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Summary: We prove an upper bound estimate of the speed of convergence to limit distributions
WK (R, χ), in the sense of Bohr and Jessen, for Hecke L-functions associated with ideal class
characters. This is a generalization of the author’s former result [8], in which the same estimate has
been proved for Dedekind zeta-functions.

1 Introduction
Let K be an algebraic number field of degree �, L = max{�, 2}, s = σ + it a complex
variable, and ζK (s) the Dedekind zeta-function attached to K . In [6, 7, 8], the value-
distribution of log ζK (s) in the half-plane σ = �s > 1 − L−1 has been studied.

The definition of log ζK (σ + it) is clear for σ > 1, and for 1− L−1 < σ ≤ 1 we define
this function by analytic continuation along the horizontal line segment from 2 + it. In
case there exists a zero or a pole of ζK (s) on this line segment, we do not define log ζK (s).

Let R be any fixed closed rectangle in the complex plane C with the edges parallel
to the axes. We write µn(·) for the n-dimensional Lebesgue measure. For any fixed
σ > 1 − L−1, let

VK (T ; R) = µ1({t ∈ [1, T ] | log ζK (σ + it) ∈ R}).
Then there exists the limit

WK (R) = lim
T→∞

1

T
VK (T ; R). (1.1)

This was proved by Bohr and Jessen [1, 2] for the Riemann zeta-function ζ(s), and by the
author [6, 7] for general case.

AMS 1991 subject classifications: Primary: 11M06, 11R42
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314 Matsumoto

In [8], the author studied the speed of convergence on the right-hand side of (1.1),
and proved

WK (R) − 1

T
VK (T ; R) = O

(
(µ2(R) + 1)(log T )−C(σ)+ε

)
(1.2)

for any σ > 1 − L−1 and any ε > 0, where

C(σ) =
{

(σ − 1)/(3 + 2σ) (σ > 1),

2(2σ − 1)/(21 + 8σ)
(
1 ≥ σ > 1 − L−1

)
.

(1.3)

In the case of ζ(s), the estimate (1.2) was first proved in a joint paper of Harman and
the author [3]. This paper [3] gives an improvement of former weaker results proved in
the author’s previous papers [4, 5, 7]. In [7], such a weaker result was also shown for
ζK (s) when K is a Galois extension of the rational number field Q. In [3] it is mentioned
without proof that (1.2) can be shown for ζK (s) of any Galois number field. Finally in
[8], the proof of (1.2) for any (Galois or non-Galois) number field has been given.

The purpose of the present paper is to generalize (1.2) to the case of Hecke L-
functions associated with ideal class characters. Recently, the value-distribution of Hecke
L-functions of number fields has been studied extensively by Mishou [10, 11, 12, 13, 14,
15] (partly with Koyama). The present paper is another contribution to this topic.

The first draft of the present paper was written during the author’s stay, invited by
Professor Jörn Steuding, at Universidad Autónoma de Madrid, Spain, Nov/Dec 2005.
The author expresses his sincere gratitude to Professor Steuding and his wife Dr. Rasa
(Šleževičienė-)Steuding for their hospitality.

2 Statement of the result
First we recall the definition and basic properties of Hecke L-functions.

Let K be as in Section 1,OK the ring of integers of K , r1 the number of real places of
K , and 2r2 the number of complex places of K . Denote by I the set of all ideals of OK ,
and by J the set of all fractional ideals of K . Fix an ideal f ∈ I , and define

J(f) = {a ∈ J | (a, f) = 1},
P(f) = {(α) | α ∈ K, α ≡ 1 mod f̃},

where (α) denotes the principal ideal generated by α, and α ≡ 1 mod f̃ means that α is
totally positive and if we write α = a/b, a, b ∈ OK , (a, b) = 1, then a − b ∈ f. Then P(f)

is a subgroup of J(f) and the quotient

Cl(f) = J(f)/P(f),

the ideal class group modulo f, is a finite Abelian group. Denote the projection map by π.
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On the speed of convergence 315

Let χ be a character of Cl(f). Define the mapping χ : I \ {0} → C (ideal class
character) by

χ(a) =
{

χ(π(a)) if a ∈ I ∩ J(f),

0 otherwise.

Denote by B the set of all values taken by the ideal class character χ. Clearly this is a
finite set.

The Hecke L-function associated with χ is

LK (s, χ) =
∑
a∈I\{0}

χ(a)(Na)−s, (2.1)

where Na denotes the norm of a. This series is convergent absolutely for σ > 1, and can
be continued meromorphically to the whole plane C. The functional equation is

ξK (1 − s, χ̄) = ξK (s, χ), (2.2)

where

ξK (s, χ) = d(f)s	(s)r2

r1∏
m=1

	

(
s + am

2

)
LK (s, χ)

with a constant d(f) depending only on f and am ∈ {0, 1} (1 ≤ m ≤ r1). Hence the critical
strip is 0 ≤ σ ≤ 1, and the critical line is σ = 1/2.

Define log LK (s, χ) for σ > 1 − L−1 as in the case of log ζK (s) explained in Section
1. Let

VK (T ; R, χ) = µ1({t ∈ [1, T ] | log LK (σ + it, χ) ∈ R})
for any fixed σ > 1 − L−1. Then the existence of the limit

WK (R, χ) = lim
T→∞

1

T
VK (T ; R, χ) (2.3)

can be established. This is a special case of a general limit theorem proved in [6]. The
restriction σ > 1 − L−1 comes from the fact that, at present, we can prove the mean
square estimate ∫ T

1
|LK (σ + it, χ)|2dt = O(T ) (2.4)

only for σ > 1−L−1. This follows from the functional equation (2.2) and Potter’s general
result [17]. The estimate (2.4) is necessary to apply the result of [6].

In the present paper we will prove the following generalization of (1.2).

Theorem 2.1 Let K be an algebraic number field of degree �, and let L = max{�, 2}.
Then, for any ε > 0, we have

WK (R, χ) − 1

T
VK (T ; R, χ) = O

(
(µ2(R) + 1)(log T )−C(σ)+ε

)
(2.5)

for σ > 1 − L−1, where C(σ) is given by (1.3).
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316 Matsumoto

The basic structure of the proof is the same as in [8], so we omit the details, only
describing several key points of the argument in the following three sections.

It is desirable to generalize the above theorem further to the case of Hecke L-functions
associated with any Grössencharacters, but it seems that the argument in the present paper
is not sufficient for that purpose.

3 Limit distributions for finite truncations
It is well known that LK (s, χ) has the Euler product expansion

LK (s, χ) =
∏
p

(
1 − χ(p)

(Np)s

)−1

(σ > 1), (3.1)

where p runs over all prime ideals. Let pn be the n-th prime number, and p(1)
n , . . . , p

(g(n))
n

the prime divisors of pn with norm Np( j )
n = p f( j,n)

n (1 ≤ j ≤ g(n)). Then

LK (s, χ) =
∞∏

n=1

g(n)∏
j=1

(
1 − χ

(
p
( j )
n

)(
Np( j )

n

)−s
)−1

=
∞∏

n=1

g(n)∏
j=1

(
1 − χ

(
p
( j )
n

)
p− f( j,n)σ

n exp(−i f( j, n)t log pn)
)−1

.

Let N be a positive integer, σ > 1 − L−1, and consider the finite truncation

LN,K (s, χ) =
N∏

n=1

g(n)∏
j=1

(
1 − χ

(
p
( j )
n

)
p− f( j,n)σ

n exp(−i f( j, n)t log pn)
)−1

. (3.2)

Let QN = [0, 1)N , θ = (θ1, . . . , θN ) ∈ QN ,

zn,K (θn, χ) = −
g(n)∑
j=1

log
(

1 − χ
(
p
( j )
n

)
p− f( j,n)σ

n exp(2πi f( j, n)θn)
)

, (3.3)

and

SN,K (θ , χ) =
N∑

n=1

zn,K (θn, χ). (3.4)

Then

log LN,K (s, χ) = SN,K (x(t), χ), (3.5)

where

x(t) =
({

− t

2π
log p1

}
, . . . ,

{
− t

2π
log pN

})
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On the speed of convergence 317

({x} = x − [x] is the fractional part of x). Define

VN,K (T ; R, χ) = µ1({t ∈ [1, T ] | log LN,K (σ + it, χ) ∈ R}).
From (3.5) we see that log LN,K (σ + it, χ) ∈ R if and only if x(t) ∈ �N (R, χ), where

�N(R, χ) = {θ ∈ QN | SN,K (θ , χ) ∈ R}.
The uniqueness of the decomposition of integers into prime factors implies that log p1, . . . ,

log pN are linearly independent overQ. Hence, by the Kronecker–Weyl theorem, we can
show the existence of the limit

WN,K (R, χ) = lim
T→∞

1

T
VN,K (T ; R, χ), (3.6)

and moreover WN,K (R, χ) = µN(�N (R, χ)). The latter shows that WN,K is a probability
measure on C.

We evaluate the speed of convergence on the right-hand side of (3.6).

Proposition 3.1 Let N be sufficiently large, and let m and r be large positive integers
with 2rN ≤ m. Then∣∣∣∣WN,K (R, χ) − 1

T
VN,K (T ; R, χ)

∣∣∣∣

 N1/2

r
+ Nr

m
+ 1

T
(6r log m)N exp(mN log N). (3.7)

In the case of Dedekind zeta-functions, this is Proposition 1 of [8], whose main idea
goes back to [3] (and even [4, 9]).

In [8], the proposition has been deduced from (5.1), (5.2), (5.3) and Lemma 3 of [8].
Hence our task here is to generalize those to our present situation.

Inequalities (5.1), (5.2) and (5.3) of [8] were first proved in [3] in the case of ζ(s), and
the method in [3] can be applied without change to our present situation.

To prove Lemma 3 of [8], we used in [8] the Artin–Chebotarev density theorem
to find a suitable rearrangement of the sequence of prime numbers. Here we apply the
Artin–Chebotarev density theorem (see Proposition 7.15 of Narkiewicz [16]) in a slightly
different way; by the Artin–Chebotarev theorem we see that there exist infinitely many
primes pn for which g(n) = 1, f(1, n) = � hold. Moreover, since there are only finitely
many prime factors of f, we may assume that the above pns are coprime with f. Denote
the first three of those primes by pn(1), pn(2) and pn(3), and define the rearrangement of
primes, by using these pn(ν) (ν = 1, 2, 3), similarly as in Section 5 of [8]. The curve 	n(ν)

described by

zn(ν),K (θn(ν), χ) = − log
(

1 − χ
(
p
(1)
n(ν)

)
p−�σ

n(ν) exp
(
2πi�θn(ν)

))
(3.8)

(0 ≤ θn(ν) < 1) is convex (ν = 1, 2, 3). Since (p
(1)
n(ν), f) = 1, we have |χ(

p
(1)
n(ν)

)| =
1. Write χ

(
p
(1)
n(ν)

) = exp(2πi�ϕ(ν)) with a certain real number ϕ(ν), and put θ ′
n(ν) =
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318 Matsumoto

�(θn(ν) + ϕ(ν)). Then

zn(ν),K (θn(ν), χ) = − log
(

1 − p−�σ
n(ν)

exp
(

2πiθ ′
n(ν)

))
, (3.9)

and this describes the same curve as 	n(ν) when θ ′
n(ν) moves from 0 to �. The difference

from the argument in [8] is that, in the present case, zn(ν),K (θn(ν), χ) rounds �-times along
the curve 	n(ν) when θ ′

n(ν) moves from 0 to �. When θ ′
n(ν)moves on the subinterval [k, k+1)

(0 ≤ k ≤ � − 1), we can show the analogue of Lemma 3 of [3] for zn(ν),K (θn(ν), χ).
Hence the analogue of Lemma 4 of [3] can also be established for each k. Therefore,
adding them, we find that the analogue of Lemma 4 of [3] is valid in our present situation.

To prove the analogue of Lemma 3 of [8], the remaining part of the proof is the same
as in [8].

4 An application of Lévy’s inversion formula
From (4.6) of [6] we have

lim
N→∞ WN,K (R, χ) = WK (R, χ) (4.1)

for any rectangle R. In this section we evaluate the speed of this convergence to show, as
a generalization of Proposition 2 of [8], the following

Proposition 4.1 For any sufficiently large N, we have∣∣WK (R, χ) − WN,K (R, χ)
∣∣ 
 µ2(R)N1−2σ (log N)−2σ . (4.2)

The proof is based on Lévy’s inversion formula. Consider the Fourier transform

�N,K (w, χ) =
∫
C

ei<z,w>dWN,K (z, χ)

=
∫

QN

exp
(
i < SN,K (θ , χ),w >

)
dµN (θ),

where < z, w >= �z�w + Im z Im w. Then the right-hand side is the product of

Kn,K (w, χ) =
∫ 1

0
exp

(
i < zn,K (θn, χ),w >

)
dθn (1 ≤ n ≤ N) (4.3)

(see (3.4)).
In order to use Lévy’s inversion formula, it is necessary to obtain a suitable upper

bound of |Kn,K (w, χ)|. For this purpose, in [8], we use the fact that there are only finitely
many patterns of decomposition of primes into prime ideals of K . In the present case, we
combine this fact with the finiteness of the set B, introduced in Section 2.

For any integer g satisfying 1 ≤ g ≤ �, let Fg(χ) be the set of all vectors

(f, b) = ( f(1), . . . , f(g), b(1), . . . , b(g)),
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On the speed of convergence 319

for which there exists an n such that g = g(n), f( j ) = f( j, n) and b( j ) = χ
(
p
( j )
n

)
(1 ≤ j ≤ g) holds.Then Fg(χ) is a finite set, because B is finite and

g(n)∑
j=1

e( j, n) f( j, n) = � (4.4)

holds, where e( j, n) is the ramification index of p( j )
n over pn. Hence

F(χ) =
⋃

1≤g≤�

Fg(χ)

is also finite.
For each (f, b) ∈ F(χ), define

F(f,b)(v) = −
g∑

j=1

log
(

1 − b( j )v f( j )
)

. (4.5)

LetN be the set of all positive integers. For any n ∈ N, we can find a unique (f, b) ∈ F(χ)

which satifsies

zn,K (θn, χ) = F(f,b)

(
p−σ

n exp(2πiθn)
)
. (4.6)

Let N (f, b) be the set of all n for which (4.6) holds. Then we have

N =
⋃

(f,b)∈F(χ)

N (f, b). (4.7)

This decomposition corresponds to (3.9) of [8], and then, by the same argument as in [8],
we can show

Kn,K (w, χ) = O
(

pσ�/2
n |w|−1/2

)
. (4.8)

In the procedure of proving (4.8), it is important that F(χ) is a finite set.
Estimate (4.8) is exactly the same as (3.16) of [8], and from which we can deduce the

assertion of Proposition 4.1.

5 Completion of the proof
Now we can combine Proposition 3.1 and Proposition 4.1 to complete the proof of

our theorem, quite similarly to the argument in Section 6 of [8]. The main tools used in
Section 6 of [8] are Lemma 4 of [8] and estimate (6.9) of [8]. Lemma 4 of [8] can be
generalized to the present case, by using the rearrangement of primes defined in Section
3. Estimate (6.9) of [8] is based on Lemma 5 of [7]. Tha latter is a certain mean value
estimate of Dedekind zeta-functions. This can be generalized to the present case, because
of (2.4). Therefore the argument in Section 6 of [8] can be applied without change to
LK (s, χ). The proof of our theorem is now complete.
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Remark. When K is a Galois extension of Q, we have f(1, n) = · · · = f(g(n), n)

(= f(n), say), hence (3.3) is

zn,K (θn, χ) = −
g(n)∑
j=1

log
(

1 − χ
(
p
( j )
n

)
p− f(n)σ

n exp(2πi f(n)θn)
)

. (5.1)

In the case of the Dedekind zeta-function ζK (s), this is further reduced to

−g(n) log(1 − p− f(n)σ
n exp(2πi f(n)θn)),

which describes a convex curve. This is the reason why in [3] it is mentioned that estimate
(1.2), proved for the Riemann zeta-function in that paper, can be generalized to ζK (s)
of any Galois extension. However, for Hecke L-functions, the curve described by (5.1)
is not always convex (because of the existence of χ

(
p
( j )
n

)
) even in the case of Galois

extensions. Therefore the idea in [8], originally developed for the purpose of treating
ζK (s) in the non-Galois case, is necessary even for Galois extensions when we consider
Hecke L-functions.
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