ⟩
∏
α∈∆∗

1

⟨α∨, λ⟩sα
.

In the case y = 0, this zeta-function was introduced in [16]. When the root
system is of type Xr, we write ∆ = ∆(Xr), ∆

∗ = ∆∗(Xr), and so on.

Remark 2.1. The notion of ζr(s,y; ∆
∗) depends not only on ∆∗, but also

on ∆+, because the summation on (2.2) runs over all strongly dominant
weights associated with ∆+.

3. Fundamental formulas

In this section, we state several fundamental formulas which are certain
extensions of our previous results given in [16, 17, 20]. Proofs of theorems
stated in this section will be given in Section 9.

Let V be the set of all bases V ⊂ ∆+. Let V∗ = {µV
β }β∈V be the

dual basis of V∨ = {β∨}β∈V. Let L(V∨) =
⊕

β∈V Zβ∨. Then we have
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|Q∨/L(V∨)| < ∞. Fix ϕ ∈ V such that ⟨ϕ, µV
β ⟩ ≠ 0 for all V ∈ V and

β ∈ V. If the root system ∆ is of A1 type, then we choose ϕ = α∨
1 . We

define a multiple generalization of the fractional part as

{y}V,β =

{
{⟨y, µV

β ⟩} (⟨ϕ, µV
β ⟩ > 0),

1− {−⟨y, µV
β ⟩} (⟨ϕ, µV

β ⟩ < 0),

where the notation {x} on the right-hand sides stands for the usual frac-
tional part of x ∈ R. Let T = {t ∈ C | |t| < 2π}|∆+|.

Definition 3.1. For t = (tα)α∈∆+ ∈ T and y ∈ V , we define

F (t,y; ∆) =
∑
V∈V

( ∏
γ∈∆+\V

tγ
tγ −

∑
β∈V tβ⟨γ∨, µV

β ⟩

)
× 1

|Q∨/L(V∨)|
∑

q∈Q∨/L(V∨)

(∏
β∈V

tβ exp(tβ{y + q}V,β)

etβ − 1

)
=

∑
k∈N|∆+|

0

P(k,y; ∆)
∏

α∈∆+

tkαα
kα!

(3.1)

which is independent of choice of ϕ.

Remark 3.2. In [17], F (t,y; ∆) is defined in a different way. The above is
[17, Theorem 4.1]. In particular when ∆ = ∆(A1), we see that

F (t,y; ∆(A1)) =
tet{y}

et − 1
,

which is the generating function of ordinary Bernoulli periodic functions
{Bk({y})}.

Let

(3.2) S(s,y; ∆) =
∑

λ∈P\H∆∨

e2πi⟨y,λ⟩
∏

α∈∆+

1

⟨α∨, λ⟩sα
,

where H∆∨ = {v ∈ V | ⟨α∨, v⟩ = 0 for some α ∈ ∆} is the set of all
walls of Weyl chambers. For s ∈ C|∆+|, we define (ws)α = sw−1α, where if
w−1α ∈ ∆− we use the convention s−α = sα.

Proposition 3.3 ([20, Theorem 4.4],[17, Proposition 3.2]).

S(k,y; ∆) =
∑
w∈W

( ∏
α∈∆+∩w∆−

(−1)kα
)
ζr(w

−1k, w−1y; ∆)

= (−1)|∆+|P(k,y; ∆)

( ∏
α∈∆+

(2πi)kα

kα!

)(3.3)

for kα ∈ Z≥2 (α ∈ ∆+).
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Remark 3.4. It should be noted that the formula (3.3) holds in the cases
kα = 1 for some α ∈ ∆+, while it does not hold in the cases kα = 0 for any
α ∈ ∆+.

For v ∈ V , and a differentiable function f on V , let

(∂vf)(y) = lim
h→0

f(y + hv)− f(y)

h
and for α ∈ ∆+,

Dα =
∂

∂tα

∣∣∣∣
tα=0

∂α∨ .

Let ∆∗ ⊂ ∆+ be a root set and let A = ∆+ \∆∗ = {ν1, . . . , νN} ⊂ ∆+, and
define

DA = DνN · · ·Dν1 .

Similarly we define

Dα,2 =
1

2

∂2

∂t2α

∣∣∣∣
tα=0

∂2
α∨ ,(3.4)

DA,2 = DνN ,2 · · ·Dν1,2.(3.5)

Further, let Aj = {ν1, . . . , νj} (1 ≤ j ≤ N − 1), A0 = ∅, and
VA = {V ∈ V | νj+1 /∈ L.h.[V ∩ Aj] (0 ≤ j ≤ N − 1)},

where L.h.[ · ] denotes the linear hull (linear span). Let R be the set of all
linearly independent subsets R = {β1, . . . , βr−1} ⊂ ∆ and

(3.6) HR :=
∪
R∈R
q∈Q∨

(L.h.[R∨] + q).

Remark 3.5. It is to be noted that y ∈ HR if and only if ⟨y + q, µV
β ⟩ ∈ Z

for some V ∈ V , β ∈ V, q ∈ Q∨. In fact, if y ∈ HR then we can write
y =

∑r−1
j=1 ajβ

∨
j + q (aj ∈ R). We can find an element βr ∈ ∆ such that

V = {β1, . . . , βr} ∈ V . Then ⟨y − q, µV
βr
⟩ = 0 ∈ Z. Conversely, assume

⟨y + q, µV
β ⟩ = c ∈ Z. Write V = {β1, . . . , βr−1, β}. Since this is a basis, we

may write y+q =
∑r−1

j=1 ajβ
∨
j +aβ∨ with aj, a ∈ R. Then c = ⟨y+q, µV

β ⟩ = a,
especially a ∈ Z. Therefore aβ∨ − q ∈ Q∨, which implies y ∈ HR .

Definition 3.6. For ∆+ \ ∆∗ = A = {ν1, . . . , νN} ⊂ ∆+, t∆∗ = {tα}α∈∆∗

and y ∈ V , we define

F∆∗(t∆∗ ,y; ∆) =
∑
V∈VA

(−1)|A\V|

×
( ∏
γ∈∆+\(V∪A)

tγ
tγ −

∑
β∈V\A tβ⟨γ∨, µV

β ⟩

)
× 1

|Q∨/L(V∨)|
∑

q∈Q∨/L(V∨)

( ∏
β∈V\A

tβ exp(tβ{y + q}V,β)

etβ − 1

)
.

(3.7)
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Theorem 3.7. For ∆+ \ ∆∗ = A = {ν1, . . . , νN} ⊂ ∆+, t∆∗ = {tα}α∈∆∗

and y ∈ V \ HR. we have

(3.8)
(
DAF

)
(t∆∗ ,y; ∆) =

(
DA,2F

)
(t∆∗ ,y; ∆) = F∆∗(t∆∗ ,y; ∆),

and hence is independent of choice of the order of A. The function F∆∗(t∆∗ ,y; ∆)
is the continuous extension of

(
DAF

)
(t∆∗ ,y; ∆) in y in the sense that(

DAF
)
(t∆∗ ,y + cϕ; ∆) tends continuously to F∆∗(t∆∗ ,y; ∆) when c → 0+,

and is holomorphic with respect to t∆∗ around the origin.

Definition 3.8. For ∆∗ ⊂ ∆+ and t∆∗ = {tα}α∈∆∗ , we define P∆∗(k∆∗ ,y; ∆)
by

F∆∗(t∆∗ ,y; ∆)

=
∑

k∆∗∈N|∆∗|
0

P∆∗(k∆∗ ,y; ∆)
∏
α∈∆∗

tkαα
kα!

.

Theorem 3.9. For s = k = (kα)α∈∆+ with kα ∈ Z≥2 (α ∈ ∆∗), kα = 0
(α ∈ ∆+ \∆∗), we have∑

w∈W

( ∏
α∈∆+∩w∆−

(−1)kα
)
ζr(w

−1k, w−1y; ∆)(3.9)

= (−1)|∆+|P∆∗(k∆∗ ,y; ∆)

(∏
α∈∆∗

(2πi)kα

kα!

)
provided all the series on the left-hand side absolutely converge.

Assume that ∆ is not simply-laced. Then we have the disjoint union
∆ = ∆l ∪∆s, where ∆l is the set of all long roots and ∆s is the set of all
short roots.

Note that if there is an odd ki, then both hand sides vanish in (3.9).
On the other hand, when all k′

is are even, by applying Theorem 3.9 to
∆∗ = ∆l or ∆s, we obtain the following theorem immediately, which is a
generalization of the explicit volume formula proved in [20, Theorem 4.6].

Theorem 3.10. Let ∆1 = ∆l (resp. ∆s), ∆2 = ∆s (resp. ∆l), and ∆j+ =
∆j ∩ ∆+ (j = 1, 2). Then ∆j+ (j = 1, 2) is a root subset of ∆+. For
s1 = k1 = (kα)α∈∆1+ with kα = k ∈ 2N (for all α ∈ ∆1+) and ν ∈ P∨/Q∨,
we have

ζr(k1, ν; ∆1+) =
(−1)|∆+|

|W |
P∆1+(k1, ν; ∆)

( ∏
α∈∆1+

(2πi)kα

kα!

)
.(3.10)

Remark 3.11. Let s = k = (kα)α∈∆+ with kα = k ∈ 2N (α ∈ ∆1+) and
kα = 0 (α ∈ ∆2+). Then obviously ζr(k1, ν; ∆1+) = ζr(k, ν; ∆). Our proof
of Theorem 3.10 is actually based on the latter viewpoint.
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4. Multiple zeta values and zeta-functions of root system
of type Cr

Now we study MZVs from the viewpoint of zeta-functions of root systems
of type Cr. For ∆ = ∆(Cr), we have the disjoint union ∆∨

+ = (∆l+)
∨ ∪

(∆s+)
∨, where ∆l+ = ∆l+(Cr) = ∆l(Cr) ∩ ∆+(Cr), ∆s+ = ∆s+(Cr) =

∆s(Cr) ∩∆+(Cr), and

(∆l+)
∨ = {α∨

r , α∨
r−1 + α∨

r , α∨
r−2 + α∨

r−1 + α∨
r , . . . , α∨

1 + · · ·+ α∨
r }.

Since P∨/Q∨ = {0, λ∨
r }, Therefore, for sl = (sα)α∈∆l+

, we have

ζr(sl,0; ∆l+(Cr)) =
∞∑

m1,...,mr=1

r∏
i=1

1

(
∑r−1

j=r−i+1mj +mr)si
,

ζr(sl, λ
∨
r ; ∆l+(Cr)) =

∞∑
m1,...,mr=1

r∏
i=1

(−1)mr

(
∑r−1

j=r−i+1mj +mr)si
,

where the first equation is exactly the Euler-Zagier sum ζr(s1, . . . , sr) (see
(1.1)). In order to apply Theorems 3.9 and 3.10 to MZVs, we rewrite the
root system of type Cr in terms of standard orthonormal basis {e1, . . . , er}.
We put α∨

i = ei − ei+1 for 1 ≤ i ≤ r − 1 and α∨
r = er. Then we have

(∆l+)
∨ = {α∨

r = er, α
∨
r−1+α∨

r = er−1, α
∨
r−2+α∨

r−1+α∨
r = er−2, . . . , α

∨
1+· · ·+α∨

r = e1}.

In this realization, we see that W (Cr) = (Z/2Z)r ⋊ Sr, where Sr is the
symmetric group of degree r which permutes bases, and the j-th Z/2Z
flips the sign of ej. Since the sign flips act trivially on the variables sl,
from Theorem 3.9 we obtain the following formulas. These are the “refined
restricted sum formulas” for ζr(s), which we will discuss in Section 7.

Corollary 4.1. Let ∆ = ∆(Cr). For (2k)l = (2kα)α∈∆l+
= (2k1, . . . , 2kr) ∈

(2N)r and y = ν ∈ P∨/Q∨,
(4.1)∑
σ∈Sr

ζr(σ
−1(2k)l, ν; ∆l+) =

(−1)r

2r
P∆l+

((2k)l, ν; ∆)
r∏

j=1

(2πi)2kj

(2kj)!
∈ Q·π2

∑r
j=1 kj .

In particular when ν = 0,
(4.2)∑
σ∈Sr

ζr(2kσ−1(1), . . . , 2kσ−1(r)) =
(−1)r

2r
P∆l+

((2k)l,0; ∆)
r∏

j=1

(2πi)2kj

(2kj)!
∈ Q·π2

∑r
j=1 kj .

Also Theorem 3.10 in the case of type Cr immediately gives the following.

Corollary 4.2. Let ∆ = ∆(Cr). For (2k)l = (2k, . . . , 2k) with any k ∈ N,

ζr(2k, 2k, . . . , 2k) =
(−1)r

2rr!
P∆l+

((2k)l,0; ∆)
(2πi)2kr

{(2k)!}r
∈ Q · π2kr.(4.3)
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Remark 4.3. The fact∑
σ∈Sr

ζr(2kσ−1(1), . . . , 2kσ−1(r)) ∈ Q · π2
∑r

j=1 kj

was first proved by Hoffman [8, Theorem 2.2]. This gives the well-known
result

ζr(2k, . . . , 2k) ∈ Q · π2kr,

which was also given by Zagier [40, Section 9] independently. Broadhurst,
Borwein and Bradley gave explicit formulas for these values in [5, Section
2]. Also it is known that

(4.4) ζr(2k, . . . , 2k) = C(k)
r

(2πi)2kr

(2kr)!
,

where

C(k)
0 = 1, C(k)

n =
1

2n

n∑
j=1

(−1)j
(
2nk

2jk

)
B2jkC(k)

n−j (n ≥ 1).

Formula (4.4) was first published in the lecture notes [1], [2] written in
Japanese (Exercise 5, Section 1.1 of those lecture notes). See also Muneta
[32].

We emphasize that (4.4) can be regarded as a kind of Witten’s volume
formula (4.3). Because (4.3) and (4.4) in the case r = 1 are both Euler’s
well-known formula

(4.5) ζ(2k) = −B2k
(2πi)2k

2(2k)!
(k ∈ N),

we can see that P∆l+
((2k)l,0; ∆) and C(k)

r are different types of generaliza-
tions of the ordinary Bernoulli number B2k.

Example 4.4. Let ∆ = ∆(C2) be the root system of type C2. By Theorem
3.7, we have

(D∆s+F )(t1, t2, y1, y2; ∆) = 1 +
t1t2e

{y2}t1

(et1 − 1)(t1 − t2)

+
t1t2e

{y2}t2

(et2 − 1)(−t1 + t2)
+

t1t2e
(1−{y1−y2})t1+{y1}t2

(et1 − 1)(et2 − 1)

− t1t2e
(1−{2y1−y2})t1

(et1 − 1)(t1 + t2)
− t1t2e

{2y1−y2}t2

(et2 − 1)(t1 + t2)

=
∞∑

k1,k2=1

P∆l+
(k1, k2, y1, y2; ∆)

tk11 tk22
k1!k2!

.

Set (y1, y2) = (0, 0) and k = (0, k1, k2, 0). Then ζ2(0, k1, k2, 0; y1, y2; ∆) =
ζ2(k1, k2) for ∆ = ∆(C2). Hence it follows from (3.9) that

(1 + (−1)k1)(1 + (−1)k2)ζ2(k1, k2) + (1 + (−1)k2)(1 + (−1)k1)ζ2(k2, k1)

(4.6)
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= (−1)4P∆l+
(k1, k2, 0, 0;∆)

(2πi)k1+k2

k1!k2!

for k1, k2 ≥ 2.
For example, we can compute

P∆l+
(4, 4, 0, 0;∆) =

1

6300

from the above expansion. Hence we obtain

ζ2(4, 4) =
(−1)4

8

1

6300

(2πi)8

(4!)2
=

π8

113400
.

Similarly we can compute ζ2(2k, 2k) for k ∈ N, though in this case we can
also compute ζ2(2k, 2k) by using the well-known harmonic product formula
for double zeta values

(4.7) ζ(s)ζ(t) = ζ2(s, t) + ζ2(t, s) + ζ(s+ t).

In the next section, we introduce a slight generalization of Corollary 4.2
which gives evaluation formulas of ζ2(k, l) for odd k+ l in terms of ζ(s) (see
Proposition 5.1).

Remark 4.5. In the general Cr case, considering the expansion of

(D∆s+F )(t∆l+
,0; ∆(Cr))

similarly, we can systematically compute ζr(2k, . . . , 2k). Moreover, consid-
ering the case ν ̸= 0 for ζr(s, ν; ∆(Cr)), we can give character analogues of
Corollary 4.2 for multiple L-values, which were first proved by Yamasaki
[39].

5. Some relations and parity results for double and triple
zeta values

In Theorem 3.9, we considered the sum over W on the left-hand side
of (3.9). Here, more generally, we consider the sum over a certain set of
minimal coset representatives on the left-hand side of (3.9). In this case,
it is not easy to execute its computation directly. Hence we use a more
technical method which was already introduced in [19]. First we show the
following result for double zeta values corresponding to a sub-root system
of type C2, where the number of the terms on the left-hand side is just the
half of that on the left-hand side of (4.6).

Proposition 5.1. For p, q ∈ N≥2,

(1 + (−1)p) ζ2(p, q) + (1 + (−1)q) ζ2(q, p)

= 2

[p/2]∑
j=0

(
p+ q − 2j − 1

q − 1

)
ζ(2j)ζ(p+ q − 2j)
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+ 2

[q/2]∑
j=0

(
p+ q − 2j − 1

p− 1

)
ζ(2j)ζ(p+ q − 2j)− ζ(p+ q).

Proof. The proof was essentially stated in [19, Theorem 3.1] which is a
simpler form of a previous result for zeta-functions of type A2 given by the
third-named author [37, Theorem 4.5]. In fact, setting (k, l, s) = (p, q, 0) in
[19, Theorem 3.1], we have

ζ(p)ζ(q) + (−1)pζ2(p, q) + (−1)qζ2(q, p)

= 2

[p/2]∑
j=0

(
p+ q − 2j − 1

q − 1

)
ζ(2j)ζ(p+ q − 2j)

+ 2

[q/2]∑
j=0

(
p+ q − 2j − 1

p− 1

)
ζ(2j)ζ(p+ q − 2j).

Combining this and (4.7), we have the assertion. □
In particular when p and q are of different parity, we see that ζ2(p, q) ∈

Q[{ζ(j+1) | j ∈ N}] which was first proved by Euler. For example, we have

ζ2(2, 3) = 3ζ(2)ζ(3)− 11

2
ζ(5).

Next we consider triple zeta values. From the viewpoint of the root system
of C3 type, we have the following theorem. Note that, unlike the case of
double zeta values, this result seems not to be led from the result on the
case of type A3 (cf. [29, Theorems 5.9 and 5.10]).

Theorem 5.2. For a, b, c ∈ N≥2,

(1 + (−1)a)ζ3(a, b, c) + (1 + (−1)b){ζ3(b, a, c) + ζ3(b, c, a)}+ (−1)b(1 + (−1)c)ζ3(c, b, a)

= 2

{ [a/2]∑
ξ=0

ζ(2ξ)

a−2ξ∑
ω=0

(
ω + b− 1

ω

)(
a+ c− 2ξ − ω − 1

c− 1

)
ζ2(b+ ω, a+ c− 2ξ − ω)

+

[b/2]∑
ξ=0

ζ(2ξ)
a−1∑
ω=0

(
ω + b− 2ξ

ω

)(
a+ c− ω − 2

c− 1

)
ζ2(b− 2ξ + ω + 1, a+ c− 1− ω)

+ (−1)b
[c/2]∑
ξ=0

ζ(2ξ)

c−2ξ∑
ω=0

(
ω + b− 1

ω

)(
a+ c− 2ξ − ω − 1

a− 1

)
ζ2(b+ ω, a+ c− 2ξ − ω)

+ (−1)b
[b/2]∑
ξ=0

ζ(2ξ)
c−1∑
ω=0

(
ω + b− 2ξ

ω

)(
a+ c− ω − 2

a− 1

)
ζ2(b− 2ξ + ω + 1, a+ c− 1− ω)

}
− ζ2(a+ b, c)− (1 + (−1)b)ζ2(b, a+ c)− (−1)bζ2(b+ c, a).

The proof of this theorem will be given in Section 10.
This theorem especially implies the following result which was proved by

Borwein and Girgensohn (see [4]).
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Corollary 5.3. Let

X = Q
[
{ζ(j + 1), ζ2(k, l + 1)}j,k,l∈N

]
,

namely the Q-algebra generated by Riemann zeta values and double zeta
values at positive integers except singularities. Suppose a, b, c ∈ N≥2 satisfy
that a+ b+ c is even. Then ζ3(a, b, c) ∈ X.

Proof. We recall the harmonic product formula

ζ3(a, b, c) + ζ3(b, a, c) + ζ3(b, c, a) = ζ(a)ζ2(b, c)− ζ2(b, c+ a)− ζ2(a+ b, c)
(5.1)

for a, b, c ∈ N≥2 (see [12]).
Let a, b, c ∈ N≥2 satisfying that a + b + c is even. First we assume that

a, b, c are all even. Then, combining Theorem 5.2 and (5.1), we see that
ζ3(c, b, a) ∈ X.

Next we assume that a is even and b, c are odd. Then, by Theorem 5.2,
we see that ζ3(a, b, c) ∈ X.

As for other cases, we can similarly obtain the assertions by using Theo-
rem 5.2 and (5.1). Thus we complete the proof. □

Remark 5.4. The following property of the multiple zeta value is some-
times called the parity result:

The multiple zeta value ζr(k1, k2, . . . , kr) of depth r can be expressed as
a rational linear combination of products of MZVs of lower depth than r,
when its depth r and its weight

∑n
j=1 kj are of different parity.

The fact in case of depth 2 was proved by Euler, and that of depth 3
was proved by Borwein and Girgensohn (see [4]). Further they conjectured
the above assertion in the case of an arbitrary depth. This conjecture was
proved by the third-named author [36] and by Ihara, Kaneko and Zagier
[11] independently. It should be stressed that our Corollary 5.3 gives an
explicit expression of the parity result for the triple zeta value under the
condition a, b, c ∈ N≥2.

Therefore it seems important to generalize Theorem 5.2 in order to give
an explicit expression of the parity result of an arbitrary depth.

Example 5.5. Putting (a, b, c) = (2, 2, 4) in Theorem 5.2, we have

2ζ3(2, 2, 4) + 2{ζ3(2, 2, 4) + ζ3(2, 4, 2)}+ 2ζ3(4, 2, 2)

= 2ζ(4)ζ2(2, 2) + ζ(2){8ζ2(4, 2) + 12ζ2(3, 3) + 16ζ2(2, 4) + 16ζ2(1, 5)}
− 16ζ2(6, 2)− 20ζ2(5, 3)− 25ζ2(4, 4)− 24ζ2(3, 5)− 17ζ2(2, 6).

Therefore, using (5.1), we obtain

ζ3(4, 2, 2) = ζ(4)ζ2(2, 2) + ζ(2){4ζ2(4, 2) + 6ζ2(3, 3) + 7ζ2(2, 4) + 8ζ2(1, 5)}

− 8ζ2(6, 2)− 10ζ2(5, 3)−
23

2
ζ2(4, 4)− 12ζ2(3, 5)−

15

2
ζ2(2, 6) ∈ X.
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Note that this formula can be proved by combining known results for MZVs
given by the double shuffle relations and harmonic product formulas (see,
for example, [31, Section 5]).

Remark 5.6. If we replace (10.3) (in Section 10) by∑
l∈N

∑
m∈Z∗

(−1)l+mxlymei(l+m)θ,

and argue along the same line as in the proof of Theorem 5.2, then we can
obtain

(1 + (−1)a) (1 + (−1)c) {ζ3(a, b, c) + ζ3(a, c, b) + ζ3(c, a, b)}
+
(
1 + (−1)b

)
(1 + (−1)c) {ζ3(c, b, a) + ζ3(b, c, a) + ζ3(b, a, c)}

∈ Q[{ζ(j + 1) | j ∈ N}]

for a, b, c ∈ N≥2. In particular when a, b, c are both even, we have (4.4) for
the triple zeta value which can be regarded as a kind of Witten’s volume
formula (4.3) (see Section 4). Furthermore, when a is odd and both b and
c are even, then

ζ3(c, b, a) + ζ3(b, c, a) + ζ3(b, a, c) ∈ Q [{ζ(j + 1) | j ∈ N}] .

Note that this result can also be deduced by combining (5.1) and Proposition
5.1.

6. Multiple zeta values associated with the root system of
type Br

In this section we discuss the Br-analogue of our theory developed in the
preceding two sections.

As for the root system of type Br, namely for ∆ = ∆(Br), we see that

(∆s+)
∨ = {α∨

r , 2α∨
r−1 + α∨

r , 2α
∨
r−2 + 2α∨

r−1 + α∨
r , . . . , 2α

∨
1 + · · ·+ 2α∨

r−1 + α∨
r }.

Therefore for ss = (sα)α∈∆s+ we have

ζr(ss,0; ∆s+(Br)) =
∞∑

m1,...,mr=1

r∏
i=1

1

(2
∑r−1

j=r−i+1mj +mr)si
,(6.1)

which is a partial sum of ζr(s). For example, we have

ζ2(ss,0; ∆s+(B2)) =
∞∑

l,m=1

1

ms1(2l +m)s2
,(6.2)

ζ3(ss,0; ∆s+(B3)) =
∞∑

l,m,n=1

1

ns1(2m+ n)s2(2l + 2m+ n)s3
,(6.3)

where sj = sαj
corresponding to αj ∈ ∆s+.

From the viewpoint of zeta-functions of root systems, values of (6.1)
at positive integers can be regarded as the objects dual to MZVs, in the
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sense that Br and Cr are dual of each other. Hence we denote (6.1) by
ζ♯r(s1, . . . , sr).

Since W (Br) ≃ W (Cr), just like Corollary 4.1, from Theorem 3.9 we can
obtain the following result, which gives the “refined restricted sum formulas”
for ζ♯r(s).

Corollary 6.1. Let ∆ = ∆(Br). For (2k)s = (2kα)α∈∆s+ = (2k1, . . . , 2kr) ∈
(2N)r and y = ν ∈ P∨/Q∨,
(6.4)∑
σ∈Sr

ζr(σ
−1(2k)s, ν; ∆l+) =

(−1)r

2r
P∆s+((2k)s, ν; ∆)

r∏
j=1

(2πi)2kj

(2kj)!
∈ Q·π2

∑r
j=1 kj .

In particular when ν = 0,
(6.5)∑
σ∈Sr

ζ♯r(2kσ−1(1), . . . , 2kσ−1(r)) =
(−1)r

2r
P∆s+((2k)s,0; ∆)

r∏
j=1

(2πi)2kj

(2kj)!
∈ Q·π2

∑r
j=1 kj .

From Theorem 3.10, we obtain an analogue of Corollary 4.2, which is a
kind of Witten’s volume formula and also a Br-type analogue of (4.4).

Corollary 6.2. Let ∆ = ∆(Br). For (2k)s = (2k, . . . , 2k) with any k ∈ N,

ζ♯r(2k, . . . , 2k) =
(−1)r

2rr!
P∆s+((2k)s,0; ∆)

r∏
j=1

(2πi)2kj

(2kj)!
∈ Q · π2kr.

Example 6.3.

ζ♯2(2, 2) =
∞∑

m,n=1

1

n2(2m+ n)2
=

1

320
π4,

ζ♯2(4, 4) =
∞∑

m,n=1

1

n4(2m+ n)4
=

23

14515200
π8,

ζ♯2(6, 6) =
∞∑

m,n=1

1

n6(2m+ n)6
=

1369

871782912000
π12.

These formulas can be obtained by calculating the generating function of
type B2 similarly to the case of type C2 in Example 4.4 (see Section 4). Also
we can obtain these formulas by Theorem 6.4 in the case (p, q) = (2k, 2k)
for k ∈ N. However, unlike the ordinary double zeta value, these cannot be
easily deduced from (4.7).

Similarly, calculating the generating function of type B3, we have explicit
examples of Corollary 6.2:

ζ♯3(2, 2, 2) =
∞∑

l,m,n=1

1

n2(2m+ n)2(2l + 2m+ n)2
=

1

40320
π6,
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ζ♯3(4, 4, 4) =
∞∑

l,m,n=1

1

n4(2m+ n)4(2l + 2m+ n)4
=

23

697426329600
π12,

ζ♯3(6, 6, 6) =
∞∑

l,m,n=1

1

n6(2m+ n)6(2l + 2m+ n)6
=

1997

17030314057236480000
π18.

Also, similarly to Proposition 5.1, we can obtain the following result
whose proof will be given in Section 10.

Theorem 6.4. For p, q ∈ N≥2,

(1 + (−1)p)ζ♯2(p, q) + (1 + (−1)q)ζ♯2(q, p)(6.6)

= 2

[p/2]∑
j=0

1

2p+q−2j

(
p+ q − 1− 2j

q − 1

)
ζ(2j)ζ(p+ q − 2j)

+ 2

[q/2]∑
j=0

1

2p+q−2j

(
p+ q − 1− 2j

p− 1

)
ζ(2j)ζ(p+ q − 2j)− ζ(p+ q).

Theorem 6.4 in the case that p and q are of different parity implies the
following.

Corollary 6.5. Let p, q ∈ N≥2. Suppose p and q are of different parity,
then

ζ♯2(p, q) ∈ Q [{ζ(j + 1) | j ∈ N}] ,
which is a parity result for ζ♯2.

Remark 6.6. This parity result for ζ♯2(p, q) is important in a recent study
of the dimension of the linear space spanned by double zeta values of level
2 given by Kaneko and Tasaka (see [13]).

For example, setting (p, q) = (3, 2) in (6.6), we have

ζ♯2(2, 3) =
∞∑

m,n=1

1

n2(2m+ n)3
= −21

32
ζ(5) +

3

8
ζ(2)ζ(3).

It should be noted that this property can be given by combining the known
facts for double zeta values and for their alternating series

φ2(s1, s2) =
∞∑

m,n=1

(−1)m

ns1(m+ n)s2
.

Actually we see that

ζ♯2(s1, s2) =
1

2
{ζ2(s1, s2) + φ2(s1, s2)} .

When p and q are of different parity (p, q ∈ N and q ≥ 2), Euler proved that

ζ2(p, q) ∈ Q [{ζ(j + 1) | j ∈ N}] ,
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and Borwein et al. proved that

φ2(p, q) ∈ Q [{ζ(j + 1) | j ∈ N}]

(see [3]), from which Corollary 6.5 follows. However (6.6) gives more explicit

information on the parity result for ζ♯2(p, q).

Furthermore we can obtain the following result which can be regarded as
an analogue of Theorem 5.2 for type B3. This can be proved similarly to
Theorem 5.2, hence we omit its proof here.

Theorem 6.7. For a, b, c ∈ N≥2,

(1 + (−1)a)ζ♯3(a, b, c) + (1 + (−1)b){ζ♯3(b, a, c) + ζ♯3(b, c, a)}+ (−1)b(1 + (−1)c)ζ♯3(c, b, a)

= 21−a−b−c

{ [a/2]∑
ξ=0

2ξζ(2ξ)

a−2ξ∑
ω=0

(
ω + b− 1

ω

)(
a+ c− 2ξ − ω − 1

c− 1

)
ζ2(b+ ω, a+ c− 2ξ − ω)

+

[b/2]∑
ξ=0

2ξζ(2ξ)
a−1∑
ω=0

(
ω + b− 2ξ

ω

)(
a+ c− ω − 2

c− 1

)
ζ2(b− 2ξ + ω + 1, a+ c− 1− ω)

+ (−1)b
[c/2]∑
ξ=0

2ξζ(2ξ)

c−2ξ∑
ω=0

(
ω + b− 1

ω

)(
a+ c− 2ξ − ω − 1

a− 1

)
ζ2(b+ ω, a+ c− 2ξ − ω)

+ (−1)b
[b/2]∑
ξ=0

2ξζ(2ξ)
c−1∑
ω=0

(
ω + b− 2ξ

ω

)(
a+ c− ω − 2

a− 1

)
ζ2(b− 2ξ + ω + 1, a+ c− 1− ω)

}
− ζ♯2(a+ b, c)− (1 + (−1)b)ζ♯2(b, a+ c)− (−1)bζ♯2(b+ c, a).

Remark 6.8. In [25], we study zeta-functions of weight lattices of semisim-
ple compact connected Lie groups. We can prove analogues of Theorem 3.9
for those zeta-functions by a method similar to the above. We will give the
details in a forthcoming paper.

7. Certain restricted sum formulas for ζr(s) and for ζ♯r(s)

In this section, we give certain restricted sum formulas for ζr(s) and for
ζ♯r(s) of an arbitrary depth r which essentially include known results.

As we stated in Section 1, Gangl, Kaneko and Zagier [7] obtained the
restricted sum formulas (1.6) for double zeta values. Recently Nakamura
[34] gave certain analogues of (1.6).

More recently, Shen and Cai [35] gave the following restricted sum for-
mulas for triple and fourth zeta values:

∑
a1,a2,a3∈N

a1+a2+a3=N

ζ3(2a1, 2a2, 2a3) =
5

8
ζ(2N)− 1

4
ζ(2)ζ(2N − 2) ∈ Q · π2N (N ∈ Z≥3),

(7.1)
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∑
a1,a2,a3,a4∈N

a1+a2+a3+a4=N

ζ4(2a1, 2a2, 2a3, 2a4)

(7.2)

=
35

64
ζ(2N)− 5

16
ζ(2)ζ(2N − 2) ∈ Q · π2N(N ∈ Z≥4).

Also Machide [26] gave certain restricted sum formulas for triple zeta values.
Now recall our Corollaries 4.1 and 6.1. In the above restricted sum

formulas, the summations are taken over all tuples (a1, . . . , ar) satisfying
a1 + · · · + ar = N . On the other hand, the summations in the formulas of
Corollaries 4.1 and 6.1 are running over much smaller range, that is, just all
the permutations of one fixed (a1, . . . , ar) with a1+ · · ·+ar = N . Therefore
our Corollaries give subdivisions, or refinements, of known restricted sum
formulas.

Summing our formulas for all tuples (a1, . . . , ar) satisfying a1+ · · ·+ar =
N , we can obtain the r-ple generalization of (1.6), (7.1) and (7.2). Moreover
we can show the following further generalization, which gives a new type of
restricted sum formulas.

For d ∈ N and N ∈ N, let
Ir(d,N) = {(2da1, . . . , 2dar) ∈ (2dN)r | a1 + · · ·+ ar = N} .

Denote by Pr the set of all partitions of r, namely

Pr =
r∪

ν=1

{(j1, · · · , jν) ∈ Nν | j1 + · · ·+ jν = r}.

For J = (j1, · · · , jν) ∈ Pr, we set

Ar(d,N, J) =
{
((2dh1)

[j1], . . . , (2dhν)
[jν ]) ∈ Ir(d,N) |h1 < · · · < hν

}
,

where (2h)[j] = (2h, . . . , 2h) ∈ (2N)j. Then we have the following restricted
sum formulas of depth r.

Theorem 7.1. For d ∈ N and N ∈ N with N ≥ r,

∑
a1,...,ar∈N

a1+···+ar=N

ζr(2da1, . . . , 2dar)

(7.3)

=
(−1)r

2r

∑
J=(j1,··· ,jν)∈Pr

1

j1! · · · jν !

×
∑

(2dk)l∈Ar(d,N,J)

P∆l+
((2dk)l,0; ∆(Cr))

r∏
ρ=1

(2πi)2dkρ

(2kρ)!
∈ Q · π2dN .

Remark 7.2. In the case d = 1 and r = 2, 3, 4, we essentially obtain (1.6),
(7.1), (7.2). Also, in the case N = r, we obtain (4.3) stated in Corollary
4.2. More generally, in the case d = 1 and r ≥ 2, Muneta [33] already
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conjectured an explicit expression of the left-hand side of (7.3) in terms of
{ζ(2k) | k ∈ N}.

Proof of Theorem 7.1. Let (2da1, . . . , 2dar) ∈ Ir(d,N). Denote a set of dif-
ferent elements in {a1, . . . , ar} by {h1, . . . , hν}, and put jµ = ♯{am | am =
hµ} (1 ≤ µ ≤ ν). We may assume h1 < · · · < hν . We can easily see
that there exist σ ∈ Sr and ((2dh1)

[j1], . . . , (2dhν)
[jν ]) ∈ Ar(d,N, J) with

J = (j1, · · · , jν) ∈ Pr such that

(2da1, . . . , 2dar) = ((2dh1)
[j1], . . . , (2dhν)

[jν ])σ,

where we use the notation

(k1, . . . , kr)
σ = (kσ(1), . . . , kσ(r)).

On the other hand, the set {
(
(2dh1)

[j1], . . . , (2dhν)
[jν ]
)τ | τ ∈ Sr} contains

j1! · · · jν !-copies of each element. In fact, if we denote by S(1, ..., j1) the set
of all permutations among {1, ..., j1}, then

X(J) := S(1, . . . , j1)×S(j1+1, . . . , j1+j2)×· · ·×S(
ν−1∑
ρ=1

jρ+1, . . . ,
ν∑

ρ=1

jρ) ⊂ Sr

forms the stabilizer subgroup of ((2dh1)
[j1], . . . , (2dhν)

[jν ]), and hence ♯X(J) =
j1! · · · jν !. Therefore, using Corollary 4.1, we have∑

a1,...,ar∈N
a1+···+ar=N

ζr(2da1, . . . , 2dar) =
∑

(2da1,...,2dar)∈Ir(d,N)

ζr(2da1, . . . , 2dar)

=
∑

J=(j1,··· ,jν)∈Pr

1

j1! · · · jν !
∑

(2dk1,...,2dkr)
∈Ar(d,N,J)

∑
σ∈Sr

ζr(2dkσ(1), . . . , 2dkσ(r))

=
(−1)r

2r

∑
J=(j1,··· ,jν)∈Pr

1

j1! · · · jν !
∑

(2dk)l∈Ar(d,N,J)

P∆l+(Cr)((2dk)l,0; ∆)
r∏

ρ=1

(2πi)2dkρ

(2dkρ)!
.

This completes the proof. □

Similarly, using Corollary 6.1, we obtain the following.

Theorem 7.3. For d ∈ N and N ∈ N with N ≥ r,∑
a1,...,ar∈N

a1+···+ar=N

ζ♯r(2da1, . . . , 2dar)

=
(−1)r

2r

∑
J=(j1,··· ,jν)∈Pr

1

j1! · · · jν !

×
∑

(2dk)s∈Ar(d,N,J)

P∆s+((2dk)s,0; ∆(Br))
r∏

ρ=1

(2πi)2dkρ

(2kρ)!
∈ Q · π2dN .
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8. Analytically closed subclass

In this section we observe our theory from the analytic point of view.
First consider the case of type Cr. In Section 4 we have shown that the

zeta-functions corresponding to the sub-root system of type Cr consisting
of all long roots are exactly the family of Euler-Zagier sums. On the other
hand, it is known that the Euler-Zagier r-fold sum can be expressed as an
integral involving the Euler-Zagier (r − 1)-fold sum in the integrand. In
fact, it holds that

ζr(s1, . . . , sr) =
1

2πi

∫
(κ)

Γ(sr + z)Γ(−z)

Γ(sr)
ζr−1(s1, . . . , sr−2, sr−1 + sr + z)ζ(−z)dz

(8.1)

for r ≥ 2, where −ℜsr < κ < −1 and the path of integral is the vertical
line from κ − i∞ to κ + i∞ (see [27, Section 12], [28, Section 3]). This
formula is proved by applying the classical Mellin-Barnes integral formula
((8.2) below), so we may call (8.1) the Mellin-Barnes integral expression of
ζr(s1, . . . , sr).

Formula (8.1) implies that the family of Euler-Zagier sums is closed un-
der the Mellin-Barnes integral operation. (Note that the Riemann zeta-
function, also appearing in the integrand, is the Euler-Zagier sum with
r = 1.) When some family of zeta-functions is closed in this sense, we
call the family analytically closed. The aim of this section is to prove that
the subclasses of type Br and of type Ar discussed in our theory are both
analytically closed.

Proposition 8.1. The family of zeta-functions ζr(ss,0; ∆s+(Br)) defined
by (6.1) is analytically closed.

Proof. Recall the Mellin-Barnes formula

(1 + λ)−s =
1

2πi

∫
(κ)

Γ(s+ z)Γ(−z)

Γ(s)
λzdz,(8.2)

where s, λ ∈ C with ℜs > 0, λ ̸= 0, | arg λ| < π, κ is real with −ℜs < κ < 0.
Dividing the factor (2(m1 + · · ·+mr−1) +mr)

−sr as

(2(m2 + · · ·+mr−1) +mr)
−sr

(
1 +

2m1

2(m2 + · · ·+mr−1) +mr

)−sr

and applying (8.2) to the second factor with λ = 2m1/(2(m2+ · · ·+mr−1)+
mr), we obtain

ζr((s1, . . . , sr),0; ∆s+(Br))

(8.3)

=
1

2πi

∫
(κ)

Γ(sr + z)Γ(−z)

Γ(sr)

∞∑
m1,...,mr=1

r−1∏
i=1

1

(2
∑r−1

j=r−i+1mj +mr)si
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× (2(m2 + · · ·+mr−1) +mr)
−sr

(
2m1

2(m2 + · · ·+mr−1) +mr

)z

dz

=
1

2πi

∫
(κ)

Γ(sr + z)Γ(−z)

Γ(sr)

∞∑
m1=1

(2m1)
z

×
∞∑

m2,...,mr=1

r−2∏
i=1

1

(2
∑r−1

j=r−i+1mj +mr)si
(2(m2 + · · ·+mr−1) +mr)

−sr−1−sr−zdz

=
1

2πi

∫
(κ)

Γ(sr + z)Γ(−z)

Γ(sr)
2zζ(z)ζr−1((s1, . . . , sr−2, sr−1 + sr + z),0; ∆s+(Br−1))dz.

This implies the assertion. □

Next we consider the subclass of type Ar which we studied in [22], and
prove that it is also analytically closed. This part may be regarded as a
supplement of [22].

The explicit form of the zeta-function of the root system of type Ar is
given by

ζr(s,0; ∆(Ar)) =
∞∑

m1,...,mr=1

r∏
h=1

r∏
j=h

(
r+h−j∑
k=h

mk

)−shj

(8.4)

(where s = (shj)h,j; see [22, formula (13)]). Let a, b ∈ N, c ∈ N0 with
a + b + c = r. The main result in [22] asserts that the shuffle product
procedure can be completely described by the partial fraction decomposition
of zeta-functions (8.4) at special values s = d = (dhj)h,j, where dhj for h = 1, 1 ≤ j ≤ c

h = 1, b+ c+ 1 ≤ j ≤ a+ b+ c
h = a+ 1, a+ c+ 1 ≤ j ≤ a+ b+ c

(8.5)

are all positive integers, and all other dhj are equal to 0. Let ∆
(a,b,c)
+ =

∆
(a,b,c)
+ (Ar) be the set of all positive roots corresponding to shj with (h, j)

in the list (8.5). Then this is a root set, and the above special values can

be interpreted as special values of zeta-functions of ∆
(a,b,c)
+ .

Theorem 8.2. The family of zeta-functions ζr(s
(a,b,c),0; ∆

(a,b,c)
+ (Ar)) is an-

alytically closed, where s(a,b,c) = (shj)h,j with (h, j) in the list (8.5).

Proof. We prove that zeta-functions ζr+1 belonging to the above family can
be expressed as a Mellin-Barnes integral, or multiple integrals, involving ζr
also belonging to the above family. Let a, b ∈ N, c ∈ N0 with a+ b+ c = r.

We show that all of the zeta-functions ζr+1 associated with (i) ∆
(a+1,b,c)
+ , (ii)

∆
(a,b+1,c)
+ , (iii) ∆

(a,b,c+1)
+ have integral expressions involving the zeta-function

of ∆
(a,b,c)
+ .
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From (8.4) we see that

ζr(s
(a,b,c),0; ∆

(a,b,c)
+ (Ar)) =

∞∑
m1,...,ma+b+c=1

c∏
j=1

(m1 +m2 + · · ·+ma+b+c+1−j)
−s1j

(8.6)

×
a+b+c∏

j=b+c+1

(m1 +m2 + · · ·+ma+b+c+1−j)
−s1j

×
a+b+c∏

j=a+c+1

(ma+1 +ma+2 + · · ·+m2a+b+c+1−j)
−sa+1,j ,

which is, by renaming the variables,

=
∞∑

m1,...,ma+b+c=1

(m1 + · · ·+ma+b+1)
−s11 · · · (m1 + · · ·+ma+b+c)

−s1c(8.7)

×m−s21
1 (m1 +m2)

−s22 · · · (m1 + · · ·+ma)
−s2a

×m−s31
a+1 (ma+1 +ma+2)

−s32 · · · (ma+1 + · · ·+ma+b)
−s3b .

Now we consider the above three cases (i), (ii) and (iii) separately.
The simplest case is (iii). When we replace c by c + 1 in (8.7), the

differences are that the summation is now with respect to m1, . . . ,ma+b+c+1,
and a new factor (m1 + · · ·+ma+b+c+1)

−s1,c+1 appears. Dividing this factor
as

(m1 + · · ·+ma+b+c+1)
−s1,c+1

= (m1 + · · ·+ma+b+c)
−s1,c+1

(
1 +

ma+b+c+1

m1 + · · ·+ma+b+c

)−s1,c+1

and apply (8.2) as in the argument of (8.3), we find that the sum with
respect to ma+b+c+1 is separated, which produces a Riemann zeta factor,

and hence the zeta-function of ∆
(a,b,c+1)
+ can be expressed as an integral of

Mellin-Barnes type, involving gamma factors, a Riemann zeta factor, and

the zeta-function of ∆
(a,b,c)
+ .

Next consider the case (ii). When we replace b by b+ 1, (8.7) is changed
to

=
∞∑

m1,...,ma+b+c+1=1

(m1 + · · ·+ma+b+2)
−s11 · · · (m1 + · · ·+ma+b+c+1)

−s1c

(8.8)

×m−s21
1 (m1 +m2)

−s22 · · · (m1 + · · ·+ma)
−s2a

×m−s31
a+1 (ma+1 +ma+2)

−s32 · · · (ma+1 + · · ·+ma+b)
−s3b

× (ma+1 + · · ·+ma+b+1)
−s3,b+1 .
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The last factor is

= (ma+1 + · · ·+ma+b)
−s3,b+1

(
1 +

ma+b+1

ma+1 + · · ·+ma+b

)−s3,b+1

(8.9)

= (ma+1 + · · ·+ma+b)
−s3,b+1

× 1

2πi

∫
(κ)

Γ(s3,b+1 + z)Γ(−z)

Γ(s3,b+1)

(
ma+b+1

ma+1 + · · ·+ma+b

)z

dz.

The factors (m1+ · · ·+ma+b+n)
−s1,n−1 (2 ≤ n ≤ c+1) also include the term

ma+b+1. We divide these factors as

(m1 + · · ·+ma+b +ma+b+2 + · · ·+ma+b+n)
−s1,n−1

×
(
1 +

ma+b+1

m1 + · · ·+ma+b +ma+b+2 + · · ·+ma+b+n

)−s1,n−1

and apply (8.2) to obtain

(m1 + · · ·+ma+b+n)
−s1,n−1

(8.10)

= (m1 + · · ·+ma+b +ma+b+2 + · · ·+ma+b+n)
−s1,n−1

× 1

2πi

∫
(κn)

Γ(s1,n−1 + zn)Γ(−zn)

Γ(s1,n−1)

(
ma+b+1

m1 + · · ·+ma+b +ma+b+2 + · · ·+ma+b+n

)zn

dzn

for 2 ≤ n ≤ c+ 1. Substituting (8.9) and (8.10) into (8.8), we find that the
sum with respect to ma+b+1 is separated and gives a Riemann zeta factor
ζ(−z2−· · ·−zc+1−z). Since the remaining sum produces the zeta-function

of ∆
(a,b,c)
+ , we obtain that the zeta-function of ∆

(a,b+1,c)
+ can be expressed as

a (c+1)-ple integral of Mellin-Barnes type involving ζ(−z2−· · ·− zc+1− z)

and the zeta-function of ∆
(a,b,c)
+ .

The case (i) is similar; we omit the details, only noting that in this case
the variable to be separated is ma+1. The proof of Theorem 8.2 is now
complete. □

9. Proof of fundamental formulas

In this section we prove fundamental formulas stated in Section 3.

Lemma 9.1. For B ⊂ ∆+ and V ∈ V , we have

(9.1) L.h.[V ∩B] = {v ∈ V | ⟨v, µV
β ⟩ = 0 for all β ∈ V \B}.

Proof. Let v be an element of the right-hand side. We write v =
∑

β∈V cββ

and have cβ = 0 for all β ∈ V \B and hence

(9.2) v =
∑

β∈V∩B

cββ ∈ L.h.[V ∩B].

The converse is shown similarly. □



A STUDY ON MULTIPLE ZETA VALUES 23

Proof of Theorem 3.7. For t = (tα)α∈∆+ ∈ T, y ∈ V , V ∈ V , B ⊂ ∆+ and
q ∈ Q∨/L(V∨), let

F (t,y;V, B, q) = (−1)|B\V|
( ∏
γ∈∆+\(V∪B)

tγ
tγ −

∑
β∈V\B tβ⟨γ∨, µV

β ⟩

)
×
( ∏
β∈V\B

tβ exp(tβ{y + q}V,β)

etβ − 1

)
,

(9.3)

so that

(9.4) F (t,y; ∆) =
∑
V∈V

1

|Q∨/L(V∨)|
∑

q∈Q∨/L(V∨)

F (t,y;V, ∅, q).

Assume y ∈ V \ HR , and let

(9.5) Fj = F (t,y;V, Aj, q).

We calculate Dνj+1
Fj. First, since y /∈ HR , noting Remark 3.5 we find that

(9.6) ∂ν∨j+1
Fj =

( ∑
β∈V\Aj

tβ⟨ν∨
j+1, µ

V
β ⟩
)
Fj.

Consider the case νj+1 ∈ V. Then ⟨ν∨
j+1, µ

V
β ⟩ = δνj+1,β and

(9.7)
∑

β∈V\Aj

tβ⟨ν∨
j+1, µ

V
β ⟩ = tj+1,

where we write tνj+1
= tj+1 for brevity. Hence we have ∂ν∨j+1

Fj = tj+1Fj.

Therefore we obtain

Dνj+1
Fj = (−1)|Aj\V|

( ∏
γ∈∆+\(V∪Aj)

tγ
tγ −

∑
β∈V\(Aj∪{νj+1}) tβ⟨γ∨, µV

β ⟩

)
×
( ∏
β∈V\(Aj∪{νj+1})

tβ exp(tβ{y + q}V,β)

etβ − 1

)(9.8)

which is equal to Fj+1 because ∆+ \ (V ∪ (Aj ∪ {νj+1})) = ∆+ \ (V ∪ Aj)
and |(Aj ∪ {νj+1}) \V| = |Aj \V|.

Next consider the case νj+1 /∈ V. If ⟨ν∨
j+1, µ

V
β ⟩ = 0 for all β ∈ V \ Aj,

then

(9.9) ∂ν∨j+1
Fj =

( ∑
β∈V\Aj

tβ⟨ν∨
j+1, µ

V
β ⟩
)
Fj = 0

and hence Dνj+1
Fj = 0. Otherwise, since

(9.10)
∂

∂tj+1

∣∣∣∣
tj+1=0

( tj+1

tj+1 −
∑

β∈V\Aj
tβ⟨ν∨

j+1, µ
V
β ⟩

)
= − 1∑

β∈V\Aj
tβ⟨ν∨

j+1, µ
V
β ⟩
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we have

DνFj = (−1)|Aj\V|+1
( ∏
γ∈∆+\(V∪Aj∪{νj+1})

tγ
tγ −

∑
β∈V\Aj

tβ⟨γ∨, µV
β ⟩

)
×
( ∏
β∈V\Aj

tβ exp(tβ{y + q}V,β)

etβ − 1

)
.

(9.11)

By noting V \ (Aj ∪{νj+1}) = V \Aj and |(Aj ∪{νj+1}) \V| = |Aj \V|+1
we find that the right-hand side is equal to Fj+1.

We see that the condition ⟨νj+1, µ
V
β ⟩ = 0 for all β ∈ V \ Aj is equivalent

to the condition νj+1 ∈ L.h.[V ∩ Aj]. Therefore the above results can be
summarized as

(9.12) Dνj+1
Fj =

{
0 (νj+1 ∈ L.h.[V ∩ Aj]),

Fj+1 (νj+1 /∈ L.h.[V ∩ Aj]).

Hence

(9.13) DAF0 =

{
0 (V /∈ VA),

FN (V ∈ VA).

Similarly to the above calculations, we see that DA,2F0 gives the same result
as (9.13). Thus, since F0 = F (t,y;V, ∅, q), from (9.4) we obtain (3.8).

The continuity follows from the limit

(9.14) lim
c→0+

{y + q + cϕ}V,β = {y + q}V,β

(see the last part of the proof of [17, Theorem 4.1].) Finally, since F (t,y; ∆)
is holomorphic with respect to t around the origin, so is

(
DAF

)
(t∆∗ ,y; ∆)

with respect to t∆∗ . The proof of Theorem 3.7 is thus complete. □
Proof of Theorem 3.9. First assume y ∈ V \ HR . Let k′ = (k′

α)α∈∆+ with
k′
α = kα (α ∈ ∆∗), k′

α = 2 (α ∈ ∆+ \∆∗ = A). Then by Proposition 3.3, we
have

S(k′,y; ∆) =
∑

λ∈P\H∆∨

e2πi⟨y,λ⟩
∏

α∈∆+

1

⟨α∨, λ⟩k′α

=
∑
w∈W

( ∏
α∈∆+∩w∆−

(−1)k
′
α

)
ζr(w

−1k′, w−1y; ∆)

= (−1)|∆+|P(k′,y; ∆)

( ∏
α∈∆+

(2πi)k
′
α

k′
α!

)
.

(9.15)

Applying
∏

α∈A ∂2
α∨ to the above. From the first line we observe that each

∂2
α∨ produces the factor (2πi⟨α∨, λ⟩)2. Hence the factor ζr(w

−1k′, w−1y; ∆)
on the second line is transformed into (2πi)2|A|ζr(w

−1k, w−1y; ∆). Therefore
we have

(9.16) (2πi)2|A|
∑
w∈W

( ∏
α∈∆+∩w∆−

(−1)kα
)
ζr(w

−1k, w−1y; ∆)
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= (−1)|∆+|
(∏
α∈A

∂2
α∨

)
P(k′,y; ∆)

( ∏
α∈∆+

(2πi)k
′
α

k′
α!

)
.

Since ( ∏
α∈∆+

(2πi)k
′
α

k′
α!

)
=

(∏
α∈∆∗

(2πi)k
′
α

k′
α!

)(∏
α∈A

(2πi)2

2!

)
,

we have ∑
w∈W

( ∏
α∈∆+∩w∆−

(−1)kα
)
ζr(w

−1k, w−1y; ∆)

= (−1)|∆+|
(∏
α∈A

1

2
∂2
α∨

)
P(k′,y; ∆)

(∏
α∈∆∗

(2πi)k
′
α

k′
α!

)
.

(9.17)

From (3.1) it follows that
(9.18)(∏
α∈A

1

2

∂2

∂t2α

∣∣∣∣
tα=0

∂2
α∨

)
F (t,y; ∆) =

∑
m=(mα)α∈∆+

mα∈N0(α∈∆∗)
mα=2(α∈A)

(∏
α∈A

1

2
∂2
α∨

)
P(m,y; ∆)

∏
α∈∆∗

tmα
α

mα!
.

By Theorem 3.7, we see that the left-hand side of (9.18) is equal to

(9.19) F∆∗(t∆∗ ,y; ∆) =
∑

m∆∗∈N|∆∗|
0

P∆∗(m∆∗ ,y; ∆)
∏
α∈∆∗

tmα
α

mα!
.

Comparing (9.18) with (9.19) we find that(∏
α∈A

1

2
∂2
α∨

)
P(k′,y; ∆) = P∆∗(k∆∗ ,y; ∆).

Therefore (9.17) implies the desired result when y ∈ V \HR . By the conti-
nuity with respect to y, the result is also valid in the case when y ∈ HR . □
Remark 9.2. It is possible to prove Theorem 3.9 by use of DA instead of
DA,2. In this method, we need to consider the case kα = 1 for some α ∈ A
and such an argument is indeed valid. (See [20, Remark 3.2].)

10. Proofs of Theorems 5.2 and 6.4

In this final section we prove Theorems 5.2 and 6.4. The basic principle
of the proofs of these theorems is similar to that of the argument developed
in [19, Section 7]. We first state the following lemma.

Lemma 10.1. For an arbitrary function f : N0 → C and d ∈ N, we have

d∑
k=0

ϕ(d− k)εd−k

k∑
ν=0

f(k − ν)
(iπ)ν

ν!
= − iπ

2
f(d− 1) +

[d/2]∑
ξ=0

ζ(2ξ)f(d− 2ξ),

(10.1)
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where we denote the integer part of x ∈ R by [x], εj = (1+(−1)j)/2 (j ∈ Z)
and ϕ(s) =

∑
m≥1(−1)mm−s = (21−s − 1) ζ(s).

Proof. This can be immediately obtained by combining (2.6) and (2.7) (with
the choice g(x) = iπf(x− 1) ) in [30, Lemma 2.1]. □

Proof of Theorem 5.2. From [19, (4.31) and (4.32)], we have∑
n∈Z∗

(−1)neinθ

na
− 2

a∑
j=0

ϕ(a− j)εa−j
(iθ)j

j!
= 0(10.2)

for a ≥ 2 and θ ∈ [−π, π], where Z∗ = Z ∖ {0}. For x, y ∈ R with |x| < 1
and |y| < 1, multiply the above by

(10.3)
∑
l,m∈N

(−1)l+mxlymei(l+m)θ.

Separating the terms corresponding to l +m+ n = 0, we obtain∑
l,m∈N

∑
n∈Z∗

l+m+n̸=0

(−1)l+m+nxlymei(l+m+n)θ

na

− 2
a∑

j=0

ϕ(a− j)εa−j

∑
l,m∈N

(−1)l+mxlymei(l+m)θ (iθ)
j

j!

= −(−1)a
∑
l,m∈N

xlym

(l +m)a

for θ ∈ [−π, π]. The right-hand side of the above is constant with respect to
θ. Therefore we can apply [19, Lemma 6.2] with h = 1, a1 = a, d = c ≥ 2,

C(N) =
∑

l,m∈N,n∈Z∗
l+m+n=N

xlym

na
,

D(N ; r; 1) =

{∑
l,m∈N

l+m=N
xlym (N ≥ 2, r = 0),

0 (otherwise)

in the notation of [19]. The result is∑
l,m∈N

∑
n∈Z∗

l+m+n̸=0

(−1)l+m+nxlymei(l+m+n)θ

na(l +m+ n)c

− 2
a∑

j=0

ϕ(a− j)εa−j

j∑
ξ=0

(
j − ξ + c− 1

j − ξ

)
(−1)j−ξ

∑
l,m∈N

(−1)l+mxlymei(l+m)θ

(l +m)c+j−ξ

(iθ)ξ

ξ!

+ 2
c∑

j=0

ϕ(c− j)εc−j

j∑
ξ=0

(
j − ξ + a− 1

a− 1

)
(−1)a−1

∑
l,m∈N

xlym

(l +m)a+j−ξ

(iθ)ξ

ξ!
= 0.
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Replace x by −xe−iθ and separate the term corresponding to m + n = 0
in the first member on the left-hand side, and apply [19, Lemma 6.2] again
with d = b ≥ 2. Then we can obtain

∑
l,m∈N

∑
n∈Z∗

m+n̸=0
l+m+n̸=0

(−1)m+nxlymei(m+n)θ

na(m+ n)b(l +m+ n)c

(10.4)

= 2
a∑

j=0

ϕ(a− j)εa−j

j∑
ξ=0

j−ξ∑
ω=0

(
ω + b− 1

ω

)
(−1)ω

(
j − ξ − ω + c− 1

c− 1

)
(−1)j−ξ−ω

×
∑
l,m∈N

(−1)mxlymeimθ

mb+ω(l +m)c+j−ξ−ω

(iθ)ξ

ξ!

− 2
b∑

j=0

ϕ(b− j)εb−j

j∑
ξ=0

a−1∑
ω=0

(
ω + j − ξ

ω

)
(−1)ω

(
a− 1− ω + c− 1

c− 1

)
(−1)a−1−ω

×
∑
l,m∈N

xlym

mj−ξ+ω+1(l +m)a+c−1−ω

(iθ)ξ

ξ!

− 2
c∑

j=0

ϕ(c− j)εc−j

j∑
ξ=0

j−ξ∑
ω=0

(
ω + b− 1

ω

)
(−1)ω

(
j − ξ − ω + a− 1

a− 1

)
(−1)a−1

×
∑
l,m∈N

(−1)lxlyme−ilθ

(−l)b+ω(l +m)a+j−ξ−ω

(iθ)ξ

ξ!

+ 2
b∑

j=0

ϕ(b− j)εb−j

j∑
ξ=0

c−1∑
ω=0

(
ω + j − ξ

ω

)
(−1)ω

(
a− 1− ω + c− 1

a− 1

)
(−1)a−1

×
∑
l,m∈N

xlym

(−l)j−ξ+ω+1(l +m)a+c−1−ω

(iθ)ξ

ξ!
.

Since a, b, c ≥ 2, we can let x, y → 1 on the both sides because of absolute
convergence. Then set θ = π, and consider the left-hand side of the resulting
formula first. The contribution of the terms corresponding to m + 2n = 0
is obviously (−1)aζ2(a+ b, c). The contribution of the terms corresponding
to l +m+ 2n = 0 is (with rewriting −n by n)

(−1)a
∑
m,n∈N

m ̸=n,m<2n

1

na+c(m− n)b
,

which is, by separating into two parts according to n < m < 2n and 0 <
m < n, equal to (−1)a(1 + (−1)b)ζ2(b, a + c). We can also see that the
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contribution of the terms corresponding to l + 2m+ 2n = 0 is

(−1)a
∑
m,n∈N
n>m

1

na(m− n)b(n−m)c
= (−1)a+bζ2(b+ c, a).

The remaining part of the left-hand side is∑
l,m∈N

∑
n∈Z∗

m+n̸=0
m+2n̸=0
l+m+n̸=0
l+m+2n̸=0
l+2m+2n̸=0

1

na(m+ n)b(l +m+ n)c

= ζ3(a, b, c) + (−1)a
∑
l,m∈N

∑
n∈N
m ̸=n
m ̸=2n
l+m ̸=n
l+m̸=2n
l+2m ̸=2n

1

na(m− n)b(l +m− n)c
.

On the above double sum, replace j = m−n and k = n−m correspondingly
to m > n and m < n, respectively. On the part corresponding to m > n, we
further divide the sum into three parts according to l+j < n, j < n < l+j,
n < j and find that the contribution of this part is

(−1)a {ζ3(b, c, a) + ζ3(b, a, c) + ζ3(a, b, c)} .
Similarly we treat the part m < n. Collecting the above results, we obtain
that the left-hand side is

(−1)a
{
(1 + (−1)a)ζ3(a, b, c) + (1 + (−1)b) (ζ3(b, a, c) + ζ3(b, c, a))

+ (−1)b(1 + (−1)c)ζ3(c, b, a) + ζ2(a+ b, c)

+ (1 + (−1)b)ζ2(b, a+ c) + (−1)bζ2(b+ c, a)

}
.

On the other hand, applying Lemma 10.1, we can rewrite the right-hand
side to

2(−1)a
{ [a/2]∑

ξ=0

ζ(2ξ)

a−2ξ∑
ω=0

(
ω + b− 1

ω

)(
a+ c− 2ξ − ω − 1

c− 1

)
ζ2(b+ ω, a+ c− 2ξ − ω)

+

[b/2]∑
ξ=0

ζ(2ξ)
a−1∑
ω=0

(
ω + b− 2ξ

ω

)(
a+ c− ω − 2

c− 1

)
ζ2(b− 2ξ + ω + 1, a+ c− 1− ω)

+ (−1)b
[c/2]∑
ξ=0

ζ(2ξ)

c−2ξ∑
ω=0

(
ω + b− 1

ω

)(
a+ c− 2ξ − ω − 1

a− 1

)
ζ2(b+ ω, a+ c− 2ξ − ω)

+ (−1)b
[b/2]∑
ξ=0

ζ(2ξ)
c−1∑
ω=0

(
ω + b− 2ξ

ω

)(
a+ c− ω − 2

a− 1

)
ζ2(b− 2ξ + ω + 1, a+ c− 1− ω)

}
.

This completes the proof of Theorem 5.2. □
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Finally we give the proof of Theorem 6.4.

Proof of Theorem 6.4. Let p ∈ N≥2 and s ∈ R>1. It follows from [24, Equa-
tion (4.7)] that∑
l∈Z∗,m∈N
l+m ̸=0

(−1)l+mxmei(l+m)θ

lpms
− 2

p∑
j=0

ϕ(p− j)εp−j

{
∞∑

m=1

(−1)mxmeimθ

ms

}
(iθ)j

j!

+ (−1)p
∞∑

m=1

xm

ms+p
= 0

for θ ∈ [−π, π] and x ∈ C with |x| ≤ 1. Setting x = −eiθ on the both sides
and separating the term corresponding to l + 2m = 0 of the first term on
the left-hand side, we have∑

l∈Z∗,m∈N
l+m̸=0
l+2m ̸=0

(−1)lei(l+2m)θ

lpms
− 2

p∑
j=0

ϕ(p− j)εp−j

{
∞∑

m=1

e2imθ

ms

}
(iθ)j

j!

+ (−1)p
∞∑

m=1

(−1)meimθ

ms+p
= −

∞∑
m=1

1

(−2m)pms
.

By [19, Lemma 6.2] with d = q ≥ 2, we obtain

∑
l∈Z∗,m∈N
l+m ̸=0
l+2m̸=0

(−1)lei(l+2m)θ

lpms(l + 2m)q

(10.5)

= 2

p∑
j=0

ϕ(p− j)εp−j

j∑
ξ=0

(
j − ξ + q − 1

j − ξ

)
(−1)j−ξ

2q+j−ξ

∞∑
m=1

e2imθ

ms+q+j−ξ

(iθ)ξ

ξ!

− 2

q∑
j=0

ϕ(q − j)εq−j

j∑
ξ=0

(
j − ξ + p− 1

j − ξ

)
(−1)p−1

2p+j−ξ

∞∑
m=1

1

ms+p+j−ξ

(iθ)ξ

ξ!

− (−1)p
∞∑

m=1

(−1)meimθ

ms+p+q
.

Let θ = π and using Lemma 10.1. Then the right-hand side of (10.5) is
equal to

2(−1)p
[p/2]∑
ξ=0

1

2p+q−2ξ

(
p+ q − 1− 2ξ

q − 1

)
ζ(2ξ)ζ(s+ p+ q − 2ξ)(10.6)

+ 2(−1)p
[q/2]∑
ξ=0

1

2p+q−2ξ

(
p+ q − 1− 2ξ

p− 1

)
ζ(2ξ)ζ(s+ p+ q − 2ξ)

− (−1)pζ(s+ p+ q).
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On the other hand, we can see that the left-hand side can be written in
terms of the zeta-function of B2. Recall that

ζ2(s1, s2, s3, s4;B2) = ζ2((s1, s2, s3, s4),0; ∆(B2))

=
∞∑

m1=1

∞∑
m2=1

1

ms1
1 ms2

2 (m1 +m2)s3(2m1 +m2)s4
.

The contribution of the terms with l > 0 to the left-hand side is obviously
ζ2(s, p, 0, q;B2). As for the terms with l < 0, we rewrite −l by l, divide the
sum into three parts according to the conditions l < m, m < l < 2m and
l > 2m, and evaluate each part in terms of the zeta-function of B2. The
conclusion is that the left-hand side is

ζ2(s, p, 0, q;B2) + (−1)pζ2(0, p, s, q;B2) + (−1)pζ2(0, q, s, p;B2)(10.7)

+ (−1)p+qζ2(s, q, 0, p;B2).

We combine (10.6) and (10.7) and multiply by (−1)p. Then we can set s = 0
because (10.6) and (10.7) are absolutely convergent for s > −1. Noting

ζ2(0, p, 0, q;B2) = ζ♯2(p, q), we complete the proof of Theorem 6.4. □

Acknowledgements. The authors would like to express their sincere grati-
tude to Professor Mike Hoffman for pointing out that symmetric sums for
MZVs in (4.2) can be written in terms of products of Riemann’s zeta values
at even positive integers and giving related valuable comments (see Remark
4.3).
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