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ON THE VALUE-DISTRIBUTION OF LOGARITHMIC DERIVATIVES

OF DIRICHLET L-FUNCTIONS

YASUTAKA IHARA AND KOHJI MATSUMOTO

Abstract. We shall prove an unconditional basic result related to the value-distributions
of {(L′/L)(s, χ)}χ and of {(ζ′/ζ)(s+ iτ)}τ , where χ runs over Dirichlet characters with
prime conductors and τ runs over R. The result asserts that the expected density func-
tion common for these distributions are in fact the density function in an appropriate
sense. Under the generalized Riemann hypothesis, stronger results have been proved in
our previous articles, but our present result is unconditional.

1. Introduction and statement of the result

The present paper is a part of authors’ research on the value-distribution of L-functions

over global fields, and is regarded as a supplement of our former papers [3] and [7]. In [3],

we defined and studied the “would-be density function” Mσ(w) (σ > 1/2) for the value-

distribution of L′/L(s, χ) on the complex plane C for certain family of L-functions over

any global field (s: fixed with <(s) = σ), and established the expected connection under

some restrictive hypothesis. This was generalized and strengthened in [8] under GRH,

the generalized Riemann hypothesis. In [7] we treated the analogous ”would-be” density

function Mσ(w) for the logL case, and in this case, when the base field is the rational

number field Q, we were able to obtain an unconditional result on the expected connection.

The purpose of the present paper is to show that a parallel unconditional result for the

L′/L case over Q can be obtained with but small modifications of the methods used in [7].

Let s = σ+ iτ be a complex variable, ζ(s) be the Riemann zeta-function, χ a Dirichlet

character with prime conductor, and L(s, χ) the associated Dirichlet L-function. We study

the value-distribution of (L′/L)(s, χ) when χ varies, or (ζ ′/ζ)(s+ iτ ′) when τ ′ varies. In

the latter case, defining χτ ′(n) = n−iτ ′ (τ ′ ∈ R, n = 1, 2, . . .), we may regard that

ζ(s+ iτ ′) = L(s, χτ ′) and the “character” χτ ′ varies. Therefore our object consists of two

types of infinite families of characters, (FI) all Dirichlet characters χ of prime conductors,

or (FII) characters of the form χτ ′ , τ
′ ∈ R.

Let Mσ(w) for σ > 1/2 be the function of w ∈ C defined in [3]. The construction of

Mσ(w) will be reviewed at the beginning of Section 2. Here we take K = Q (in terms of

[8], this corresponds to the function Mσ(w) for “Case 1”, K = Q, P∞ = (∞)).

We shall prove the following theorem.
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Theorem 1.1. Let s = σ + iτ ∈ C be fixed, with σ = <s > 1/2. Then the equality

AvgχΦ

(
L′

L
(s, χ)

)
=

∫
C
Mσ(w)Φ(w)|dw|(1.1)

holds simultaneously for both families (FI) and (FII), where |dw| = dudv/2π for w = u+iv,

the meaning of Avgχ is defined below, and the test function Φ is one of the following:

(i) Φ is any continuous bounded function;

(ii) Φ is the characteristic function of either a compact subset of C or the complement

of such a subset.

Finally, when s = 1, (at least) in case of the family (FI), the test function Φ can be any

continuous function of at most polynomial growth.

The above statement for σ > 1, and stronger but conditional results for σ > 1/2 under

GRH (over more general base fields for the family (FI)) were already shown in [3, 8]

(cf. also a survey article [5]). The purpose of the present paper is to prove this theorem

unconditionally for any σ > 1/2.

The definition of Avgχ is as follows.

Case (FI). For any prime f(> 2), let X(f) denote the set of all primitive Dirichlet

characters whose conductor is precisely f , and X ′(f) = X ′(f, s) be the subset of X(f)

consisting of all χ such that L(s, χ) 6= 0 for our fixed s. By a theorem of Montgomery [14]

it satisfies

lim
f→∞

|X ′(f)|
|X(f)|

= 1.(1.2)

(For any finite set A we denote by |A| its cardinality.) For any complex-valued function

φ(χ) on X ′(f), we define the averages

AvgX′(f)φ(χ) =
1

|X(f)|
∑

χ∈X′(f)

φ(χ),(1.3)

Avgf≤mφ(χ) =
1

π(m)

∑
f≤m

AvgX′(f)φ(χ),(1.4)

where m is any positive integer, f runs over all odd prime numbers up to m, and π(m)

denotes the number of prime numbers up to m. Now define

Avgχφ(χ) = lim
m→∞

(
Avgf≤mφ(χ)

)
.(1.5)

When we state a formula for Avgχ, it will always include the claim that the limit exists.

We remark here that the main statement of the theorem deals only with the averages of

those φ(χ) which are bounded on the union of X ′(f) over all f (because the test function

Φ is bounded). Therefore, if we replace X ′(f) by a smaller subset preserving the condition

(1.2), the average (1.3) (resp. (1.4)) changes only by a quantity which tends to 0 as f → ∞
(resp. m → ∞), hence the limit average (1.5) remains the same (e.g. the subset “X ′(f)”

in [7], or the subset denoted by X ′′(f) defined below in Section 2 used for the proof). As

regards the additional statement for s = 1, note that X ′(f, 1) = X(f).
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Case (FII). The definition of Avgχ in this case is simply

Avgχφ(χτ ′) = lim
T→∞

1

2T

∫ T

−T
φ(χτ ′)dτ

′,(1.6)

for any integrable function φ(χτ ′) of τ
′.

A closely related problem is the study on the value-distribution of logL(s, χ). In [7],

we have constructed a continuous non-negative density function Mσ(w) parametrized by

σ > 1/2 and established the following theorem.

Theorem 1.2. ([7]) For any s ∈ C with σ = <(s) > 1/2,

AvgχΦ(logL(s, χ)) =

∫
C
Mσ(w)Φ(w)|dw|(1.7)

holds simultaneously for both families (FI) and (FII) for a suitable choice of the branch of

the logarithm, a suitable definition of the average Avgχ, where Φ is as in Theorem 1.1.

Our Theorem 1.1 implies that the exact analogue of Theorem 1.2 holds in the L′/L

case.

To prove these unconditional results, our method is to apply several mean value results

on L-functions. As for the logL case, such mean value theorems were obtained in [7] to

prove Theorem 1.2. It is possible to use the same mean value theorems in our present

situation, because L′/L can be written as an integral involving logL in the integrand, by

using the Cauchy integral formula. Note that the idea of applying the Cauchy integral

formula in such a situation already appeared in Kershner and Wintner [12] in the (FII)

case (see Remark 3.1).

In the following sections we will prove Theorem 1.1. Since the basic structure of the

proof is similar to those developed in [3] [7], we will only point out the differences from

those and omit the details.

2. Proof in the case (FI)

First of all, we review how to construct the density functionMσ(w) (in the case K = Q)

in [3]. Let p be a prime number, and

cσ,p =
− log p

p2σ − 1
, rσ,p =

pσ log p

p2σ − 1
.

Write w ∈ C as w = cσ,p + reiθ, where r ≥ 0 and θ ∈ R, and define Mσ,p by

Mσ,p(w) =
p2σ − 1

|pσ − eiθ|2
· δ(r − rσ,p)

r
,

where δ(·) stands for the usual 1-dimensional Dirac delta function. Let P = Py be the set

of all prime numbers not greater than y, and define Mσ,P as the convolution product of

Mσ,p (p ∈ P ) with respect to |dw|. Then, for σ > 1/2, Mσ,P (w) converges uniformly to

a non-negative real-valued C∞-function as y → ∞ ([3, Theorem 2]), which we denote by

Mσ(w).
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Now we start the proof of Theorem 1.1. As mentioned in Section 1, the assertion of

Theorem 1.1 was already shown in [3] when σ > 1. Therefore it is sufficient to consider

the case 1/2 < σ ≤ 1. The final statement for s = 1 then follows directly by combining

[9, Section 5] (Theorem 5) with [8, Section 5] (Lemma A).

As in [7, Section 7], take a number σ0 satisfying 1/2 < σ0 < 1 and σ0 ≤ σ, and let

0 < 3ε1 < σ0 − 1/2, α0 = σ0 − ε1, α1 = σ0 − 2ε1, α2 = 1/2 + ε1. Then 1/2 < α2 <

α1 < α0 < σ0 < 1. These constants are regarded to be fixed, and the implied constants of

Landau’s O-symbol or Vinogradov’s symbol below may depend on them.

Let T = |τ | + 2, and let X ′′(f) be the set of all χ ∈ X(f) for which L(s′, χ) 6= 0 for

any s′ = σ′ + iτ ′ in the region σ′ ≥ σ0, |τ ′| ≤ T . Then obviously, X ′′(f) ⊂ X ′(f) and

Proposition 2.1 of [7] (which is based on a theorem of Montgomery [14]) asserts that

lim
f→∞

|X ′′(f)|
|X(f)|

= 1.(2.1)

So it suffices to prove the theorem where the average is defined with respect to X ′′(f).

We study the case Φ = ψz first, where z ∈ C and ψz is the additive character of C
defined by ψz(w) = exp(i<(z̄w)). When once this case is established, we can deduce the

assertion of the case (FI) of Theorem 1.1 for general Φ satisfying (i) and (ii), quite similarly

to the argument in [7, Section 9] (see also Remark 3.2).

In the case Φ = ψz, the right-hand side of (1.1) is equal to∫
C
Mσ(w)ψz(w)|dw| = M̃σ(z),

the Fourier dual of Mσ(z) (see Theorem 3 of [3]). Since ψz is bounded, the average (1.3)

(and so (1.4), (1.5)) does not change if we replace X ′(f) by X ′′(f). Therefore, noting

|X(f)| = f − 2 for any odd prime f , we find that what we have to prove in this case is

lim
m→∞

1

π(m)

∑
f≤m

1

f − 2

∑
χ∈X′′(f)

ψz

(
L′

L
(s, χ)

)
= M̃σ(z).(2.2)

First we introduce the “finite truncation” of L-functions. Let 1 < y < m, P = Py as

above, and write P = {p1, . . . , pr}, r = π(y) ∼ y/ log y. Define

LP (s, χ) =
∏
p∈P

(
1− χ(p)p−s

)−1

and

logLP (s, χ) = −
∑
p∈P

Log(1− χ(p)p−s),

where “Log” means the principal branch. As in [3], let Mσ,P (w) be the density function

for the value-distribution of (L′
P /LP )(s, χ), and M̃σ,P (z) be its Fourier dual.

The starting point of the proof of (2.2) is the following inequality:∣∣∣∣∣∣ 1

π(m)

∑
f≤m

1

f − 2

∑
χ∈X′′(f)

ψz

(
L′

L
(s, χ)

)
− M̃σ(z)

∣∣∣∣∣∣(2.3)
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≤

∣∣∣∣∣∣ 1

π(m)

∑
f≤m

1

f − 2

∑
χ∈X′′(f)

{
ψz

(
L′

L
(s, χ)

)
− ψz

(
L′
P

LP
(s, χ)

)}∣∣∣∣∣∣
+

∣∣∣∣∣∣ 1

π(m)

∑
f≤m

1

f − 2

∑
χ∈X′′(f)

ψz

(
L′
P

LP
(s, χ)

)
− M̃σ,P (z)

∣∣∣∣∣∣
+
∣∣∣M̃σ,P (z)− M̃σ(z)

∣∣∣
= X ld

P (z) + Y ld
P (z) + Z ld

P (z),

say. This is an analogue of [7, (125)], and “ld”s (which stand for the “logarithmic de-

rivative”) are attached only for the purpose of distinguishing our notation from that in

[7].

In order to estimate X ld
P (z), we first introduce some more notation. For each Dirichlet

character χ, from the half-plane {s′ | σ′ > 1/2} we exclude all the segments of the form

{σ′+ i=ρ | 1/2 < σ′ ≤ <ρ} (for all possible zeros ρ of L(s′, χ) with <ρ > 1/2), and denote

the remaining region by Gχ. In the region Gχ, we can define the value of logL(s′, χ) by

the analytic continuation along the horizontal path {σ′′ + iτ ′ | σ′′ ≥ σ′}. Define

RP (s
′, χ) = logL(s′, χ)− logLP (s

′, χ)

for s′ ∈ Gχ(α1) = Gχ ∩ {σ′ > α1}. Let c and δ be fixed small positive numbers, and

let β0 = β0(δ) > 1, β1 = β1(δ) = 2β0, H(τ), Q0(τ), Q1(τ), fP (s
′, χ), FP (τ, χ) be as in

[7, Section 7]. The distance between the boundaries of the two sets Q0(τ) and Q1(τ) is

ε2 = min{ε1, c}. Let X1(f) be the set of all χ ∈ X ′′(f) such that

FP (τ, χ) ≥ π
(ε2
2

)2(δ
2

)2

,(2.4)

and X2(f) its complement in X ′′(f), that is, all those χ ∈ X ′′(f) satisfying

FP (τ, χ) < π
(ε2
2

)2(δ
2

)2

.(2.5)

We divide∑
χ∈X′′(f)

{
ψz

(
L′

L
(s, χ)

)
− ψz

(
L′
P

LP
(s, χ)

)}
=

∑
χ∈X1(f)

+
∑

χ∈X2(f)

= Sld
1 (f) + Sld

2 (f),(2.6)

say.

Consider Sld
2 (f). First, using the fact |ψz(w)−ψz(w

′)| ≤ |z| · |w−w′| ([3, (6.5.19)]), we
obtain

|Sld
2 (f)| ≤ |z|

∑
χ∈X2(f)

∣∣∣∣L′

L
(s, χ)−

L′
P

LP
(s, χ)

∣∣∣∣ .(2.7)

Since (2.5) holds for χ ∈ X2(f), by Lemma 7.2 of [7] we obtain

|fP (s′, χ)| < δ/2 (s′ ∈ Q0(τ)).(2.8)

Therefore by Lemma 7.1 of [7] we find that H(τ) ⊂ Gχ(α1) (especially L(s′, χ) 6= 0 for

s′ ∈ H(τ)), and |RP (s
′, χ)| < δ for s′ ∈ H(τ).
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Let U = U(s) be the circle of radius ε2/2 whose center is s. Then U ⊂ H(τ) (because

σ − ε2/2 ≥ σ0 − ε2/2 > σ0 − ε1 = α0), and so (L′/L)(s′, χ) is holomorphic on and inside

U . Therefore by the Cauchy integral formula we have

L′

L
(s, χ) = (logL(s, χ))′ =

1

2πi

∫
U(s)

logL(s′, χ)

(s′ − s)2
ds′(2.9)

=
1

πε2

∫ 2π

0
logL

(
s+

ε2
2
eiθ, χ

)
e−iθdθ,

and similarly

L′
P

LP
(s, χ) =

1

πε2

∫ 2π

0
logLP

(
s+

ε2
2
eiθ, χ

)
e−iθdθ.(2.10)

Substituting (2.9) and (2.10) into (2.7), we obtain

|Sld
2 (f)| ≤ |z|

πε2

∫ 2π

0

∑
χ∈X2(f)

∣∣∣RP

(
s+

ε2
2
eiθ, χ

)∣∣∣ dθ.(2.11)

Here we note that U ⊂ Q0(τ). In fact, we have already seen that U ⊂ H(τ), and also we

see U ⊂ {σ′ < β0} because β0 is large. Therefore (2.8) holds for s′ ∈ U . This implies, as

is shown in the proof of Lemma 7.1 of [7],

|RP (s
′, χ)| ≤ 2|fP (s′, χ)| (s′ ∈ U).(2.12)

Combining (2.11) and (2.12), and using Schwarz’ inequality, we have

|Sld
2 (f)| ≤ 2|z|

πε2

∫ 2π

0

∑
χ∈X2(f)

∣∣∣fP (s+ ε2
2
eiθ, χ

)∣∣∣ dθ(2.13)

� |z|f1/2
∫ 2π

0

 ∑
χ∈X2(f)

∣∣∣fP (s+ ε2
2
eiθ, χ

)∣∣∣2
1/2

dθ.

Since σ′ = <(s + (ε2/2)e
iθ) > α0 > α1 for s′ = σ′ + iτ ′ ∈ U , using [7, (133)] (this is the

point where a mean-value result on L-functions is necessary) we obtain

|Sld
2 (f)| � |z|f1/2A(τ ′, f, y)1/2 � |z|f1/2A(τ, f, y)1/2,(2.14)

where

A(τ, f, y) = fy1−2α1 + f (1−α1)/(1−α2) exp

(
B0
y1−α2

log y

)(
1 +

|τ |+ 1

f2α2

)
(2.15)

with a certain absolute positive constant B0.

The treatment of Sld
1 (f) can be done exactly in the same manner as in the argument

around [7, (135), (136)]. We have |Sld
1 (f)| � A(τ, f, y), and, combining this with (2.14),

we obtain

X ld
P (z) � 1

π(m)

∑
f≤m

1

f
(|z|f1/2A(τ, f, y)1/2 +A(τ, f, y)).(2.16)

This is the L′/L-analogue (exactly the same form!) of Proposition 7.4 of [7].
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Now we consider Y ld
P (z). Divide

1

π(m)

∑
f≤m

1

f − 2

∑
χ∈X′′(f)

ψz

(
L′
P

LP
(s, χ)

)
into J

ld(m)
0 +J

ld(m)
1 +J

ld(m)
2 , analogously to the decomposition of [7, (137)]. The treatment

of J
ld(m)
0 and J

ld(m)
2 is exactly the same as that of J

(m)
0 and J

(m)
2 in [7]. As for J

ld(m)
1 , we

first note that, when the conductor f of χ is larger than y, it holds that

ψz

(
L′
P

LP
(s, χ)

)
=

∑
nP∈ZP

Ald
σ,P (nP ; z, z̄)χ

nP
P P−iτnP ,(2.17)

where ZP =
∏

p∈P Z, and for nP = (np)p∈P ∈ ZP ,

χnP
P =

∏
p∈P

χ(p)np , P−iτnP =
∏
p∈P

p−iτnp

and Ald
σ,P (nP ; z, z̄) is given by [3, (5.1.7)] (without “ld”). This follows from [3, (1.5.4),

(5.1.6)], and is the L′/L-analogue of [7, (138)]. Starting from (2.17), we proceed similarly

to the argument around [7, (139)—(147)]. (On this occasion we note that
∑

np∈Z is missing

after the product symbol
∏

p∈P in the first line of [7, (147)].) We use [3, (5.1.14)] instead

of [7, (89)], and [3, (3.1.10)] instead of [7, (32)]. Proposition 5.3 of [7] includes the present

L′/L case, and so we can apply it. Then, instead of η(y) in [7] (see [7, (116)]),

ηld(y) = ηld(σ, y) =

{
y1−σ if 1/2 < σ < 1,
log y if σ = 1.

(2.18)

appears. The conclusion is that Y ld
P (z) satisfies the same inequality as that in Proposition

7.5 of [7] (with replacing η(y) by ηld(y)).

Finally we choose y = (logm)ω2 with 0 < ω2 < 2. Then we find that X ld
P (z), Y ld

P (z)

tend to 0 as m→ ∞. Also Theorem 3 of [3] implies that Z ld
P (z) → 0 as m→ ∞. Therefore

we now complete the proof of (2.2). Moreover this convergence is uniform in |z| ≤ R for

any R > 0.

3. Proof in the case (FII)

As in the case (FI), it is enough to consider the case Φ = ψz i.e., to prove

lim
T→∞

1

2T

∫ T

−T
ψz

(
ζ ′

ζ
(σ + iτ ′)

)
dτ ′ = M̃σ(z)(3.1)

(cf. [7, (92)]). Similarly to [7, (95)], we begin with the inequality∣∣∣∣ 12T
∫ T

−T
ψz

(
ζ ′

ζ
(σ + iτ ′)

)
dτ ′ − M̃σ(z)

∣∣∣∣(3.2)

≤
∣∣∣∣ 12T

∫ T

−T

{
ψz

(
ζ ′

ζ
(σ + iτ ′)

)
− ψz

(
ζ ′P
ζP

(σ + iτ ′)

)}
dτ ′
∣∣∣∣

+

∣∣∣∣ 12T
∫ T

−T
ψz

(
ζ ′P
ζP

(σ + iτ ′)

)
dτ ′ − M̃σ,P (z)

∣∣∣∣
+
∣∣∣M̃σ,P (z)− M̃σ(z)

∣∣∣
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= X ld
P (z) + Y ld

P (z) + Z ld
P (z),

say. Note that the meaning of these X ld
P (z), Y ld

P (z), Z ld
P (z) is different from that in Section

2.

The method of evaluating X ld
P (z) is a little different from the argument in [7]; rather,

we follow the idea in Section 2. Noting |ψz| = 1 we have

X ld
P (z) ≤ 1

2T

∫ 2

−2
2dτ ′ +

1

2T

∫
I(T )

∣∣∣∣ψz

(
ζ ′

ζ
(σ + iτ ′)

)
− ψz

(
ζ ′P
ζP

(σ + iτ ′)

)∣∣∣∣ dτ ′,(3.3)

where I(T ) = [−T,−2] ∪ [2, T ]. Let I1(T ) (resp. I2(T )) be the set of all τ ′ ∈ I(T ) for

which (2.4) (resp. (2.5)), with replacing τ by τ ′ and putting χ = 1 (the trivial character),

holds. Decompose the second integral on the right-hand side of (3.3) as X ld
1 +X ld

2 , where

X ld
j denotes the integral on Ij(T ) (j = 1, 2). Then

X ld
P (z) ≤ 4

T
+

1

2T
(X ld

1 +X ld
2 ).(3.4)

Consider X ld
2 . When τ ′ ∈ I2(T ), as in Section 2 we see that ζ(s′′) 6= 0 and |RP (s

′′,1)| ≤
2|fP (s′′,1)| < δ for any s′′ ∈ H(τ ′). Therefore (ζ ′/ζ)(s′′) is holomorphic on and inside the

circle U ′ of radius ε2/2 whose center is σ + iτ ′, so

ζ ′

ζ
(σ + iτ ′) =

1

2πi

∫
U ′

log ζ(s′′)

(s′′ − σ − iτ ′)2
ds′′.(3.5)

Similarly to (2.13), we obtain

X ld
2 � |z|T 1/2

∫ 2π

0

(∫
I2(T )

∣∣∣fP (σ + iτ ′ +
ε2
2
eiθ,1

)∣∣∣2 dτ ′)1/2

dθ.(3.6)

A mean square estimate of |fP | was obtained in Lemma 5 of [13] (see also [7, (102), (106)]).

Applying this lemma, we have

1

2T
X ld

2 � |z|

{
y1−2α1+ε + T 1−2α1+ε exp

(
C1

(
y

log y

)1/2
)}

,(3.7)

for any small ε > 0, where C1 is an absolute positive constant.

As for X ld
1 , we first use |ψz| = 1 to obtain

X ld
1 ≤ 2meas(I1(T )),(3.8)

where meas(A) means the 1-dimensional Lebesgue measure of the set A. Using (2.4) for

τ ′ ∈ I1(T ), we have

meas(I1(T )) �
∫
I1(T )

FP (τ
′,1)dτ ′(3.9)

=

∫ β1

α1

dσ′′
∫ T+2c

−T−2c
|fP (σ′′ + iτ ′′,1)|2dτ ′′

∫
J1(τ ′′)

dτ ′,

where J1(τ
′′) = I1(T ) ∩ [τ ′′ − 2c, τ ′′ + 2c]. The innermost integral is ≤ 4c, and is equal to

0 if τ ′′ ∈ (−2 + 2c, 2− 2c). Therefore we can apply Lemma 5 of [13] ([7, (102), (106)]) to
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the right-hand side of (3.9). Combining with (3.8), we obtain

1

2T
X ld

1 �
∫ 2

α1

{
y1−2α1+ε + T 1−2α1+ε exp

(
C1

(
y

log y

)1/2
)}

dσ′′(3.10)

+

∫ β1

2

{
1

σ′′
y1−2σ′′+ε +

1

σ′′T
y2−2σ′′+ε

}
dσ′′

� y1−2α1+ε + T 1−2α1+ε exp

(
C1

(
y

log y

)1/2
)

+ y−3+ε log β1 +
1

T
y−2+ε log β1.

Since the factor log β1 can be absorbed into the implied constant, from (3.4), (3.7) and

(3.10) we obtain

X ld
P (z) � (|z|+ 1)

{
y1−2α1+ε + T 1−2α1+ε exp

(
C1

(
y

log y

)1/2
)}

+
1

T
+ y−3+ε.(3.11)

The way of evaluating Y ld
P (z) is almost the same as that around [7, (109)—(122)]; only

replace η(y) by ηld(y). As an analogue of Proposition 6.2 of [7], we obtain

Y ld
P (z) � 1

T
exp

(
C3

(
|z|y3/2−σ +

y

log y

))
(3.12)

with an absolute constant C3 > 0.

Choosing y = (log T )ω1 (0 < ω1 < 1), from (3.11), (3.12) and Theorem 3 of [3] we find,

as in [7], that X ld
P (z), Y ld

P (z) and Z ld
P (z) tend to 0 as T → ∞, uniformly in |z| ≤ R for

any R > 0. This proves (3.1).

Remark 3.1. Bohr and Jessen [2] proved the case (FII) of Theorem 1.2 for Φ with (ii),

and Jessen and Wintner [10] reformulated the result in terms of asymptotic distribution

functions. Kershner and Wintner [12] then proved that the analogue of the Jessen-Wintner

theory is valid in the ζ ′/ζ(s) case. Therefore the case (FII) of our Theorem 1.1, for Φ

with (ii), is essentially included in Kershner and Wintner [12], though the density function

is not explicitly given in their paper. The general (FII) case can be deduced from their

result by the argument suggested in Remark 9.1 of [7]. Our method in the present paper is

rather different from theirs, and has advantages such as the unified treatment of both the

cases (FI) and (FII), and the explicit construction of the density function Mσ(w). In fact,

the functionMσ(w) and its Fourier dual themselves are interesting objects of research (see

[8], [4]).

Remark 3.2. To show the general conclusion of our theorem from the special case Φ = ψz,

we can apply the method given in [7, Section 9], as indicated at the beginning of Section

2. This step can be explained as a consequence of a general theorem on weak convergence

of probability measures.



10 YASUTAKA IHARA AND KOHJI MATSUMOTO

Here we show how to deduce the case (i) of Theorem 1.1 from the case Φ = ψz. In case

(FI), the left-hand side of (1.1) is

lim
m→∞

1

π(m)

∑
f≤m

1

X(f)

∑
χ∈X′(f)

Φ

(
L′

L
(s, χ)

)
(3.13)

= lim
m→∞

1

π(m)− 1

∑
f≤m

1

X ′(f)

∑
χ∈X′(f)

Φ

(
L′

L
(s, χ)

)
.

Let δw be the complex Dirac measure which is non-zero only at w, and define

µm =
1

π(m)− 1

∑
f≤m

1

X ′(f)

∑
χ∈X′(f)

δL′/L(s,χ).

Then this is a probability measure, and the right-hand side of (3.13) can be written as

lim
m→∞

∫
C
Φ(w)dµm(w).

Therefore (1.1) for any continuous bounded Φ is nothing but the weak convergence of

probability measures µm to Mσ(w)|dw|. It is a well-known fact that the weak convergence

of probability measures can be verified if we can check the special case Φ = ψz.

In case (FII), we define the probability measure

µT (A) =
1

2T
meas{τ ′ ∈ [−T, T ] | (L′/L)(s+ iτ ′) ∈ A}

(where A is any Borel subset of C), and proceed similarly. The above argument was

pointed out by Professor Philippe Biane and Professor Katusi Fukuyama, to whom the

authors express their sincere gratitude.
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