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1 Introduction and statement of results

Let N be the set of natural numbers, N0 = N ∪ {0}, Z the ring of rational

integers, Q the field of rational numbers, R the field of real numbers, and

C the field of complex numbers.

Let s = σ + iτ be a complex variable, and

(1.1) ψ(s) =
∞∑

n=0

a(n)

(β + nw)s

be a function with complex coefficients a(n), where β,w ∈ R with 0 < β ≤
w. We assume the following:

(Assumption I ) There exists a certain q > 0 such that ψ(s) is conver-

gent absolutely for σ > q.

Throughout this paper we fix δ ∈ R with δ > 0 and let u ∈ R with

1 ≤ u ≤ 1 + δ. We let

(1.2) ψ(s; u) =
∞∑

n=0

a(n)u−n

(β + nw)s
.

By Assumption I, we can check that if 1 < u ≤ 1 + δ then the right-hand

side of (1.2) is convergent absolutely for any s ∈ C, so ψ(s; u) is holomorphic

for all s ∈ C. Corresponding to ψ(s; u), let

(1.3) G1(t; ψ; u) =
∞∑

n=0

a(n)u−ne(β+nw)t,

where t is a complex variable. By Assumption I, we see that the series (1.3)

is convergent when <t < 0. We further assume the following:

(Assumption II ) ψ(s) can be continued analytically to the whole com-

plex plane C, and holomorphic for all s ∈ C. In any fixed strip σ1 ≤ σ ≤ σ2,

ψ(s; u) is uniformly convergent to ψ(s) as u → 1 + 0. Furthermore there

exists a certain θ0 = θ0(σ1, σ2) ∈ R with 0 ≤ θ0 < π/2 such that ψ(s; u) =

O
(
eθ0|τ |

)
as |τ | → ∞.

1



(Assumption III ) There exists a certain ρ = ρ(ψ) > 0 such that

G1(t; ψ; u) can be continued holomorphically to

(1.4) D(ρ) =
{
t ∈ C

∣∣ |t| < ρ
}

for any u ∈ [1, 1 + δ].

We will give typical examples which satisfy Assumptions I-III in Section

2 (see Example 2.2).

In the present paper, we consider generalized multiple Dirichlet series

as follows. Let (α0, α1, . . . , αr) ∈ Rr+1, (w1, . . . , wr) ∈ Rr such that α0 = 0

and 0 < αk − αk−1 ≤ wk (1 ≤ k ≤ r). Let Pr = {ψ1, . . . , ψr}, where

(1.5) ψk(s) =
∞∑

n=0

ak(n)

(αk − αk−1 + nwk)s
.

We assume that ψk(s) and the associated series ψk(s; u), G1(t; ψk; u) (de-

fined similarly to (1.2) and (1.3)) satisfy Assumptions I-III (1 ≤ k ≤ r).

By Assumptions I and III, there exist {qk = q(ψk)(> 0)
∣∣ 1 ≤ k ≤ r} and

{ρk = ρ(ψk)(> 0)
∣∣ 1 ≤ k ≤ r}. We let

(1.6) ηr = min
1≤k≤r

{ ρk

2r−1

}
.

We define the generalized multiple Dirichlet series associated with Pr by

(1.7) Ψr(s1, . . . , sr; u) =
∞∑

n1,...,nr=0

a1(n1) · · · ar(nr)u
−

Pr
ν=1 nν∏r

j=1(αj +
∑j

ν=1 nνwν)sj

for s1, . . . , sr ∈ C and u ∈ [1, 1 + δ]. The special case u = 1 and aj(n) = 1

(1 ≤ j ≤ r) has been studied by the first author in [12, 13], which can be

regarded as a generalization of both the Euler-Zagier multiple zeta function

and the Barnes multiple zeta function. On the other hand, the special case

u = 1, αj = j and wj = 1 (1 ≤ j ≤ r) has also been studied before;

Arakawa-Kaneko [2] when ajs are periodic functions on Z, and Matsumoto-

Tanigawa [14] for more general ajs.

First we prove the following result by using the method introduced by

Matsumoto-Tanigawa (see [14]; see also [11, 12, 13]). Indeed, this can be

regarded as a generalization of Theorem 2 in [14].

Theorem 1.1. For s1, . . . , sr ∈ C and u ∈ [1, 1 + δ], Ψr(s1, . . . , sr; u) is

convergent absolutely for sj = σj + iτj ∈ C (1 ≤ j ≤ r) with each σj >

qj. Furthermore Ψr(s1, . . . , sr; u) can be continued analytically to the whole

complex space Cr and holomorphic on Cr, and satisfies that

(1.8) lim
u→1+0

Ψr(s1, . . . , sr; u) = Ψr(s1, . . . , sr; 1)

for any (s1, . . . , sr) ∈ Cr.
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Remark 1.2. We can prove the meromorphic continuation of Ψr(s1, ..., sr; u)

even if ψk(s) has poles. When u > 1, the multiple series (1.7) is convergent

absolutely, hence is holomorphic, for any (s1, ..., sr) ∈ Cr. When u = 1,

if we assume that ψk(s) has a pole of order at most one at s = qk and

holomorphic elsewhere (and satisfies ψk(s) = O(eθ0|τ |)) for 1 ≤ k ≤ r, then

we can show the following results, which generalize Theorem 1 in [14]:

The function Ψr(s1, ..., sr; 1) can be continued meromorphically to the

whole space Cr, and its possible singularities are located only on the subsets

of Cr each of which is defined by one of the following equations:

sj + · · · + sr = qj + δj+1qj+1 + · · · + δrqr − n

(1 ≤ j ≤ r, δk = 0 or 1 (2 ≤ k ≤ r), n ∈ N0) .

Moreover, (i) if j = r ≥ 2 and qr ∈ N, then n ≤ qr −1, (ii) if 2 ≤ j ≤ r−1,

qj ∈ N and δj+1 = · · · = δr = 1, then n ≤ qr − 1, (iii) if j = r = 1 or if

j = 1 and δ2 = · · · = δr = 1, then n = 0.

The proof of this fact can be given by the same method as in the proof

of Theorem 1 in [14].

We further consider generalized multiple polylogarithms related to (1.5)

as follows. Let dr = (d1, . . . , dr) ∈ Cr with <dj > qj for each j. With the

above notation, and for u ∈ [1, 1 + δ], let

Fr(t1, . . . , tr;dr; Pr; u)(1.9)

=
∞∑

n1,...,nr=0

a1(n1) · · · ar(nr)u
−

Pr
l=1 nl

∏r
j=1 e(αj+

Pj
µ=1 nµwµ)tj∏r

j=1(αj +
∑j

µ=1 nµwµ)dj
.

This multiple series is convergent when <tj ≤ 0 (1 ≤ j ≤ r). If we for-

mally let ψk(s) = ζ(s) which is the Riemann zeta function and dk ∈ N
(1 ≤ k ≤ r) in (1.9), then Fr(log x1, . . . , log xr;dr; Pr; 1) is the multiple

polylogarithm defined by Goncharov (see [6]; see also [4]). However ζ(s)

does not satisfy Assumption II, so we will not consider the Goncharov mul-

tiple polylogarithms in this paper. Instead, we prove the following result.

Theorem 1.3. For dr ∈ Cr with each <dj > qj (1 ≤ j ≤ r) and u ∈
[1, 1+ δ], Fr(t1, . . . , tr;dr; Pr; u) is holomorphic for all (t1, . . . , tr) ∈ D(ηr)

r,

and satisfies that for (t1, . . . , tr) ∈ D(ηr)
r,

Fr(t1, . . . , tr;dr; Pr; u)(1.10)

=
∞∑

N1,...,Nr=0

Ψr(d1 − N1, . . . , dr − Nr; u)
tN1
1 · · · tNr

r

N1! · · ·Nr!
.
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Furthermore, for any ξ ∈ R with 0 < ξ < ηr, (1.10) is uniformly convergent

with respect to (t1, . . . , tr, u) ∈ D(ξ)r × [1, 1+δ], where D(ξ) = {t ∈ C | |t| ≤
ξ}.

The special case ψj(s) =
∑

n≥1(−1)nn−s (1 ≤ j ≤ r), dr ∈ Nr and

t1 = · · · = tr−1 = 0 has been studied by the second author. Indeed,

Fr(0, . . . , 0, t;dr; Pr; u) played an important role in giving some evaluation

formulas for Euler-Zagier sums (see [15]). In order to prove Theorem 1.3

and Proposition 2.1 (see below), we make use of the technique introduced

in [15].

As applications, using Theorem 1.3, we prove certain estimation formu-

las for Ψr(d1−N1, . . . , dr−Nr; 1) (see Proposition 5.1 and Example 5.2). We

further give certain multiple analogues of both Berndt’s and Katsurada’s

formulas for Dirichlet L-functions proved in [3, 9] (see Example 5.3).

The authors wish to express their sincere gratitude to the referee for his

(or her) valuable comments and important suggestions.

2 Generalized polylogarithms

First we consider the case of r = 1. Let ψ(s) as defined by (1.1) and

F1(t; d; ψ; u) as defined by (1.9). With the notation defined in Section 1, we

can prove the following.

Proposition 2.1. For d ∈ C with <d > q and u ∈ [1, 1 + δ], F1(t; d; ψ; u)

is holomorphic for all t ∈ D(ρ), and satisfies that for t ∈ D(ρ),

(2.1) F1(t; d; ψ; u) =
∞∑

N=0

ψ(d − N ; u)
tN

N !
.

Furthermore, for any ξ ∈ R with 0 < ξ < ρ, (2.1) is uniformly convergent

with respect to (t, u) ∈ D(ξ) × [1, 1 + δ].

Proof. By Assumption III, we can let

(2.2) G1(t; ψ; u) =
∞∑

n=0

Bn(ψ; u)
tn

n!

for |t| < ρ. We use the method of contour integrals (see, for example,

[16] Proof of Theorem 4.2). We consider the path Υ which consists of the

positive real axis [ε,∞] (top side), a circle Cε around 0 of radius ε, and

the positive real axis [ε,∞] (bottom side), where 0 < ε < ρ. Note that we
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interpret ts to mean exp(s log t), where the imaginary part of log t varies

from 0 (on the top side of the real axis) to 2π (on the bottom side). Let

H1(s; ψ; u) =

∫
Υ

G1(−t; ψ; u)ts−1dt

(2.3)

=
(
e2πis − 1

) ∫ ∞

ε

G1(−t; ψ; u)ts−1dt +

∫
Cε

G1(−t; ψ; u)ts−1dt,

which is, in view of (1.3), holomorphic for all s ∈ C if 0 < ε < ρ. Putting

s = −n for n ∈ N0 and ε = ξ with 0 < ξ < ρ in (2.3) and using (2.2), we

have

H1(−n; ψ; u) =

∫
Cξ

G1(−t; ψ; u)t−n−1dt =
(2πi)Bn(ψ; u)(−1)n

n!
.

From Assumption III, G1(t; ψ; u) is continuous for all (t, u) ∈ D(ρ)×[1, 1+δ].

Hence there exists the value Mξ = max |G1(−t; ψ; u)| on {t ∈ C | |t| =

ξ} × [1, 1 + δ]. By the above equation, we have

(2.4)
|Bn(ψ; u)|

n!
≤ 1

2π

∫
Cξ

|G1(−t; ψ; u)||t|−n−1|dt| ≤ Mξ

ξn

for any n ∈ N0 and u ∈ [1, 1 + δ], where ξ is an arbitrary real number with

0 < ξ < ρ.

On the other hand, let s ∈ C with <s > max(1, q). We see that the

second term on the right-hand side of (2.3) tends to 0 as ε → 0. Hence we

have

H1(s; ψ; u) =
(
e2πis − 1

) ∫ ∞

0

G1(−t; ψ; u)ts−1dt(2.5)

=
(
e2πis − 1

) ∞∑
n=0

a(n)u−n

∫ ∞

0

ts−1e−(β+nw)tdt

=
(
e2πis − 1

)
Γ(s)ψ(s; u),

where the interchange of summation and integration is valid because <s > q.

Hence

(2.6) ψ(s; u) =
1

(e2πis − 1) Γ(s)
H1(s; ψ; u) =

Γ(1 − s)

2πi eπis
H1(s; ψ; u),

because

Γ(s)Γ(1 − s) =
π

sin πs
=

2πi

eπis − e−πis
.

The relation (2.6) is valid for all s ∈ C by analytic continuation.
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Next, for d ∈ C with <d > q and N ∈ N0, we put s = d − N in (2.3).

Then we have

H1(d − N ; ψ; u) =
(
e2πid − 1

) ∫ ∞

ε

G1(−t; ψ; u)td−N−1dt(2.7)

+

∫
Cε

G1(−t; ψ; u)td−N−1dt.

For simplicity, we denote by I1 and I2 the first and second terms on the

right-hand side of (2.7), respectively. Note that if N ≥ <d + 1 then

(2.8)

∣∣∣∣∫ ∞

ε

e−(β+nw)ttd−N−1dt

∣∣∣∣ ≤ e−(β+nw)εε<d−N−1

β + nw
.

Hence we have

|I1| ≤ ε<d−N−1|e2πid − 1|
∞∑

n=0

|a(n)|e−(β+nw)ε

β + nw
.

On the other hand, by using the fact that

(2.9)

∫
Cε

tpdt =

 2πi (p = −1)

εp+1

(
e2πip − 1

p + 1

)
(p 6= −1)

for p ∈ C and by (2.2), we have

(2.10) I2 =


(2πi)BN−d(ψ; u)

(−1)N−d

(N − d)!
(N − d ∈ N0),

εd−N
(
e2πid − 1

) ∞∑
n=0

Bn(ψ; u)(−1)nεn

(n + d − N)n!
(otherwise).

Note that the above infinite series in the second case is convergent because

of the assumption ε < ρ and (2.4). Hence we have

(2.11)

|I2| ≤


2π

|BN−d(ψ; u)|
(N − d)!

(N − d ∈ N0),

ε<d−N
∣∣e2πid − 1

∣∣ ∣∣∣∣∣
∞∑

n=0

Bn(ψ; u)
(−1)nεn

(n + d − N)n!

∣∣∣∣∣ (otherwise).

From (2.4) with ξ = ε, the first case of (2.11) yields that

|I2| ≤ (2π)Mεε
d−N .

In the second case of (2.11), we let γd = min |d − m| for all m ∈ Z. Using

(2.4) with ξ such that 0 < ε < ξ < ρ, we see that the second case of (2.11)

yields that

|I2| ≤ ε<d−N
∣∣e2πid − 1

∣∣ Mξ

γd(1 − ε/ξ)
.

6



Hence it follows from (2.6)-(2.11) that there exists a constant M > 0 which

depends on ε, d and ψ but is independent of N and u such that

(2.12)

∣∣∣∣ ψ(d − N ; u)

Γ(1 + N − d)

∣∣∣∣ =
1

2π|eπid|

∣∣∣∣H1(d − N ; ψ; u)

∣∣∣∣ ≤ Mε−N

for N ∈ N0 with N ≥ <d + 1. Note that we can take an arbitrary ε such

that 0 < ε < ρ. Since |s| ≤ |<s| + |=s| for s ∈ C, we have

|Γ(1 + N − d)| = |(N − d)(N − d − 1) · · · ([<d] + 1 − d)Γ([<d] + 1 − d)|
≤ (N − [<d] + [|=d|] + 1)! |Γ([<d] + 1 − d)|

for N ∈ N0 with N ≥ <d + 1. Hence we have

|ψ(d − N ; u)|
N !

≤ (N − [<d] + [|=d|] + 1)! |Γ([<d] + 1 − d)|
N !

∣∣∣∣ ψ(d − N ; u)

Γ(1 + N − d)

∣∣∣∣
(2.13)

≤ (N − [<d] + [|=d|] + 1)! |Γ([<d] + 1 − d)|
N !

Mε−N .

Suppose u ∈ (1, 1 + δ] and t = iθ with θ ∈ (−ρ, ρ) ⊂ R. Then there exists

an ε ∈ R with 0 < ε < ρ and |θ| < ε. From the definition (1.9) we have

F1(iθ; d; ψ; u) =
∞∑

n=0

a(n)u−n

(β + nw)d

∞∑
N=0

(β + nw)N(iθ)N

N !
(2.14)

=
∞∑

N=0

ψ(d − N ; u)
(iθ)N

N !
.

From (2.13) we can see that each side of (2.14) is uniformly convergent with

respect to u ∈ [1, 1+δ] because |θ| < ε. Hence we can let u → 1 in each side

of (2.14), namely (2.14) holds for u = 1 when θ ∈ (−ρ, ρ). We can define

F1(t; d; ψ; u) =
∞∑

N=0

ψ(d − N ; u)
tN

N !

for any u ∈ [1, 1 + δ] and t ∈ C with |t| < ρ. From (2.13), this is uniformly

convergent with respect to (t, u) ∈ D(ξ) × [1, 1 + δ] when 0 < ξ < ρ. Thus

we have the assertion.

Example 2.2. Let f : (Z/mZ) → C such that
∑m

a=1 f(a) = 0. It can be

regarded as a periodic function defined on Z. For example, any non-trivial

primitive Dirichlet character and any non-trivial additive character defined

mod m satisfy this condition. We define

(2.15) L(s; f) =
∞∑

n=1

f(n)

ns
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and

G1(t; L; u) =
∞∑

n=1

f(n)u−nent =
m∑

a=1

f(a)u−aeat

1 − u−memt

for u ∈ [1, 1 + δ]. Then L(s; f) and G1(t; L; u) satisfy Assumptions I-III.

Note that ρ = 2π/m and q = 1 in this case. For d ∈ C with <d > 1, let

F1(t; d; L) =
∞∑

n=1

f(n)ent

nd
.

It follows from Proposition 2.1 that F1(t; d; L) is holomorphic on D(2π/m)

and satisfies that

(2.16) F1(t; d; L) =
∞∑

N=0

L(d − N ; f)
tN

N !
.

In particular when f is a primitive Dirichlet character χ of conductor m, we

know that L(−2j−1, χ) = 0 if χ(−1) = −1 and L(−2j, χ) = 0 if χ(−1) = 1

for j ∈ N0 (see, for example, [16] Chap. 4). Hence, applying (2.16) with

d = 2k and d = 2k + 1 for k ∈ N and using cos x = (eix + e−ix) /2, we

obtain,

∞∑
n=1

χ(n) cos(nθ)

n2k
=

k−1∑
j=0

L(2k − 2j, χ)
(iθ)2j

(2j)!
(χ(−1) = 1),

∞∑
n=1

χ(n) cos(nθ)

n2k+1
=

k∑
j=0

L(2k + 1 − 2j, χ)
(iθ)2j

(2j)!
(χ(−1) = −1)

for θ ∈ (−2π/m, 2π/m). These are typical examples of Berndt’s result (see

[3] Theorem 4.2; see also [5] (1.2.12)). Similarly, it follows from (2.16) that

∞∑
n=1

χ(n) cos(nθ)

n2k+1
=

∞∑
j=0

L(2k + 1 − 2j, χ)
(iθ)2j

(2j)!
(χ(−1) = 1),

∞∑
n=1

χ(n) cos(nθ)

n2k
=

∞∑
j=0

L(2k − 2j, χ)
(iθ)2j

(2j)!
(χ(−1) = −1)

for k ∈ N and θ ∈ (−2π/m, 2π/m). Using the functional equations for

L(s, χ), we can confirm that these equations coincide with Katsurada’s for-

mulas for L(s, χ) (see [9] Theorem 3).

3 Proof of Theorem 1.1

Using the method introduced in [14] Section 2 (see also [11, 12, 13]), we

give the proof of Theorem 1.1 by the induction on r. The case of r = 1

8



can be directly obtained from Assumptions I and II. Hence we assume that

Theorem 1.1 holds for r − 1, and aim to prove the case of r(≥ 2).

As mentioned in Section 1, let

Ψr(s1, . . . , sr; u) = Ψr(s1, . . . , sr; ψ1, . . . , ψr; u)

be the function defined by (1.7). Since each ψk(s) defined by (1.5) converges

absolutely for <s > qk (1 ≤ k ≤ r), we can easily check that Ψr(s1, . . . , sr; u)

converges absolutely if σk = <sk > qk (1 ≤ k ≤ r).

First we assume each σk > qk (1 ≤ k ≤ r). Recall the Mellin-Barnes

formula

(3.1) Γ(s)(1 + λ)−s =
1

2πi

∫
(c)

Γ(s + z)Γ(−z)λzdz,

where <s > 0, |argλ| < π, λ 6= 0, −<s < c < 0, and the path of integration

is the vertical line <z = c. By the above assumption, we may assume

−σr < c < −qr. Put s = sr and

λ =
αr − αr−1 + nrwr

αr−1 + n1w1 + · · · + nr−1wr−1

in (3.1). Then multiply the both sides by

a1(n1) · · · ar(nr)u
−

Pr
ν=1 nν∏r−2

j=1(αj +
∑j

ν=1 nνwν)sj(αr−1 +
∑r−1

ν=1 nνwν)sr−1+sr

and sum up with respect to n1, . . . , nr. Then we have

Ψr(s1, . . . , sr; u) =
1

2πi

∫
(c)

Γ(sr + z)Γ(−z)

Γ(sr)
(3.2)

× Ψr−1(s1, . . . , sr−2, sr−1 + sr + z; u)ψr(−z; u)dz.

Let M ∈ N and ε ∈ R a small positive number. We shall shift the path

to <z = M − ε. We see that

Ψr−1(s1, . . . , sr−2, sr−1 + sr + z; u) = O(1)

in the region c ≤ <z ≤ M − ε because σk > qk (1 ≤ k ≤ r − 2), −σr < c

and

σr−1 + σr + <z ≥ σr−1 + σr + c > σr−1.

From the well-known Stirling formula for Γ(s), we have

(3.3) |Γ(s)| = e−
π
2
|τ |(|τ | + 1)σ− 1

2

(
1 + O

(
1

|τ | + 1

))
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as |τ | → ∞, where s = σ + iτ . Hence, by Assumption II, we see that the

integrand on the right-hand side of (3.2) tends to zero as |=z| → ∞, namely

this shifting is possible. By the assumption of induction, we see that Ψr−1

is holomorphic on Cr−1 and ψr holomorphic on C. Therefore we only have

to count the residues of the poles of Γ(−z) at z = 0, 1, . . . ,M − 1. Since

the residue of the pole of Γ(sr + z)Γ(−z)/Γ(sr) at z = k equals to −
(−sr

k

)
,

we obtain

Ψr(s1, . . . , sr; u)(3.4)

=
M−1∑
k=0

(
−sr

k

)
Ψr−1(s1, . . . , sr−2, sr−1 + sr + k; u)ψr(−k; u)

+
1

2πi

∫
(M−ε)

Γ(sr + z)Γ(−z)

Γ(sr)

× Ψr−1(s1, . . . , sr−2, sr−1 + sr + z; u)ψr(−z; u)dz.

The first term on the right-hand side is holomorphic on the whole Cr space

by the assumption of induction. On the other hand, Γ(sr +z) has no pole on

the path (M−ε), when <(−sr) = −σr < M−ε, namely σr > −M+ε. Using

(3.3) and Assumption II, we see that the second term on the right-hand side

of (3.4) is convergent absolutely, so is holomorphic on the region{
(s1, . . . , sr) ∈ Cr

∣∣∣∣ σ1 > q1, . . . , σr−1 > qr−1, σr > −M + ε

}
,

where M is arbitrary.

Next we fix sr ∈ C with σr > −M + ε, and consider the continua-

tion with respect to sk for 1 ≤ k ≤ r − 1. Since Ψr−1 is holomorphic on

Cr−1, the integrand on the right-hand side of (3.4) is holomorphic for all

(s1, . . . , sr−1) ∈ Cr−1. So, if we prove that the second term on the right-

hand side of (3.4) converges absolutely for any (s1, . . . , sr−1) ∈ Cr−1 and

sr ∈ C with σr > −M + ε, then Ψr(s1, . . . , sr; u) is holomorphic on the

whole Cr space because M is arbitrary. In order to prove this result, we

need the following lemma.

Lemma 3.1. For r ∈ N with r ≥ 2, there exists a polynomial Pr(X) ∈ R[X]

such that

(3.5) Ψr(s1, · · · , sr; u) = O
(
Pr(|τr|)eθ0|τr|

)
(|τr| → ∞)

for any (s1, · · · , sr−1) ∈ Cr−1 and u ∈ [1, 1 + d], where the constant implied

by the O-symbol depends on τ1, . . . , τr−1.

Proof. We denote (3.5) by

Ψr(s1, · · · , sr; u) ¿ Pr(|τr|)eθ0|τr|.
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We prove this lemma by the induction on r(≥ 2). First we consider the case

of r = 2. It follows from Assumption II and (3.4) that

|Ψ2(s1, s2; u)| ≤
M−1∑
k=0

∣∣∣∣(−s2

k

)∣∣∣∣ |Ψ1(s1 + s2 + k; u)ψ2(−k; u)|

(3.6)

+
1

2π

∣∣∣∣∫
(M−ε)

Γ(sr + z)Γ(−z)

Γ(sr)
Ψ1(s1 + s2 + z; u)ψ2(−z; u)dz

∣∣∣∣
¿

M−1∑
k=0

∣∣∣∣(−s2

k

)∣∣∣∣ eθ0|τ2|

+
1

2π

∫ ∞

−∞

∣∣∣∣Γ(sr + z)Γ(−z)

Γ(sr)

∣∣∣∣ eθ0|τ2+y|eθ0|y|dy,

where z = x + iy. For simplicity, we denote the last term on the right-hand

side of (3.6) by I. Using (3.3), we have

I ¿ e
π
2
|τ2|(|τ2| + 1)−σ2+ 1

2(3.7)

×
∫ ∞

−∞
e(θ0−π

2
)|τ2+y|e(θ0−π

2
)|y|(|τ2 + y| + 1)σ2+x− 1

2 (|y| + 1)−x− 1
2 dy.

Now we apply Lemma 4 in [12] with A = B = θ0 − 1
2
π, p = σ2 + x − 1

2
and

q = −x − 1
2
. Then it follows from (3.7) that

I ¿ e
π
2
|τ2|(|τ2| + 1)−σ2+ 1

2(3.8)

×
[{

1 + (|τ2| + 1)σ2+x− 1
2

}
(|τ2| + 1)−x+ 1

2 e(θ0−π
2
)|τ2|

+
{

1 + (|τ2| + 1)σ2+x− 1
2

}
e(θ0−π

2
)|τ2|

]
.

Combining (3.6) and (3.8), we see that there exists P2(X) ∈ R[X] such that

Ψ2(s1, s2; u) ¿ P2(|τ2|)eθ0|τ2| (|τ2| → ∞).

Thus we have the assertion for r = 2.

Assume that the assertion for r − 1 holds. Substituting the asserted

bounds into (3.4) and using Assumption II, we have

Ψr(s1, . . . , sr; u) ¿
M−1∑
k=0

∣∣∣∣(−σr + iτr

k

)∣∣∣∣Pr−1(|τr−1 + τr|)eθ0|τr−1+τr|

+
1

2πi

∫ ∞

−∞

∣∣∣∣Γ(sr + z)Γ(−z)

Γ(sr)

∣∣∣∣
× Pr−1(|τr−1 + τr + y|)eθ0|τr−1+τr+y|eθ0|y|dy.
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By the same method as mentioned above, we can see that there exists

Pr(X) ∈ R[X] such that

Ψr(s1, · · · , sr; u) ¿ Pr(|τr|)eθ0|τr|.

By induction, we obtain the proof of Lemma 3.1.

Now we can complete the proof of Theorem 1.1 as follows. If we fix any

(s1, . . . , sr) ∈ Cr, then it follows from Lemma 3.1 that

Ψr−1(s1, . . . , sr−2, sr−1 + sr + z; u) ¿ Pr−1(|τr−1 + τr + y|)eθ0|τr−1+τr+y|

as |y| → ∞, where z = x + iy. Since sr−1 is fixed, this can be written as

(3.9) Ψr−1(s1, . . . , sr−2, sr−1+sr+z; u) ¿ P̃r−1(|τr+y|)eθ0|τr+y| (|y| → ∞),

where P̃r−1(X) ∈ R[X]. We denote the second term on the right-hand side

of (3.4) by Ĩ. Then, by using (3.3), and by (3.8) and Assumption II, we

have

Ĩ ¿
∫ ∞

−∞

˜̃
P r−1(y)e−

π
2
|y|−π

2
|τr+y|eθ0|τr+y|eθ0|y|dy

=

∫ ∞

−∞

˜̃
P r−1(y)e(θ0−π

2
)(|τr+y|+|y|)dy

for some
˜̃
P r−1(X) ∈ R[X]. Since 0 ≤ θ0 < π/2, Ĩ converges absolutely for

any (s1, . . . , sr) ∈ Cr. By (3.4), we see that Ψr(s1, . . . , sr; u) is holomorphic

on Cr.

Lastly we prove (1.8). More strictly we prove that (1.8) is uniformly

convergent with respect to sj (1 ≤ j ≤ r) in any fixed strip σ1j ≤ <sj ≤ σ2j

as u → 1 + 0. The case of r = 1 follows from Assumption II. Hence we

assume that the case of r − 1 holds and prove the case of r (≥ 2). Let u →
1+0 in (3.4). From the assumption of induction, the integrand in the second

term on the right-hand side of (3.4) is uniformly convergent with respect to

z in any fixed strip σ1 ≤ <z (= M − ε) ≤ σ2 as u → 1 + 0. Exchanging

limu→1+0 and the integral, and using the assumption of induction, we see

that the right-hand side of (3.4) tends to

M−1∑
k=0

(
−sr

k

)
Ψr−1(s1, . . . , sr−2, sr−1 + sr + k; 1)ψr(−k; 1)(3.10)

+
1

2πi

∫
(M−ε)

Γ(sr + z)Γ(−z)

Γ(sr)

× Ψr−1(s1, . . . , sr−2, sr−1 + sr + z; 1)ψr(−z; 1)dz
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as u → 1 + 0. It is clear that this convergence is uniformly with respect

to sj in any fixed strip σ1j ≤ <sj ≤ σ2j (1 ≤ j ≤ r). From (3.4), we see

that (3.10) coincides with Ψr(s1, . . . , sr; 1). Hence the assertion in case of r

holds. By induction, we have the assertion that (1.8) holds. Thus we obtain

the proof of Theorem 1.1.

Remark 3.2. For any N ∈ N0, let M = N + 1 and sr → −N in (3.4).

Then the second term on the right-hand side of (3.4) tends to 0 because

Γ(sr) has a pole at sr = −N . Hence we obtain

Ψr(s1, . . . , sr−1,−N ; u)(3.11)

=
N∑

ν=0

(
N

ν

)
Ψr−1(s1, . . . , sr−2, sr−1 + ν − N ; u)ψr(−ν; u)

for u ∈ [1, 1+δ] and (s1, . . . , sr−1) ∈ Cr−1. In particular, let ψj(s) = L(s; fj)

(1 ≤ j ≤ r) and u = 1, where each fj is defined mod mj and satisfies a

certain condition (see Example 2.2). Then we can check that Assumptions

I-III hold. In this case, Ψr(s1, . . . , sr; 1) coincides with the multiple L-

function

Lr(s1, . . . , sr; f1, . . . , fr) =
∞∑

n1,...,nr=1

f1(n1) · · · fr(nr)

ns1
1 (n1 + n2)s2 · · · (n1 + · · · + nr)sr

,

which has been studied in [2]. Hence (3.11) gives that

Lr(s1, . . . , sr−1,−N ; f1, . . . , fr)

(3.12)

=
N∑

ν=0

(
N

ν

)
Lr−1(s1, . . . , sr−2, sr−1 + ν − N ; f1, . . . , fr−1)L1(−ν; fr)

for (s1, . . . , sr−1) ∈ Cr−1. This result was proved by Kamano (see [8]) by

using the method introduced in [1]. This case can be also derived directly

from the relation (2.3) in [14].

4 Proof of Theorem 1.3

In this section, we give the proof of Theorem 1.3 by the induction on r.

The case of r = 1 is just what we argued in Proposition 2.1. Hence we

assume that the assertion of Theorem 1.3 holds for r−1 and prove the case

of r(≥ 2).
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Let Pr = {ψ1, . . . , ψr} which satisfy Assumptions I-III. Then we can

take {qk}1≤k≤r and {ρk}1≤k≤r, and define ηr−1 and ηr by (1.6). Let

Gr(t1, . . . , tr;dr−1; Pr; u)(4.1)

= Fr−1(t1, . . . , tr−2, tr−1 + tr;dr−1; Pr−1; u)G1(tr; ψr; u)

=
∞∑

n1,...,nr=0

a1(n1) · · · ar(nr)u
−

Pr
l=1 nl

∏r
j=1 e(αj+

Pj
µ=1 nµwµ)tj∏r−1

j=1(αj +
∑j

µ=1 nµwµ)dj
,

which is convergent when <tj < 0 (1 ≤ j ≤ r). By the assumption

of induction, we see that Fr−1(t1, . . . , tr−1 + tr;dr−1; Pr−1; u) is holomor-

phic for (t1, . . . , tr) ∈ D(ηr−1)
r−2 × D (ηr−1/2)2, and G1(tr; ψr; u) is holo-

morphic for tr ∈ D(ρr). Since we have ηr ≤ min(ηr−1/2, ρr), we can

see that Gr(t1, . . . , tr;dr−1; Pr; u) is holomorphic for (t1, . . . , tr) ∈ D(ηr)
r.

Therefore, if we fix tr ∈ D(ηr) then the function of real (r − 1) vari-

ables Gr(iθ1, . . . , iθr−1, tr;dr−1; Pr; u) is real-analytic for (θ1, . . . , θr−1) ∈
(−ηr, ηr)

r−1 ⊂ Rr−1 (see, for example, [10] Corollary 2.3.7). Similarly, if we

fix (θ1, . . . , θr−1) ∈ (−ηr, ηr)
r−1, then we see that Gr({iθk}, tr;dr−1; Pr; u) is

holomorphic for tr ∈ D(ηr). Hence we define {Bn({iθk};dr−1; Pr; u)}n≥0 by

(4.2) Gr(iθ1, . . . , iθr−1, tr;dr−1; Pr; u) =
∞∑

n=0

Bn({iθk};dr−1; Pr; u)
tnr
n!

.

As well as in the proof of Proposition 2.1, we let

Hr(s; iθ1, . . . , iθr−1;dr−1; Pr; u)(4.3)

=

∫
Υ

Gr({iθk},−t;dr−1; Pr; u)ts−1dt

=
(
e2πis − 1

) ∫ ∞

ε

Gr({iθk},−t;dr−1; Pr; u)ts−1dt

+

∫
Cε

Gr({iθk},−t;dr−1; Pr; u)ts−1dt,

which is holomorphic for all s ∈ C if we fix (θ1, . . . , θr−1) ∈ (−ηr, ηr)
r−1 and

0 < ε < ηr.

Putting s = −n for n ∈ N0 and ε = ξ with 0 < ξ < ηr in (4.3), and

using (4.2), we have

Hr(−n; iθ1, . . . , iθr−1;dr−1; Pr; u) =

∫
Cξ

Gr({iθk},−t;dr−1; Pr; u)t−n−1dt

=
(2πi)Bn({iθk};dr−1; Pr; u)(−1)n

n!
.

By the assumption of induction and (4.1), we see that the Taylor expansion

series of Gr({iθk},−t;dr−1; Pr; u) around t = 0 is uniformly convergent
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with respect to (θ1, . . . , θr−1, t, u) ∈ [−ξ, ξ]r−1×D(ξ)× [1, 1+δ] when ξ ∈ R
with 0 < ξ < ηr. In particular, Gr({iθk},−t;dr−1; Pr; u) is continuous for

(θ1, . . . , θr−1, t, u) ∈ [−ξ, ξ]r−1 × D(ξ) × [1, 1 + δ]. Hence there exists the

value

M̃ξ = max |Gr({iθk},−t;dr−1; Pr; u)| on [−ξ, ξ]r−1 ×{|t| = ξ}× [1, 1 + δ]

when ξ ∈ R with 0 < ξ < ηr. By the above equation, we have

(4.4)
|Bn({iθk};dr−1; Pr; u)|

n!
≤ M̃ξ

ξn

for any n ∈ N0, (θ1, . . . , θr−1) ∈ [−ξ, ξ]r−1 and u ∈ [1, 1 + δ].

Define

Zr(dr−1, s; iθ1, . . . , iθr−1; Pr; u) = Fr(iθ1, . . . , iθr−1, 0;dr−1, s; Pr; u)(4.5)

=
∞∑

n1,...,nr=0

a1(n1) · · · ar(nr)u
−

Pr
ν=1 nν

∏r−1
j=1 e(αj+

Pj
µ=1 nµwµ)iθj∏r−1

j=1(αj +
∑j

ν=1 nνwν)dj(αr +
∑r

ν=1 nνwν)s

for (θ1, . . . , θr−1) ∈ (−ηr, ηr)
r−1, s ∈ C with <s > qr and u ∈ [1, 1 + δ].

Assuming <s > max(1, qr) and using the same method as in the proof of

Proposition 2.1, we have

Zr(dr−1, s; {iθk}; Pr; u) =
1

(e2πis − 1) Γ(s)
Hr(s; {iθk};dr−1; Pr; u)(4.6)

=
Γ(1 − s)

2πi eπis
Hr(s; {iθk};dr−1; Pr; u).

Note that Hr(s; {iθk};dr−1; Pr; u) is holomorphic for all s ∈ C if we fix

{θk} ∈ (−ηr, ηr)
r−1 (as mentioned above), and that poles of Γ(1−s) coincide

with N = {1, 2, . . .}. Since Zr(dr−1, s; {iθk}; Pr; u) is convergent absolutely

for s ∈ C with <s > qr, it follows from (4.6) that Zr(dr−1, s; {iθk}; Pr; u)

is defined and holomorphic for all s ∈ C \ {1, 2, . . . , [qr]} if we fix {θk} ∈
(−ηr, ηr)

r−1.

Furthermore, we can prove that Zr(dr−1, s; {iθk}; Pr; u) has no pole as

follows. We fix an arbitrary s ∈ C. If 1 < u ≤ 1 + δ then from (1.7) and

(4.5), and by substituting the Taylor expansion series for each exp((αj +∑j
ν=1 nνwν)iθj) and changing the order of summations, we have

Zr(dr−1, s; {iθk}; Pr; u)

(4.7)

=
∞∑

N1,...,Nr−1=0

Ψr(d1 − N1, . . . , dr−1 − Nr−1, s; u)
(iθ1)

N1 · · · (iθr−1)
Nr−1

N1! · · ·Nr−1!
.
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We see that (4.3) is uniformly convergent with respect to (θ1, . . . , θr−1, u) ∈
[−ξ, ξ]r−1 × [1, 1 + δ], when we take any ξ ∈ R with 0 < ξ < ηr. Hence,

for u ∈ [1, 1+ δ], Hr(s; {iθk};dr−1; Pr; u) is real-analytic for (θ1, . . . , θr−1) ∈
(−ηr, ηr)

r−1. Put θ1 = · · · = θr−1 = θ. Then for u ∈ [1, 1+δ], Hr(s; {iθ};dr−1; Pr; u)

is real-analytic for θ ∈ (−ηr, ηr), and its Taylor expansion series around

θ = 0 is uniformly convergent with respect to (θ, u) ∈ [−ξ, ξ] × [1, 1 + δ].

It follows from (4.6) that Zr(dr−1, s; {iθ}; Pr; u) also has these properties.

Hence, for any u ∈ [1, 1 + δ], we define the one variable complex func-

tion Zr(dr−1, s; {t}; Pr; u) which is holomorphic for t ∈ D(ηr) and its Tay-

lor expansion series around t = 0 is uniformly convergent with respect to

(t, u) ∈ D(ξ) × [1, 1 + δ]. In particular, Zr(dr−1, s; {t}; Pr; u) is continuous

for (t, u) ∈ D(ξ)× [1, 1+ δ]. Putting ξ = ε with 0 < ε < ηr, there exists the

value

M
′

ε = max |Zr(dr−1, s; {t}; Pr; u)| on {t ∈ C | |t| = ε} × [1, 1 + δ].

Using the same method as in the proof of (4.4) and by (4.7) and the con-

tinuity of Ψr(d1 − N1, . . . , dr−1 − Nr−1, s; u) on u ∈ [1, 1 + δ] (see Theorem

1.1), we see that

(4.8)

∣∣∣∣∣∣
∑

N1+···+Nr−1=n

Ψr(d1 − N1, . . . , dr−1 − Nr−1, s; u)

N1! · · ·Nr−1!

∣∣∣∣∣∣ ≤ M
′
ε

εn

for u ∈ [1, 1 + δ] and n ∈ N0, where ε is an arbitrary real number with 0 <

ε < ηr. This means that the right-hand side of (4.7) is uniformly convergent

with respect to (θ1, . . . , θr−1, u) ∈ [−ξ, ξ]r−1 × [1, 1 + δ] for any ξ ∈ R with

0 < ξ < ηr. Hence we can let u → 1 in (4.7), namely (4.7) holds for u ∈
[1, 1 + δ]. Since s is an arbitrary complex number, Zr(dr−1, s; {iθk}; Pr; u)

has no pole, namely it is holomorphic for all s ∈ C when u ∈ [1, 1+δ], and is

real-analytic for (θ1, . . . , θr−1) ∈ (−ηr, ηr)
r−1 when s ∈ C and u ∈ [1, 1 + δ].

For dr ∈ C with <dr > qr and N ∈ N0 with N ≥ <dr + 1, we put

s = dr − N in (4.3). Then we have

Hr(dr − N ; {iθk};dr−1; Pr; u)(4.9)

=
(
e2πidr − 1

) ∫ ∞

ε

Gr({iθk},−t;dr−1; Pr; u)tdr−N−1dt

+

∫
Cε

Gr({iθk},−t;dr−1; Pr; u)tdr−N−1dt.

For simplicity, we denote by I1 and I2 the first and second terms of the

right-hand side of (4.9), respectively. Since N ≥ <dr + 1, we have∣∣∣∣∫ ∞

ε

e−(αr+
Pr

µ=1 nµwµ)ttdr−N−1dt

∣∣∣∣ ≤ e−(αr+
Pr

µ=1 nµwµ)ε|εdr−N−1|
αr +

∑r
µ=1 nµwµ

.
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Hence we have

|I1| ≤ ε<dr−N−1|e2πidr − 1|(4.10)

×
∞∑

n1,...,nr=0

|a1(n1) · · · ar(nr)|e−(αr+
Pr

µ=1 nµwµ)ε∏r−1
j=1(αj +

∑j
µ=1 nµwµ)<dj(αr +

∑r
µ=1 nµwµ)

.

On the other hand, by using (2.9), we have

I2 =


(2πi)BN−dr({iθk};dr−1; Pr; u)

(−1)N−dr

(N − dr)!
(N − dr ∈ N0),

εdr−N
(
e2πidr − 1

) ∞∑
n=0

Bn({iθk};dr−1; Pr; u)(−1)nεn

(n + dr − N)n!
(otherwise).

Note that the above infinite series in the second case is uniformly conver-

gent with respect to (θ1, . . . , θr−1, u) ∈ [−ε, ε]r−1 × [1, 1 + δ] because of the

assumption ε < ηr and (4.4). Hence we have either

(4.11) |I2| ≤ 2π
|BN−dr({iθk};dr−1; Pr; u)|

(N − dr)!
(N − dr ∈ N0)

or

|I2| ≤ ε<dr−N
∣∣e2πidr − 1

∣∣ ∣∣∣∣∣
∞∑

n=0

Bn({iθk};dr−1; Pr; u)
(−1)nεn

(n + dr − N)n!

∣∣∣∣∣
(4.12)

(otherwise).

As well as (2.12), it follows from (4.4), (4.6), (4.8)-(4.12) that there exists

a constant M > 0 independent of N and {θk} such that∣∣∣∣Zr(dr−1, dr − N ; {iθk}; Pr; u)

Γ(1 + N − dr)

∣∣∣∣(4.13)

≤ 1

2π|eπidr |

∣∣∣∣Hr(dr − N ; {iθk};dr−1; Pr; u)

∣∣∣∣ ≤ Mε−N

for N ∈ N with N ≥ <dr + 1. Note that we can take an arbitrary ε such

that 0 < ε < ηr. As well as (2.13), we have

|Zr(dr−1, dr − N ; {iθk}; Pr; u)|
N !

(4.14)

≤ (N − [<dr] + [|=dr|] + 1)! |Γ([<dr] + 1 − dr)|
N !

Mε−N

for N ∈ N with N ≥ <dr + 1 and u ∈ [1, 1 + δ].
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Suppose 1 < u ≤ 1 + δ and θr ∈ (−ηr, ηr). Then by (1.9), and using the

Taylor expansion series for exp((αr +
∑r

ν=1 nνwν)iθr), we have

Fr(iθ1, . . . , iθr−1, iθr;dr; Pr; u)(4.15)

=
∞∑

Nr=0

Zr(dr−1, dr − Nr; {iθk}; Pr; u)
(iθr)

Nr

Nr!
.

By (4.14), we see that the right-hand side of (4.15) is uniformly convergent

with respect to (θr, u) ∈ [−ξ, ξ]× [1, 1+δ] when (θ1, . . . , θr−1) ∈ (−ηr, ηr)
r−1

and 0 < ξ < ηr. Hence (4.15) holds for u = 1. As we mentioned above,

(4.7) holds for any s ∈ C, (θ1, . . . , θr−1) ∈ (−ηr, ηr)
r−1, and u ∈ [1, 1 + δ].

Hence we have

Zr(dr−1, dr − Nr; {iθk}; Pr; u)(4.16)

=
∞∑

N1,...,Nr−1=0

Ψr(d1 − N1, . . . , dr − Nr; u)
(iθ1)

N1 · · · (iθr−1)
Nr−1

N1! · · ·Nr−1!

for u ∈ [1, 1 + δ]. Hence (4.15) can also be written as

Fr(iθ1, . . . , iθr;dr; Pr; u)(4.17)

=
∞∑

N1,...,Nr=0

Ψr(d1 − N1, . . . , dr − Nr; u)
(iθ1)

N1 · · · (iθr)
Nr

N1! · · ·Nr!

for u ∈ [1, 1+δ], and (4.17) is uniformly convergent with respect to (θ1, . . . , θr, u) ∈
[−ξ, ξ]r×[1, 1+δ] for any ξ ∈ R with 0 < ξ < ηr. Therefore, for u ∈ [1, 1+δ],

we can define

Fr(t1, . . . , tr;dr; Pr; u)(4.18)

=
∞∑

N1,...,Nr=0

Ψr(d1 − N1, . . . , dr − Nr; u)
tN1
1 · · · tNr

r

N1! · · ·Nr!

which is uniformly convergent with respect to (t1, . . . , tr, u) ∈ D(ξ)r×[1, 1+

δ] and is holomorphic for (t1, . . . , tr) ∈ D(ηr)
r (see, for example, [7] Section

2.2). Thus we obtain the case of r. By induction, we obtain the proof of

Theorem 1.3.

5 Some applications

First we prove the following estimation formulas for Ψr(d1 − N1, . . . , dr −
Nr; u) by using the same method as in the proof of Proposition 2.3.10 in

[10].
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Proposition 5.1. With the same notation as in Theorem 1.3,

(5.1) lim sup
N1+···+Nr→∞

{
|Ψr(d1 − N1, . . . , dr − Nr; u)|

N1! · · ·Nr!

}1/(N1+···+Nr)

≤ 1

ηr

.

Proof. Assume that the left-hand side of (5.1) is greater than 1/ηr. Then we

take κ ∈ R with κ > 1/ηr such that there exist infinitely many (N1, . . . , Nr) ∈
Nr

0 such that

|Ψr(d1 − N1, . . . , dr − Nr; u)|
N1! · · ·Nr!

> κN1+···+Nr .

This means that the right-hand side of (1.10) does not converge absolutely

at (1/κ, . . . , 1/κ) ∈ D(ηr)
r. This is contradiction.

Example 5.2. Let ψj(s) = L(s; fj) (1 ≤ j ≤ r) as considered in Remark

3.2. Then (5.1) gives

(5.2)

lim sup
N1+···+Nr→∞

{
|Lr(d1 − N1, . . . , dr − Nr; f1, . . . , fr)|

N1! · · ·Nr!

}1/(N1+···+Nr)

≤ 1

ηr

,

where each <dj > 1 (1 ≤ j ≤ r) and ηr = min1≤k≤r {2π/2r−1mk}.

Secondly we give certain multiple analogues of both Berndt’s and Kat-

surada’s formulas considered in Example 2.2.

Example 5.3. As well as the above example, let ψj(s) = L(s; fj) (1 ≤ j ≤
r) and define a certain generalization of multiple polylogarithm by

Fr(t1, . . . , tr;dr; f1, . . . , fr)(5.3)

=
∞∑

n1,...,nr=1

f1(n1) · · · fr(nr)
∏r

j=1 e(
Pj

µ=1 nµ)tj

nd1
1 (n1 + n2)d2 · · · (n1 + · · · + nr)dr

for d1, . . . , dr ∈ C with <dj > 1 (1 ≤ j ≤ r). Applying Theorem 1.3 with

ψj(s) = L(s; fj) (1 ≤ j ≤ r) and u = 1, we see that Fr(t1, . . . , tr;dr; f1, . . . , fr)

is defined and holomorphic for (t1, . . . , tr) ∈ D(ηr)
r such that

Fr(t1, . . . , tr;dr; f1, . . . , fr)(5.4)

=
∞∑

N1,...,Nr=0

Lr(d1 − N1, . . . , dr − Nr; f1, . . . , fr)
tN1
1 · · · tNr

r

N1! · · ·Nr!
,

where ηr = min1≤k≤r {2π/2r−1mk}. Putting t1 = · · · = tr−1 = 0 and

tr = ±iθ for θ ∈ (−ηr, ηr) in (5.4), we have
∞∑

n1,...,nr=1

f1(n1) · · · fr(nr) cos ((n1 + · · · + nr) θ)

nd1
1 (n1 + n2)d2 · · · (n1 + · · · + nr)dr

(5.5)

=
∞∑

N=0

Lr(d1, . . . , dr−1, dr − 2N ; f1, . . . , fr)
(iθ)2N

(2N)!
.

19



Remark 5.4. In the case fj(n) = (−1)n (1 ≤ j ≤ r), Fr(iθ1, . . . , iθr; f1, . . . , fr)

has recently been used to prove what is called the parity result for Euler-

Zagier sums (see [15]).
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