d-Calabi-Yau algebras and d-cluster tilting subcategories
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Recently, the the concept of cluster tilting object played an important role in represen-
tation theory [BMRRT]. The concept of d-cluster tilting subcategories (maximal (d — 1)-
orthogonal subcategories) was introduced in [I1,2][KR1]. They were used to study higher-
dimensional analogy of Auslander-Reiten theory, and to classify rigid Cohen-Macaulay
modules over certain quotient singularities [IY].

Let A be an abelian or triangulated category. Put Ext’(X,Y) := Hom4(X,Yi])
for triangulated case. A full subcategory C of A is called functorially finite if for any
X € A, there exist morphisms f € 4(C,X) and g € A(X,C") such that C,C" € C, and

A(—,C) 4, A(—=, X) — 0and A(C', ) L A(X,—) — 0 are exact on (.
A functorially finite subcategory C of A is called d-cluster tilting if

C = {XeA|Ext)(c,X)=0forany 0 <i<d}
= {X €A | Ext)(X,C)=0forany 0 <i < d}.

Let R be a complete Gorenstein local ring, and A an R-algebra which is a finitely
generated R-module. We denote by mod A (resp. fl A) the category of finitely generated
(resp. finite length) left A-modules, by D’(fl A) the bounded derived category of fl A, and
by D :fl R — fl R the Matlis duality of R.

We say that an R-linear triangulated category A d-Calabi-Yau if A(X,T) € fl R and
there exists a functorial isomorphism

AX,)Y) ~ D A(Y, X[d])

for any X,Y € A. We call A d-Calabi-Yau if D°(flA) is d-Calabi-Yau.

1 Main results
Let A be a basic d-Calabi-Yau algebra (d > 2) with a complete set {e1,---,e,} of
orthogonal primitive idempotents. Put

Ii = A@ZA

for each i. We assume that
Exth (S;,8) =0 foranyl1<i<n, 0<l<d.
A (left) tilting chain is a (finite or infinite) decreasing sequence
A=ToDT' DT, D---
of two-sided ideals of A satisfying

Ti1 =T, for some 1 < a; < n,
Tor)(T;, A/I,,) =0  for any [ > 0,



for any ¢ > 0. Put

Then we have a sequence of surjections - -+ — A3 — Ay — Ay of algebras. Put

C = add{A; |0<i} C fA,
Am = {X €modA,, | Exty (X,A,,)=0forany!>0} C modA,,
A, = Am/[Am]a
Cm = add{A; |0<i<m} C modA,,
Cn = Cm/[Am]a

where we denote by [A,,] the ideal of A4,, (resp. C,) consisting of morphisms which factor
through projective A,,-modules. Now we can state our main result.

1.1 Theorem (1) For anym >0, A, forms a d-Calabi-Yau triangulated category and
C,, forms a d-cluster tilting subcategory of A,,.
(2) Assume V;>qT; = 0. Then C forms a d-cluster tilting subcategory of flA.

2 Tilting ideals

In this section, we give a proof of our main theorem. A key role is played by tilting
ideals over Calabi-Yau algebras.

We call T € mod A tilting if pd zT < oo, Ext) (T, T) = 0 for any 7 > 0, and there exists
an exact sequence 0 - A — Ty — --- — T, — 0 with T; € add 5T

For tilting A-modules T and U, we write T' < U if Ext’ (T, U) = 0 for any i > 0. It is
well-known that basic tilting A-modules forms a partially ordered set.

We call a two-sided ideal T  of A tilting if T is a tilting A-module, and cofinite if A/T
has finite length as a A-module.

2.1 Proposition (1) I; is a cofinite tilting ideal of A.

(2) T, is a cofinite tilting ideal of A.

(8) We have Ty < Ty < Ty < ---.

PROOF (1) This is shown in [IR].

L
(2) Assume that T; is a cofinite tilting ideal of A. Then T; ®, I,, is a tilting complex
L

over A (e.g. [Y]). Since Tor*(T}, I,,) = 0 for any [ > 0, we have T} @4 I,, = T; ®4 I,,. Since
Tort (Ty,A/1,) = 0, we have T, @, I,, = T;I,, = Tjx1. Thus Tj,; is a tilting A-module.
Obviously it is a cofinite ideal.

(3) Take a projective resolution 0 — P; — --- — Fy — [,, — 0 of the A-module I,,.
Applying T; ®x I,,, we have an exact sequence

0T, @\ FPg— - —=1;®0\ Py = Tiy1 — 0.

Applying Homy (T}, —), we have Ext) (T}, ;1) = 0 for any [ > 0.

2.2 Lemma Let T and U be cofinite tilting ideals of A. If T < U, then Ext) (A/T,A/U) =
Exty (AJU,A/T) =0 for anyi (0 <i <d).



PROOF Consider exact sequences 0 — QI(A/T) % Py — -+ — P, — Py — A/T — 0

with projective A-modules P; and 0 — U — A LA A/U — 0. We have a commutative
diagram

Exty (QY(A/T),U) = Exty(T,U) =0

)
Homp (Pr_1, AJU)—=—Homy (V(A/T),A/JU)  ———  Exti(A/T,AJU) —0
10 1°

Homy (P, A) —2— Homy(Q'(A/T), A) —  Ext4(A/T,A)=0

of exact sequences. Thus we have Ext) (A/T,A/U) = 0. Since A is d-Calabi-Yau, we have
the assertion.ll

2.3 Proposition For any cofinite tilting ideal T', we have id r;7(A/T) < d — 1 and
id(a/ryer (A/T) < d — 1.

Proor We only show id/mer(A/T) < d—1. Let 0 — Q44 — Ppy — -+ —
Py — D(A/T) — 0 be an exact sequence with with projective A-modules P;. We have
Tor(A/T, D(A/T)) = DExt.,(A/T,A/T) = 0 for any i (0 < i < d) by 2.2. Applying

A/T ®, —, we have an exact sequence
0= A/T@rN Qi1 = ANT&\Pjg— -+ — AT\ Py — DA/T) — 0.

Thus we only have to show that A/T ®, Q41 is a projective A/T-module, or equiva-
lently, the functor Homp,7(A/T ®4 Qq-1,—) = Homy(Q4_1, —) is an exact functor on
mod A/T. This is equivalent to that the functor Ext} (€4_1, —) preserves monomorphisms
in mod A/T. This follows from functorial isomorphisms

Ext} (Qq_1, —) = Ext4(D(A/T), =) = DHomy(—, D(A/T)) = D Homp,7(—, D(A/T)) =1

on mod A/T since D(A/T) is an injective A/T-module.l

To give a proof of 1.1(2), we shall need the following easy observaiton which relates
extensions in 4 and flA.

2.4 Proposition Let T be a cofinite tilting ideal of A and
A:={X € modA/T | Extﬁ\/T(X, A/T) =0 for any i > 0}.

(1) A is a Frobenius category with enough projective-injectives AJT.
(2) Ext} (A, A/T) = 0 = Ext} (A/T, A) for any 0 < i < d.

(3) Exty(X,Y) = Ext} (X, Y) for any X,Y € A and 0 < i < d.
(4) The A:= A/[A/T] is a d-Calabi-Yau triangulated category.

(5) A is an extension closed subcategory of fl A.

PROOF (1) The assertion follows from 2.3 and Happel’s result [HJ.
(2) We only have to show the right equality. For any X € A, we can take an exact
sequence 0 — X — PY — ... — P2 Y — (0 with P! € addA/T and Y € 4. We
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apply Homy (A/T, —) = Homyr(A/T,—), then the sequence does not change. Since we
have Ext)y (A/T,A/T) =0 for any 0 < ¢ < d by 2.2, we have the right equality.

(3) Take an exact sequence 0 — Qy X — Py — --- — By — X — 0 with P; €
add A/T. Applying Hom, (—,Y’), we obtain an exact sequence

Homy (Pi-1,Y) — Homy (@} 7 X,Y) — Ext} (X,Y) — 0

since we have Ext(A/T), Y) = 0 for any 0 < i < d by (2). This implies Ext’ (X,Y) ~
Hom, /7 (2 ) X, Y) = Extly ;p(X,Y).
(4) Since A is d-Calabi-Yau, we have a functorial isomorphism

AX,Y) ~ AX[1],Y[1]) ~ Ext} (X[1],Y) ~ DExtT (Y, X[1]) ~ DA(Y, X[d]).

(5) Let 0 = X — Y — Z — 0 be an exact sequence in fl A with X, Z € A. Then there
exists a monomorphism X — P with P € add A/T. Since Ext}(Z, P) = 0 by (2), we have
a commutative diagram

0 X Y A 0
N N [
0 P PoZ A 0

of exact sequences. Since Y is a submodule of P & Z € mod A/T, it is a A/T-module.
Since A is obviously extension closed in mod A/T', we have Y € Al

We need the following general observation.

2.5 Lemma Let A be a finite dimensional algebra and C = add M a full subcategory
of mod A containing A. Assume that I' := Enda(M) satisfies gl.dimD' < d + 1 and
pdrD(M) <d—1. Then, for any X € mod A, there exists an exact sequence

0—-Cy4q—--—Cy— X —0

which s a right C-resolution of X.

Proor Take an injective resolution 0 — X — Iy — I} in mod A. Applying
Homa (M, —), we have an exact sequence 0 — Homa (M, X)) — Homa (M, Iy) — Homa (M, I).
Since pdr Homy (M, I;) < d — 1 by our assumption, we have pdpr Homy (M, X) < 1 by
gldimI' < d+ 1. Take a projective resolution

0— Py q1— -+ — Py— Homy(M,X)—0
of the I'-module Homy (M, X'). Then this is the image of a complex
0—-Cq4q1—--—Cyh— X —0

with C; € C under the functor Homa (M, —). This complex is exact because M is a
generator.l

2.6 Lemma The following assertions hold for any m > 0.
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(1)m For any X € modA,,, there exists an exact sequence 0 — Cy_qy — -+ — Cj 4,
(2)m Put M, := @iy \; and Iy, := Endy(M,,). Then gl.dimI', <d+ 1.

PrOOF We assume (1),,—1 and (2),,—1, and prove (1), and (2),,.

(2),, Since there are no loop for A, we have T,,_1Jy C T,,, so JyA,, is a A,,_1-module.
For any X € ind(C,,, we take a sink map f : Cy — X in Cp,.

First we consider the case when X is not a projective A,,-module. Since A,, € C,
we have that f is surjective. Decompose Cy = Cfj & P with C, € C,,—1 and a projective
A,,-module P. Since f is right minimal, we have Ker f C C| @ JoP, so Ker f is a A,,_1-
module by the above remark. It follows from (1),,_; that there exists an exact sequence
0—-Cy— -+ — (] — Ker f — 0. We have an exact sequence

O—>Cd—>~'-—>C’1—>COi>X—>O.

Applying Homy (M,,, —), we have that the simple I',,-module top Homy (M,,, X') has pro-
jective dimension at most d + 1.
Next consider the case when X is not a projective A,,-module. Then JyX is a A,,_1-
module by the above remark. By (1),,_1, there exists an exact sequence 0 — Cy_; —
- — Cy — JpX — 0 with C; € C,,—1. Thus we have an exact sequence

0—-Cygq—-—Cy— X.

Applying Homy (M,,,, —), we have that the simple I',,-module top Homy (M,,, X') has pro-
jective dimension at most d.

Consequently, any simple I',,,-module has projective dimension at most d + 1, and we
have shown (2),,.

(1),, By 2.3, we can take a projective resolution 0 — Py_1 — --- — Py — D(A,,) — 0
in mod A,,,. We have Ext (M,,, A,,,) = 0 for any i (0 < i < d). Applying Homy (M,,, —), we
have an exact sequence 0 — Homy (M,,, Py—1) — - -+ — Homp(M,,, Fy) — D(M,,) — 0.
Thus we have pdr, D(M,,) < d—1. Applying 2.5 to (A,C) := (A, Cn), we proved that
(1), holds.

2.7 Proof of 1.1 By 2.2, we have Ext,(C,C) = 0 for any 0 < i < d.

(1) We have A, (X,Y[i]) = Ext}(X,Y) for any X,Y € A, and 0 < i < d by 2.4(3).
In particular, we have A, (Cm,Cin[i]) = Ext}(Cm,Cn) = 0 for any 0 < i < d.

On the other hand, take any X € A,, such that A (X,Cn[i]) =0 for any 0 < i < d.

By 2.6(1),,, we can take an exact sequence 0 — Cy_; — -+ — C J. X = 0 with C; € Cp.
Using Ext’\ (X, Cp) = 0 for any 0 < i < d, we have that f splits. Thus X € C,,.

Since A,, is d-Calabi-Yau by 2.4(4), any X € A,, satisfying A  (Cm,X[i]) = 0 for any
0 < i < d belongs to C,.

(2) Take any X € flA such that Ext}(X,C) = 0 for any 0 < i < d. Since N0 T; = 0,
there exists m such that X € modA,,. By 2.6(1),,, we can take an exact sequence 0 —
Cyq1— - —C L X = 0 with C; € Cm. Then f splits because we have Ext (X, Cpn) = 0
for any 0 < ¢ < d, we have that f splits. Thus X € C,, C C.

Since A is d-Calabi-Yau, any X € fl A satisfying Ext’ (C,X) = 0 for any 0 < i < d
belongs to cl



3 Examples and remarks

Let A be a preprojective algebra of extended Dynkin type and W the associated affine
Weyl group. For a primitive idempotent e; of A, put I; := A(1 — ¢;)A. The following is
given in [IR].

3.1 Theorem For any element w € W, take a reduced expression w = s;, ---s;, and
put NV = I, ---I; . Then A depends only on w. We have a bijection w — A" from W

i
to the set of isoclasses of basic tilting A-modules.

3.2 Corollary Put M, := @, A; and I';,, := Enda(M,,). Then gl.diml',, < d+1
and there exist exact sequences

0—-T1,—-Ilh— - —1;1—0 in modI',,,

0—-TI,—I— —1;,,—0 inmodl?

such that pdrp, I; <d—1 and pdrerl] <d—1 foranyi (0<i<d).

Proor By 2.3, A, is a cotilting A,,-module with id,, A,, < d — 1, and M,, is a
d-cluster tilting object in B,,. Thus I',, is an Auslander algebra of type (0,d — 1,d) in
the sense of [12, 4.1]. In particular, T, satisfies gl.dimT',, < d + 1 and the two-sided
(d,d + 1)-condition by [I2, 4.2.1]. Thus we obtain the assertion.ll

In general, we show the following:

3.3 Proposition Let C be a d-cluster tilting subcategory of il A and
C:=add{X[dn] | X €C, n €z}

Then we have

C = {X eD(flA) | Hompsqa)(X,Cli]) =0 for any 0 <i < d}
= {X € D"(1A) | Hompega ) (C, X[i]) = 0 for any 0 < i < d}.

We need the following simple observation.

3.4 Lemma Assume gl.dimA < d and X € D*(ModA) satisfies H/(X) = 0 for any
i ¢ dz. Then X decomposes to a direct sum of H™(X)[—dn].

Proor Without loss of generality, we assume that X is a complex - - - — O — ! —
-+ of injective A-modules. We have an exact sequence

0 — Zdn—d _ Cdn—d+1 N Cdn—l l Zdn i) Hdn =0
with injective A-modules C?. It follows from gl.dim A < d that Ima is injective. Thus b

splits, and H™ is a direct summand of X i

3.5 Proof of 3.3 Let us calculate Hompy g 5)(X[dn], Y[dm+i]) for X,Y € C,n,m € Z
and i (0 < i < d). If n > m, then this is clearly zero. If n < m, then this is zero by
gl.dim A < d. If n = m, then this is again zero by the assumption of C. Consequently, we
have Homp g o) (C, C[i]) = 0 for any i (0 < i < d).
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Since A is d-CY, we have L4-1¢ = ¢*"'. We only have to show t+-1¢ C ¢. Fix any
X e ta1@and i (0 < i < d). We show H' := H(X) = 0. Let C° % 7 L Hi — 0
be a natural exact sequence. Assume H® # 0 and take non-zero map a : A — H®. Then
there exists b : A — Z% such that a = bf. It follows form Z* € flA that there exists
m and ¢ : A,, — Z' such that b factors through c. It follows from A,, € ¢ C C that
Hompe g o) (Am, X[i]) = 0. Thus ¢ factors through g. This implies a = 0, a contradiction.
Thus H* = 0.

Since C is closed under [dn] (n € Z), we have H(X) = 0 for any X € *4-1C and i ¢ dZ.
It follows from gl.dim A = d that X decomposes to a direct sum of H¥(X)[—dn| by 3.4.
Since H¥(X) € *4-1¢ = ¢. Thus we have X € C 11

3.6 Question It seems that C is not functorially finite. It is natural to ask whether
DP(flA) does not have a d-cluster tilting subcategory.
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