d-Calabi-Yau algebras and d-cluster tilting subcategories

Osamu Iyama

Recently, the the concept of cluster tilting object played an important role in representation theory [BMRRT]. The concept of *d*-cluster tilting subcategories (maximal (d-1)orthogonal subcategories) was introduced in [I1,2][KR1]. They were used to study higherdimensional analogy of Auslander-Reiten theory, and to classify rigid Cohen-Macaulay modules over certain quotient singularities [IY].

Let \mathcal{A} be an abelian or triangulated category. Put $\operatorname{Ext}^{i}_{\mathcal{A}}(X,Y) := \operatorname{Hom}_{\mathcal{A}}(X,Y[i])$ for triangulated case. A full subcategory \mathcal{C} of \mathcal{A} is called *functorially finite* if for any $X \in \mathcal{A}$, there exist morphisms $f \in \mathcal{A}(C,X)$ and $g \in \mathcal{A}(X,C')$ such that $C, C' \in \mathcal{C}$, and $\mathcal{A}(-,C) \xrightarrow{f} \mathcal{A}(-,X) \to 0$ and $\mathcal{A}(C',-) \xrightarrow{g} \mathcal{A}(X,-) \to 0$ are exact on \mathcal{C} .

A functorially finite subcategory C of A is called *d*-cluster tilting if

$$\mathcal{C} = \{ X \in \mathcal{A} \mid \operatorname{Ext}^{i}_{\mathcal{A}}(\mathcal{C}, X) = 0 \text{ for any } 0 < i < d \}$$
$$= \{ X \in \mathcal{A} \mid \operatorname{Ext}^{i}_{\mathcal{A}}(X, \mathcal{C}) = 0 \text{ for any } 0 < i < d \}.$$

Let R be a complete Gorenstein local ring, and Λ an R-algebra which is a finitely generated R-module. We denote by mod Λ (resp. fl Λ) the category of finitely generated (resp. finite length) left Λ -modules, by $\mathcal{D}^b(\text{fl }\Lambda)$ the bounded derived category of fl Λ , and by D: fl $R \to$ fl R the Matlis duality of R.

We say that an *R*-linear triangulated category \mathcal{A} *d*-*Calabi-Yau* if $\mathcal{A}(X,T) \in \mathrm{fl} R$ and there exists a functorial isomorphism

$$\mathcal{A}(X,Y) \simeq D \,\mathcal{A}(Y,X[d])$$

for any $X, Y \in \mathcal{A}$. We call Λ *d*-*Calabi-Yau* if $\mathcal{D}^{b}(\mathfrak{fl} \Lambda)$ is *d*-Calabi-Yau.

1 Main results

Let Λ be a basic *d*-Calabi-Yau algebra $(d \geq 2)$ with a complete set $\{e_1, \dots, e_n\}$ of orthogonal primitive idempotents. Put

$$I_i := \Lambda e_i \Lambda$$

$$S_i := \Lambda / (I_i + J_\Lambda)$$

for each i. We assume that

$$\operatorname{Ext}_{\Lambda}^{l}(S_{i}, S_{i}) = 0 \quad \text{for any } 1 \leq i \leq n, \ 0 < l < d.$$

A *(left) tilting chain* is a (finite or infinite) decreasing sequence

$$\Lambda = T_0 \supset T_1 \supset T_2 \supset \cdots$$

of two-sided ideals of Λ satisfying

$$T_{i+1} = T_i I_{a_i} \quad \text{for some } 1 \le a_i \le n,$$
$$\operatorname{Tor}_l^{\Lambda}(T_i, \Lambda/I_{a_i}) = 0 \quad \text{for any } l > 0,$$

for any $i \ge 0$. Put

$$\Lambda_i := \Lambda/T_i.$$

Then we have a sequence of surjections $\cdots \to \Lambda_3 \to \Lambda_2 \to \Lambda_1$ of algebras. Put

$$\begin{aligned} \mathcal{C} &:= \operatorname{add}\{\Lambda_i \mid 0 \leq i\} \quad \subset \quad \mathrm{fl}\,\Lambda, \\ \mathcal{A}_m &:= \{X \in \operatorname{mod}\Lambda_m \mid \operatorname{Ext}^l_{\Lambda_m}(X,\Lambda_m) = 0 \text{ for any } l > 0\} \quad \subset \quad \operatorname{mod}\Lambda_m, \\ \underline{\mathcal{A}}_m &:= \mathcal{A}_m / [\Lambda_m], \\ \mathcal{C}_m &:= \operatorname{add}\{\Lambda_i \mid 0 \leq i \leq m\} \quad \subset \quad \operatorname{mod}\Lambda_m, \\ \underline{\mathcal{C}}_m &:= \mathcal{C}_m / [\Lambda_m], \end{aligned}$$

where we denote by $[\Lambda_m]$ the ideal of \mathcal{A}_m (resp. \mathcal{C}_m) consisting of morphisms which factor through projective Λ_m -modules. Now we can state our main result.

1.1 Theorem (1) For any $m \ge 0$, \underline{A}_m forms a d-Calabi-Yau triangulated category and \underline{C}_m forms a d-cluster tilting subcategory of \underline{A}_m .

(2) Assume $\bigcap_{i\geq 0} T_i = 0$. Then \mathcal{C} forms a d-cluster tilting subcategory of fl Λ .

2 Tilting ideals

In this section, we give a proof of our main theorem. A key role is played by tilting ideals over Calabi-Yau algebras.

We call $T \in \text{mod } \Lambda$ tilting if $\text{pd}_{\Lambda}T < \infty$, $\text{Ext}^{i}_{\Lambda}(T,T) = 0$ for any i > 0, and there exists an exact sequence $0 \to \Lambda \to T_0 \to \cdots \to T_n \to 0$ with $T_i \in \text{add }_{\Lambda}T$.

For tilting Λ -modules T and U, we write $T \leq U$ if $\operatorname{Ext}^{i}_{\Lambda}(T, U) = 0$ for any i > 0. It is well-known that basic tilting Λ -modules forms a partially ordered set.

We call a two-sided ideal T of Λ tilting if T is a tilting Λ -module, and cofinite if Λ/T has finite length as a Λ -module.

2.1 Proposition (1) I_i is a cofinite tilting ideal of Λ .

- (2) T_m is a cofinite tilting ideal of Λ .
- (3) We have $T_0 < T_1 < T_2 < \cdots$.

PROOF (1) This is shown in [IR].

(2) Assume that T_i is a cofinite tilting ideal of Λ . Then $T_i \bigotimes_{\Lambda} I_{a_i}$ is a tilting complex over Λ (e.g. [Y]). Since $\operatorname{Tor}_l^{\Lambda}(T_i, I_{a_i}) = 0$ for any l > 0, we have $T_i \bigotimes_{\Lambda} I_{a_i} = T_i \bigotimes_{\Lambda} I_{a_i}$. Since $\operatorname{Tor}_1^{\Lambda}(T_i, \Lambda/I_{a_i}) = 0$, we have $T_i \bigotimes_{\Lambda} I_{a_i} = T_i I_{a_i} = T_{i+1}$. Thus T_{i+1} is a tilting Λ -module. Obviously it is a cofinite ideal.

(3) Take a projective resolution $0 \to P_d \to \cdots \to P_0 \to I_{a_i} \to 0$ of the Λ -module I_{a_i} . Applying $T_i \otimes_{\Lambda} I_{a_i}$, we have an exact sequence

$$0 \to T_i \otimes_{\Lambda} P_d \to \cdots \to T_i \otimes_{\Lambda} P_0 \to T_{i+1} \to 0.$$

Applying $\operatorname{Hom}_{\Lambda}(T_i, -)$, we have $\operatorname{Ext}_{\Lambda}^l(T_i, T_{i+1}) = 0$ for any l > 0.

2.2 Lemma Let T and U be cofinite tilting ideals of Λ . If $T \leq U$, then $\operatorname{Ext}^{i}_{\Lambda}(\Lambda/T, \Lambda/U) = \operatorname{Ext}^{i}_{\Lambda}(\Lambda/U, \Lambda/T) = 0$ for any $i \ (0 < i < d)$.

PROOF Consider exact sequences $0 \to \Omega^i(\Lambda/T) \xrightarrow{a} P_{i-1} \to \cdots \to P_1 \to P_0 \to \Lambda/T \to 0$ with projective Λ -modules P_j and $0 \to U \to \Lambda \xrightarrow{b} \Lambda/U \to 0$. We have a commutative diagram

of exact sequences. Thus we have $\operatorname{Ext}^{i}_{\Lambda}(\Lambda/T, \Lambda/U) = 0$. Since Λ is *d*-Calabi-Yau, we have the assertion.

2.3 Proposition For any cofinite tilting ideal T, we have $\operatorname{id}_{\Lambda/T}(\Lambda/T) \leq d-1$ and $\operatorname{id}_{(\Lambda/T)^{op}}(\Lambda/T) \leq d-1$.

PROOF We only show $\operatorname{id}_{(\Lambda/T)^{op}}(\Lambda/T) \leq d-1$. Let $0 \to \Omega_{d-1} \to P_{d-2} \to \cdots \to P_0 \to D(\Lambda/T) \to 0$ be an exact sequence with with projective Λ -modules P_j . We have $\operatorname{Tor}_i^{\Lambda}(\Lambda/T, D(\Lambda/T)) = D\operatorname{Ext}_{\Lambda^{op}}^i(\Lambda/T, \Lambda/T) = 0$ for any $i \ (0 < i < d)$ by 2.2. Applying $\Lambda/T \otimes_{\Lambda} -$, we have an exact sequence

$$0 \to \Lambda/T \otimes_{\Lambda} \Omega_{d-1} \to \Lambda/T \otimes_{\Lambda} P_{d-2} \to \cdots \to \Lambda/T \otimes_{\Lambda} P_0 \to D(\Lambda/T) \to 0.$$

Thus we only have to show that $\Lambda/T \otimes_{\Lambda} \Omega_{d-1}$ is a projective Λ/T -module, or equivalently, the functor $\operatorname{Hom}_{\Lambda/T}(\Lambda/T \otimes_{\Lambda} \Omega_{d-1}, -) = \operatorname{Hom}_{\Lambda}(\Omega_{d-1}, -)$ is an exact functor on $\operatorname{mod} \Lambda/T$. This is equivalent to that the functor $\operatorname{Ext}^{1}_{\Lambda}(\Omega_{d-1}, -)$ preserves monomorphisms in $\operatorname{mod} \Lambda/T$. This follows from functorial isomorphisms

$$\operatorname{Ext}^{1}_{\Lambda}(\Omega_{d-1}, -) = \operatorname{Ext}^{d}_{\Lambda}(D(\Lambda/T), -) = D\operatorname{Hom}_{\Lambda}(-, D(\Lambda/T)) = D\operatorname{Hom}_{\Lambda/T}(-, D(\Lambda/T)) = 1$$

on mod Λ/T since $D(\Lambda/T)$ is an injective Λ/T -module.

To give a proof of 1.1(2), we shall need the following easy observation which relates extensions in \underline{A}_m and fl Λ .

2.4 Proposition Let T be a cofinite tilting ideal of Λ and

$$\mathcal{A} := \{ X \in \operatorname{mod} \Lambda/T \mid \operatorname{Ext}^{i}_{\Lambda/T}(X, \Lambda/T) = 0 \text{ for any } i > 0 \}.$$

(1) \mathcal{A} is a Frobenius category with enough projective-injectives Λ/T .

(2) $\operatorname{Ext}^{i}_{\Lambda}(\mathcal{A}, \Lambda/T) = 0 = \operatorname{Ext}^{i}_{\Lambda}(\Lambda/T, \mathcal{A})$ for any 0 < i < d.

(3) $\operatorname{Ext}^{i}_{\Lambda}(X,Y) = \operatorname{Ext}^{i}_{\Lambda/T}(X,Y)$ for any $X,Y \in \mathcal{A}$ and 0 < i < d.

(4) The $\mathcal{A} := \mathcal{A} / [\Lambda/T]$ is a d-Calabi-Yau triangulated category.

(5) \mathcal{A} is an extension closed subcategory of fl Λ .

PROOF (1) The assertion follows from 2.3 and Happel's result [H].

(2) We only have to show the right equality. For any $X \in \mathcal{A}$, we can take an exact sequence $0 \to X \to P^0 \to \cdots \to P^{d-2} \to Y \to 0$ with $P^i \in \operatorname{add} \Lambda/T$ and $Y \in \mathcal{A}$. We

apply $\operatorname{Hom}_{\Lambda}(\Lambda/T, -) = \operatorname{Hom}_{\Lambda/T}(\Lambda/T, -)$, then the sequence does not change. Since we have $\operatorname{Ext}_{\Lambda}^{i}(\Lambda/T, \Lambda/T) = 0$ for any 0 < i < d by 2.2, we have the right equality.

(3) Take an exact sequence $0 \to \Omega^i_{\Lambda/T} X \to P_{i-1} \to \cdots \to P_0 \to X \to 0$ with $P_j \in$ add Λ/T . Applying Hom_{Λ}(-, Y), we obtain an exact sequence

$$\operatorname{Hom}_{\Lambda}(P_{i-1}, Y) \to \operatorname{Hom}_{\Lambda}(\Omega^{i}_{\Lambda/T}X, Y) \to \operatorname{Ext}^{i}_{\Lambda}(X, Y) \to 0$$

since we have $\operatorname{Ext}^{i}_{\Lambda}(\Lambda/T, Y) = 0$ for any 0 < i < d by (2). This implies $\operatorname{Ext}^{i}_{\Lambda}(X, Y) \simeq \operatorname{Hom}_{\Lambda/T}(\Omega^{i}_{\Lambda/T}X, Y) = \operatorname{Ext}^{i}_{\Lambda/T}(X, Y).$

(4) Since Λ is *d*-Calabi-Yau, we have a functorial isomorphism

$$\underline{\mathcal{A}}(X,Y) \simeq \underline{\mathcal{A}}(X[1],Y[1]) \simeq \operatorname{Ext}^{1}_{\Lambda}(X[1],Y) \simeq D\operatorname{Ext}^{d-1}_{\Lambda}(Y,X[1]) \simeq D\underline{\mathcal{A}}(Y,X[d]).$$

(5) Let $0 \to X \to Y \to Z \to 0$ be an exact sequence in fl Λ with $X, Z \in \mathcal{A}$. Then there exists a monomorphism $X \to P$ with $P \in \operatorname{add} \Lambda/T$. Since $\operatorname{Ext}^1_{\Lambda}(Z, P) = 0$ by (2), we have a commutative diagram

of exact sequences. Since Y is a submodule of $P \oplus Z \in \text{mod } \Lambda/T$, it is a Λ/T -module. Since \mathcal{A} is obviously extension closed in mod Λ/T , we have $Y \in \mathcal{A}$.

We need the following general observation.

2.5 Lemma Let Δ be a finite dimensional algebra and $\mathcal{C} = \operatorname{add} M$ a full subcategory of mod Δ containing Δ . Assume that $\Gamma := \operatorname{End}_{\Delta}(M)$ satisfies gl.dim $\Gamma \leq d + 1$ and pd $_{\Gamma}D(M) \leq d - 1$. Then, for any $X \in \operatorname{mod} \Delta$, there exists an exact sequence

$$0 \to C_{d-1} \to \cdots \to C_0 \to X \to 0$$

which is a right C-resolution of X.

PROOF Take an injective resolution $0 \to X \to I_0 \to I_1$ in mod Δ . Applying $\operatorname{Hom}_{\Delta}(M, -)$, we have an exact sequence $0 \to \operatorname{Hom}_{\Delta}(M, X) \to \operatorname{Hom}_{\Delta}(M, I_0) \to \operatorname{Hom}_{\Delta}(M, I_1)$. Since $\operatorname{pd}_{\Gamma} \operatorname{Hom}_{\Lambda}(M, I_i) \leq d - 1$ by our assumption, we have $\operatorname{pd}_{\Gamma} \operatorname{Hom}_{\Lambda}(M, X) \leq 1$ by gl.dim $\Gamma \leq d + 1$. Take a projective resolution

$$0 \to P_{d-1} \to \cdots \to P_0 \to \operatorname{Hom}_{\Lambda}(M, X) \to 0$$

of the Γ -module Hom_{Λ}(M, X). Then this is the image of a complex

$$0 \to C_{d-1} \to \cdots \to C_0 \to X \to 0$$

with $C_i \in \mathcal{C}$ under the functor $\operatorname{Hom}_{\Delta}(M, -)$. This complex is exact because M is a generator.

2.6 Lemma The following assertions hold for any $m \ge 0$.

 $(1)_m$ For any $X \in \text{mod} \Lambda_m$, there exists an exact sequence $0 \to C_{d-1} \to \cdots \to C_0 \xrightarrow{f} X \to 0$ with $C_i \in \mathcal{C}_m$.

 $(2)_m$ Put $M_m := \bigoplus_{i=0}^m \Lambda_i$ and $\Gamma_m := \operatorname{End}_{\Lambda}(M_m)$. Then gl.dim $\Gamma_m \leq d+1$.

PROOF We assume $(1)_{m-1}$ and $(2)_{m-1}$, and prove $(1)_m$ and $(2)_m$.

 $(2)_m$ Since there are no loop for Λ , we have $T_{m-1}J_{\Lambda} \subseteq T_m$, so $J_{\Lambda}\Lambda_m$ is a Λ_{m-1} -module. For any $X \in \operatorname{ind} \mathcal{C}_m$, we take a sink map $f : C_0 \to X$ in \mathcal{C}_m .

First we consider the case when X is not a projective Λ_m -module. Since $\Lambda_m \in \mathcal{C}_m$, we have that f is surjective. Decompose $C_0 = C'_0 \oplus P$ with $C'_0 \in \mathcal{C}_{m-1}$ and a projective Λ_m -module P. Since f is right minimal, we have Ker $f \subseteq C'_0 \oplus J_\Lambda P$, so Ker f is a Λ_{m-1} module by the above remark. It follows from $(1)_{m-1}$ that there exists an exact sequence $0 \to C_d \to \cdots \to C_1 \to \text{Ker } f \to 0$. We have an exact sequence

$$0 \to C_d \to \cdots \to C_1 \to C_0 \xrightarrow{f} X \to 0.$$

Applying $\operatorname{Hom}_{\Lambda}(M_m, -)$, we have that the simple Γ_m -module top $\operatorname{Hom}_{\Lambda}(M_m, X)$ has projective dimension at most d + 1.

Next consider the case when X is not a projective Λ_m -module. Then $J_{\Lambda}X$ is a Λ_{m-1} module by the above remark. By $(1)_{m-1}$, there exists an exact sequence $0 \to C_{d-1} \to \cdots \to C_0 \to J_{\Lambda}X \to 0$ with $C_i \in \mathcal{C}_{m-1}$. Thus we have an exact sequence

$$0 \to C_{d-1} \to \cdots \to C_0 \to X.$$

Applying $\operatorname{Hom}_{\Lambda}(M_m, -)$, we have that the simple Γ_m -module top $\operatorname{Hom}_{\Lambda}(M_m, X)$ has projective dimension at most d.

Consequently, any simple Γ_m -module has projective dimension at most d + 1, and we have shown $(2)_m$.

(1)_m By 2.3, we can take a projective resolution $0 \to P_{d-1} \to \cdots \to P_0 \to D(\Lambda_m) \to 0$ in mod Λ_m . We have $\operatorname{Ext}^i_{\Lambda}(M_m, \Lambda_m) = 0$ for any $i \ (0 < i < d)$. Applying $\operatorname{Hom}_{\Lambda}(M_m, -)$, we have an exact sequence $0 \to \operatorname{Hom}_{\Lambda}(M_m, P_{d-1}) \to \cdots \to \operatorname{Hom}_{\Lambda}(M_m, P_0) \to D(M_m) \to 0$. Thus we have $\operatorname{pd}_{\Gamma_m} D(M_m) \leq d-1$. Applying 2.5 to $(\Delta, \mathcal{C}) := (\Lambda_m, \mathcal{C}_m)$, we proved that $(1)_m$ holds.

2.7 Proof of 1.1 By 2.2, we have $\operatorname{Ext}^{i}_{\Lambda}(\mathcal{C}, \mathcal{C}) = 0$ for any 0 < i < d.

(1) We have $\underline{\mathcal{A}}_m(X, Y[i]) = \operatorname{Ext}_{\Lambda}^i(X, Y)$ for any $X, Y \in \mathcal{A}_m$ and 0 < i < d by 2.4(3). In particular, we have $\underline{\mathcal{A}}_m(\mathcal{C}_m, \mathcal{C}_m[i]) = \operatorname{Ext}_{\Lambda}^i(\mathcal{C}_m, \mathcal{C}_m) = 0$ for any 0 < i < d.

On the other hand, take any $X \in \mathcal{A}_m$ such that $\underline{\mathcal{A}}_m(X, \mathcal{C}_m[i]) = 0$ for any 0 < i < d. By 2.6(1)_m, we can take an exact sequence $0 \to C_{d-1} \to \cdots \to C_0 \xrightarrow{f} X \to 0$ with $C_i \in \mathcal{C}_m$. Using $\operatorname{Ext}^i_{\Lambda}(X, \mathcal{C}_m) = 0$ for any 0 < i < d, we have that f splits. Thus $X \in \mathcal{C}_m$.

Since $\underline{\mathcal{A}}_m$ is d-Calabi-Yau by 2.4(4), any $X \in \mathcal{A}_m$ satisfying $\underline{\mathcal{A}}_m(\mathcal{C}_m, X[i]) = 0$ for any 0 < i < d belongs to \mathcal{C}_m .

(2) Take any $X \in fl\Lambda$ such that $\operatorname{Ext}^{i}_{\Lambda}(X, \mathcal{C}) = 0$ for any 0 < i < d. Since $\bigcap_{i \geq 0} T_{i} = 0$, there exists m such that $X \in \operatorname{mod} \Lambda_{m}$. By $2.6(1)_{m}$, we can take an exact sequence $0 \to C_{d-1} \to \cdots \to C_{0} \xrightarrow{f} X \to 0$ with $C_{i} \in \mathcal{C}_{m}$. Then f splits because we have $\operatorname{Ext}^{i}_{\Lambda}(X, \mathcal{C}_{m}) = 0$ for any 0 < i < d, we have that f splits. Thus $X \in \mathcal{C}_{m} \subset \mathcal{C}$.

Since Λ is d-Calabi-Yau, any $X \in \mathrm{fl} \Lambda$ satisfying $\mathrm{Ext}^{i}_{\Lambda}(\mathcal{C}, X) = 0$ for any 0 < i < d belongs to $\mathcal{C}.$

3 Examples and remarks

Let Λ be a preprojective algebra of extended Dynkin type and W the associated affine Weyl group. For a primitive idempotent e_i of Λ , put $I_i := \Lambda(1 - e_i)\Lambda$. The following is given in [IR].

3.1 Theorem For any element $w \in W$, take a reduced expression $w = s_{i_1} \cdots s_{i_k}$ and put $\Lambda^w := I_{i_1} \cdots I_{i_k}$. Then Λ^w depends only on w. We have a bijection $w \mapsto \Lambda^w$ from W to the set of isoclasses of basic tilting Λ -modules.

3.2 Corollary Put $M_m := \bigoplus_{i=0}^m \Lambda_i$ and $\Gamma_m := \operatorname{End}_{\Lambda}(M_m)$. Then gl.dim $\Gamma_m \leq d+1$ and there exist exact sequences

$$\begin{array}{ll} 0 \to \Gamma_m \to I_0 \to \dots \to I_{d+1} \to 0 & in \mod \Gamma_m, \\ 0 \to \Gamma_m \to I'_0 \to \dots \to I'_{d+1} \to 0 & in \mod \Gamma^{op}_m \end{array}$$

such that $\operatorname{pd}_{\Gamma_m} I_i \leq d-1$ and $\operatorname{pd}_{\Gamma_m^{op}} I'_i \leq d-1$ for any $i \ (0 \leq i \leq d)$.

PROOF By 2.3, Λ_m is a cotilting Λ_m -module with $\operatorname{id}_{\Lambda_m}\Lambda_m \leq d-1$, and M_m is a *d*-cluster tilting object in \mathcal{B}_m . Thus Γ_m is an Auslander algebra of type (0, d-1, d) in the sense of [I2, 4.1]. In particular, Γ_m satisfies gl.dim $\Gamma_m \leq d+1$ and the two-sided (d, d+1)-condition by [I2, 4.2.1]. Thus we obtain the assertion.

In general, we show the following:

3.3 Proposition Let C be a d-cluster tilting subcategory of fl Λ and

$$\widetilde{\mathcal{C}} := \operatorname{add} \{ X[dn] \mid X \in \mathcal{C}, \ n \in \mathbb{Z} \}$$

Then we have

$$\widetilde{\mathcal{C}} = \{ X \in \mathcal{D}^{b}(\mathrm{fl}\,\Lambda) \mid \operatorname{Hom}_{\mathcal{D}^{b}(\mathrm{fl}\,\Lambda)}(X, \widetilde{\mathcal{C}}[i]) = 0 \text{ for any } 0 < i < d \} \\ = \{ X \in \mathcal{D}^{b}(\mathrm{fl}\,\Lambda) \mid \operatorname{Hom}_{\mathcal{D}^{b}(\mathrm{fl}\,\Lambda)}(\widetilde{\mathcal{C}}, X[i]) = 0 \text{ for any } 0 < i < d \}.$$

We need the following simple observation.

3.4 Lemma Assume gl.dim $\Lambda \leq d$ and $X \in \mathcal{D}^b(\operatorname{Mod} \Lambda)$ satisfies $H^i(X) = 0$ for any $i \notin d\mathbb{Z}$. Then X decomposes to a direct sum of $H^{dn}(X)[-dn]$.

PROOF Without loss of generality, we assume that X is a complex $\cdots \to C^i \to C^{i+1} \to \cdots$ of injective Λ -modules. We have an exact sequence

$$0 \to Z^{dn-d} \to C^{dn-d+1} \to \dots \to C^{dn-1} \xrightarrow{a} Z^{dn} \xrightarrow{b} H^{dn} \to 0$$

with injective Λ -modules C^i . It follows from gl.dim $\Lambda \leq d$ that Im *a* is injective. Thus *b* splits, and H^{dn} is a direct summand of X.

3.5 Proof of 3.3 Let us calculate $\operatorname{Hom}_{\mathcal{D}^{b}(\mathrm{fl}\Lambda)}(X[dn], Y[dm+i])$ for $X, Y \in \mathcal{C}, n, m \in \mathbb{Z}$ and $i \ (0 < i < d)$. If n > m, then this is clearly zero. If n < m, then this is zero by gl.dim $\Lambda \leq d$. If n = m, then this is again zero by the assumption of \mathcal{C} . Consequently, we have $\operatorname{Hom}_{\mathcal{D}^{b}(\mathrm{fl}\Lambda)}(\widetilde{\mathcal{C}}, \widetilde{\mathcal{C}}[i]) = 0$ for any $i \ (0 < i < d)$. Since Λ is d-CY, we have ${}^{\perp_{d-1}}\widetilde{\mathcal{C}} = \widetilde{\mathcal{C}}^{\perp_{d-1}}$. We only have to show ${}^{\perp_{d-1}}\widetilde{\mathcal{C}} \subseteq \widetilde{\mathcal{C}}$. Fix any $X \in {}^{\perp_{d-1}}\widetilde{\mathcal{C}}$ and $i \ (0 < i < d)$. We show $H^i := H^i(X) = 0$. Let $C^0 \xrightarrow{g} Z^i \xrightarrow{f} H^i \to 0$ be a natural exact sequence. Assume $H^i \neq 0$ and take non-zero map $a : \Lambda \to H^i$. Then there exists $b : \Lambda \to Z^i$ such that a = bf. It follows form $Z^i \in \mathrm{fl} \Lambda$ that there exists m and $c : \Lambda_m \to Z^i$ such that b factors through c. It follows from $\Lambda_m \in \mathcal{C} \subset \widetilde{\mathcal{C}}$ that $\mathrm{Hom}_{\mathcal{D}^b(\mathrm{fl} \Lambda)}(\Lambda_m, X[i]) = 0$. Thus c factors through g. This implies a = 0, a contradiction. Thus $H^i = 0$.

Since $\tilde{\mathcal{C}}$ is closed under [dn] $(n \in \mathbb{Z})$, we have $H^i(X) = 0$ for any $X \in {}^{\perp_{d-1}}\tilde{\mathcal{C}}$ and $i \notin d\mathbb{Z}$. It follows from gl.dim $\Lambda = d$ that X decomposes to a direct sum of $H^{dn}(X)[-dn]$ by 3.4. Since $H^{dn}(X) \in {}^{\perp_{d-1}}\mathcal{C} = \mathcal{C}$. Thus we have $X \in \tilde{\mathcal{C}}$.

3.6 Question It seems that $\tilde{\mathcal{C}}$ is not functorially finite. It is natural to ask whether $\mathcal{D}^b(\mathrm{fl} \Lambda)$ does not have a *d*-cluster tilting subcategory.

References

[AS] M. Auslander, S. O. Smalo: Almost split sequences in subcategories. J. Algebra 69 (1981), no. 2, 426–454.

[B] R. Bocklandt: Graded Calabi Yau Algebras of dimension 3, arXiv:math.RA/0603558.

[BMRRT] A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov: Tilting theory and cluster combinatorics, to appear in Adv. Math., arXiv:math.RT/0402054.

[BIRS] A. Buan, O. Iyama, I. Reiten, J. Scott: Cluster structures for 2-Calabi-Yau categories and unipotent subgroups, in preparation.

[BIKR] I. Burban, O. Iyama, B. Keller, I. Reiten: Maximal rigid and cluster tilting objects, in preparation.

[GLS] C. Geiss, B. Leclerc, J. Schröer: Rigid modules over preprojective algebras, to appear in Invent. Math., arXiv:math.RT/0503324.

[G] V. Ginzburg: Calabi-Yau algebras, arXiv:math.AG/0612139.

[H1] D. Happel: Triangulated categories in the representation theory of finite-dimensional algebras. London Mathematical Society Lecture Note Series, 119. Cambridge University Press, Cambridge, 1988.

 [H2] D. Happel: On Gorenstein algebras. Representation theory of finite groups and finitedimensional algebras (Bielefeld, 1991), 389–404, Progr. Math., 95, Birkhauser, Basel, 1991.
[HU]

[I1] O. Iyama: Higher dimensional Auslander-Reiten theory on maximal orthogonal subcategories, to appear in Adv. Math., arXiv:math.RT/0407052.

[I2] O. Iyama: Auslander correspondence, to appear in Adv. Math., arXiv:math.RT/0411631.

[IR] O. Iyama, I. Reiten: Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras, arXiv:math.RT/0605136.

[IY] O. Iyama, Y. Yoshino: Mutations in triangulated categories and rigid Cohen-Macaulay modules, arXiv:math.RT/0607736.

[KR1] B. Keller, I. Reiten: Cluster-tilted algebras are Gorenstein and stably Calabi-Yau, arXiv:math.RT/0512471.

[KR2] B. Keller, I. Reiten: Acyclic Calabi-Yau categories, arXiv:math.RT/0610594.

[RS] C. Riedtmann, A. Schofield: On a simplicial complex associated with tilting modules. Comment. Math. Helv. 66 (1991), no. 1, 70–78.

[V1] M. Van den Bergh: Three-dimensional flops and noncommutative rings. Duke Math. J. 122 (2004), no. 3, 423–455.

[V2] M. Van den Bergh: Non-commutative crepant resolutions. The legacy of Niels Henrik Abel, 749–770, Springer, Berlin, 2004.

[Ye] A. Yekutieli: Dualizing complexes, Morita equivalence and the derived Picard group of a ring. J. London Math. Soc. (2) 60 (1999), no. 3, 723–746.

[Yo] Y. Yoshino: Cohen-Macaulay modules over Cohen-Macaulay rings. London Mathematical Society Lecture Note Series, 146. Cambridge University Press, Cambridge, 1990.