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Introduction by the Organisers

Thick subcategories of triangulated categories have been the main topic of this
workshop. Triangulated categories arise in many areas of modern mathematics,
for instance in algebraic geometry, in representation theory of groups and algebras,
or in stable homotopy theory. We give three typical examples of such triangulated
categories:

• the category of perfect complexes of OX -modules over a scheme X ,
• the stable category of finite dimensional representations of a finite group,
• the stable homotopy category of finite spectra.

In each case, there is a classification of thick subcategories under some appropriate
conditions. Recall that a subcategory of a triangulated category is thick, if it is
a triangulated subcategory and closed under taking direct factors. Historically,
the first classification has been established by Hopkins and Smith for the stable
homotopy category, using the nilpotence theorem. A similar idea was then applied
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by Hopkins and Neeman to categories of perfect complexes over commutative noe-
therian rings. Later, Thomason extended this classification to schemes. For stable
categories of finite group representations, the classification of thick subcategories
is due to Benson, Carlson, and Rickard.

The format of the workshop has been a combination of introductory survey
lectures and more specialized talks on recent progress and open problems. The
mix of participants from different mathematical areas and the relatively small
size of the workshop provided an ideal atmosphere for fruitful interaction and
exchange of ideas. It is a pleasure to thank the administration and the staff of the
Oberwolfach Institute for their efficient support and hospitality.
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Abstracts

Support varieties over complete intersections

Luchezar L. Avramov

The classification of thick subcategories of the stable derived category of modules
over a finite group G, see [5], makes heavy use of cohomological support vari-
eties of G-modules. We discuss constructions of such varieties for modules over
commutative rings and applications in commutative algebra.

Let (R, m, k) be a local ring, that is, a commutative ring with unique maximal
ideal m and residue field k. Set E = Ext∗R(k, k) and e = rankk E1. One has

e ≥ d and rankk E
2 ≥

(
e

2

)
+ e− d

where d is the Krull dimension of R. When equality holds in the first, respectively,
the second, formula R is said to be regular, respectively complete intersection.

Extremal conditions on numerical invariants of local rings often imply strong
structural properties. For instance, R is regular if and only it has finite global

dimension. It is complete intersection if and only if its m-adic completion R̂ is
isomorphic to Q/(f) where Q is a regular local ring and f = f1, . . . , fc is a Q-
regular sequence; i.e., fi is a non-zero-divisor on Q/(f1, . . . , fi−1) for i = 1, . . . , c.
One may assume f ⊆ q2, where q is the maximal ideal of Q. For simplicity, we
assume R is complete and k is algebraically closed, and fix Q and f as above.

(1) Let S = R[χ1, . . . , χc] be a polynomial ring where each indeterminate χi has
cohomological degree 2. Let M, N be finitely generated R-modules. There
exist natural homomorphisms of graded rings

Ext∗R(M, M)
ξM
←− S

ξN
−→ Ext∗R(N, N)

(Ext’s are equipped with Yoneda products) and each γ ∈ Ext∗R(M, N) satisfies

ξN (χj) · γ = γ · ξM (χj) for j = 1, . . . , c .

Thus, ξM (S) and ξN (S) are central subalgebras and both maps induce the
same structure of S-module on Ext∗R(M, N); it is finitely generated, see [9].

Set R = S/mS. The map ξk induces an isomorphism R ∼= ξk(S). This polyno-
mial ring is used in [1] to introduce a cohomological support variety V∗

R(M) ⊆ kc.

(2) As m annihilatesM = Ext∗R(M, k), this graded R-module is naturally a graded
R-module. Let V∗

R(M) be the zero-set in kc of the ideal annRM ⊆ R. This
is an algebraic cone, with V∗

R(M) = {0} if and only if proj dimR M <∞.

In fact, V∗
R(M) does not depend on Q, and admits a different description:
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(3) Identify kc with k ⊗Q (f) by sending the ith element of the standard basis to
1⊗ fi, and let a denote the image in k of a ∈ R. One then has

V∗
R(M) ∼= {(a1, . . . , ac) ∈ kc | proj dimQ/(a1f1+···+acfc) M =∞}

As Q is regular, proj dimQ M < ∞ always holds. Thus, V∗
R(M) is a set of

unstable directions in the ‘space of relations’ of R.

For an elementary abelian p-group G = (Z/pZ)c over a field of characteristic p >
0, the group ring kG is isomorphic to S = k[x1, . . . , xc]/(xp

1, . . . , x
p
c), a complete

intersection, and VG(M) ∼= V∗
S(M). There is a catch: VG(M) is a subset of

kx1 + · · ·+ kxc, while V∗
S(M) lives in the kxp

1 + · · ·+ kxp
c .

Using both descriptions above, it was shown in [1] that varieties over complete
intersections satisfy analogs of most properties of varieties over group rings, see
[4], but the following question was left unanswered at the time:

(4) Is every algebraic cone in kc equal to V∗
R(M) for some R-module M?

The proof for groups hinges on an equality, VG(M) ∩VG(N) = VG(M ⊗k N),
that has no analog over R where there is no substitute for the diagonal action of
G on a tensor product. An interpretation of the intersection was found in [2]:

(5) Let V∗
R(M, N) denote the zero-set in kc of the ideal annR(Ext∗R(M, N)⊗R k).

By (1) it is an algebraic cone. One has V∗
R(M, k) = V∗

R(M) = V∗
R(k, N), and

V∗
R(M, N) = {0} if and only if Extn

R(M, N) = 0 for all n≫ 0. In general,

V∗
R(M, N) = V∗

R(M) ∩V∗
R(N)

The last equality uncovers a striking property of complete intersections: (ee)
A pair (M, N) of R-modules satifies Extn

R(M, N) = 0 for all n ≫ 0 if and only if
Extn

R(N, M) = 0 for all n≫ 0. On the other hand, if R satisfies (ee), then by vary-
ing N in the pair (R, N) one gets inj dimR R <∞ is finite; that is, R is Gorenstein.
Two other conditions interpolate between complete intersection and Gorenstein:
(gap) There is an integer g(R), such that the vanishing of ExtnR(M, N) for g(R)
consecutive values of n implies its vanishing for all n ≫ 0, and (ab) R is Goren-
stein, and there is an integer h(R) such that Extn

R(M, N) = 0 for all n≫ 0 implies
Extn

R(M, N) = 0 for all n > h(R). From [2], [8], one gets implications

Complete intersection =⇒ (gap) =⇒ (ab) =⇒ (ee) =⇒ Gorenstein

Relatively simple examples in [8], [12], show that the arrow on the left is not
invertible. Subtle examples in [11] prove that neither is the one on the right.

These results raise interesting questions:

(6) Do the intermediate conditions above define distinct classes of rings? What
are the ring-theoretic and homological properties of rings in these classes?

Constructions of support varieties have been proposed for local rings that are
not assumed to be complete intersection. Even when f is not a regular sequence,
the equality in (3) defines an algebraic set, see [10]. On the other hand, when R
contains a field K the Hochschild cohomology of R over K is a graded-commutative
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algebra and Ext∗R(M, N) is a graded module over it; this structure is used to
introduce a notion of cohomological variety in [13].

Examples show that, in general, neither construction reflects faithfully the ho-
mological properties of M . This should not come as a surprise, as cohomological
constructions over commutative rings are not well suited to produce classical geo-
metric objects. For instance, the algebra E = Ext∗R(k, k) is noetherian precisely
when R is complete intersection, see [6]. Else, it is highly non-commutative, in the
precise sense that it is the universal enveloping algebra of an infinite dimensional
Lie algebra that has a finite dimensional solvable radical. In several cases E is
known to contain a free non-commutative graded subalgebra, and it is conjectured
that it always does, unless R is complete intersection.

On the other hand, when R is complete intersection both ‘general’ constructions
above yield a variety isomorphic to V∗

R(M, N), see (5). The approach through
Hochschild cohomology is used in [7] to answer question (4) in the affirmative
when R contains a field. A positive answer over arbitrary complete intersections
is obtained in [3] as part of a more general program. Such results suggest that
cohomological support varieties over a complete intersection local ring R might
provide tools for classifying thick subcategories of the stable derived category of
R-modules, even though it does not have internal tensor products.
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The spectrum of prime ideals in tensor triangulated categories

Paul Balmer

We define the spectrum of a tensor triangulated category K as the set of so-
called prime ideals, endowed with a suitable topology, called the Zariski topology.
In this very generality, the spectrum is the universal space in which one can define
supports for objects of K in a reasonable way. This construction is functorial
with respect to all tensor triangulated functors. Several elementary properties of
schemes hold for such spaces, e.g. the existence of generic points for irreducible
closed subsets, as well as quasi-compactness. It is in fact a spectral space in the
sense of Hochster.

We establish in complete generality a classification of (radical) thick ⊗-ideal
subcategories in terms of arbitrary unions of closed subsets of the spectrum hav-
ing quasi-compact complements (Thomason’s theorem for schemes, mutatis mu-
tandis). We also equip this spectrum with a sheaf of rings, turning it into a locally
ringed space. We show that our spectrum unifies the schemes of algebraic geom-
etry and the projective support varieties of modular representation theory. This
relies upon a sort of converse to the classification theorem, which asserts that a
spectral space which classifies (radical) thick ⊗-ideal subcategories is necessarily
isomorphic to the spectrum. This result was first obtained by myself assuming the
candidate space be topologically noetherian, and was generalized as stated above
by Buan, Krause and Solberg.

The computation of the spectrum in examples uses this key result and the var-
ious classifications, by Hopkins (homotopy theory), Hopkins, Neeman, Thomason
(algebraic geometry), Benson, Carlson, Rickard (modular representation theory of
finite groups), Friedlander and Pevtsova (finite group schemes).

In the sequel, we consider strongly closed tensor triangulated categories meaning
that we assume the symmetric monoidal structure ⊗ : K × K → K is closed, i.e.
admits an internal Hom functor which is bi-exact, and that all objects are strongly
dualizable, i.e. that the formula Hom(a, b) = Hom(a, 1)⊗ b holds for all a, b ∈ K.

Our first main theorem in this subject (that we can call Tensor Triangular
Geometry) is the following:

Theorem 1. Let K be a strongly closed tensor triangulated category. Assume
that K is idempotent complete. Then, if the support of an object a ∈ K can be
decomposed as supp(a) = Y1 ∪ Y2 for disjoint closed subsets Y1, Y2 ⊂ Spec(K),
with each open complement Spec(K) \ Yi quasi-compact, then the object itself can
be decomposed as a direct sum a ≃ a1 ⊕ a2 with supp(ai) = Yi for i = 1, 2.

For G a finite group and k a field of positive characteristic (dividing the order
of the group), and for K = kG− stab, the stable category of kG-modules modulo
projective-injective ones, the above result is a celebrated theorem of Carlson.

When Spec(K) is noetherian, we can use the above result to describe the sub-
quotients of the filtration of K by (any) dimension of the support of objects:
K ⊃ · · · K(p) ⊃ K(p−1) ⊃ · · · as follows. The idempotent completion ofK(p)/K(p−1)
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is equivalent to the idempotent completion of the coproduct over all points of
Spec(K) of dimension exactly p of the categories of finite length objects in the
corresponding localizations.

This result seems new both in representation theory and in algebraic geometry
and provides new spectral sequences in K-theory or in Witt theory, for instance.

A Note on Virtually Gorenstein Algebras

Apostolos Beligiannis

Throughout Λ denotes an Artin algebra. We denote by Mod(Λ) the category
of right Λ-modules and by mod(Λ) the full subcategory of finitely generated Λ-
modules. We also let PΛ, resp. IΛ, be the category of finitely generated pro-
jective, resp. injective, right Λ-modules. A full subcategory U of Mod(Λ) or of
mod(Λ) is called thick if U is closed under direct summands, extensions, kernels
of epimorphisms and cokernels of monomorpisms. Interesting examples of thick
subcategories include the full subcategories P<∞

Λ and I<∞
Λ of mod(Λ) consisting

of all modules with finite projective dimension and finite injective dimension re-
spectively. For a full subcategory U of mod(Λ), we denote by Thick(U) the thick
subcategory of mod(Λ) generated by U , e.g. the smallest thick subcategory of
mod(Λ) which contains U . For example Thick(PΛ) = P<∞

Λ and Thick(IΛ) = I<∞
Λ .

Problem. Let U be a full subcategory of mod(Λ).

(1) Describe the thick subcategory Thick(U). For instance, when Thick(U) is
contravariantly finite?

(2) In particular when Thick(PΛ ∪ IΛ) is contravariantly finite?

Note that by a result of Krause and Solberg [4] contravariant finiteness of
Thick(U) is equivalent to covariant finiteness. The second question in the above
problem is related to virtually Gorenstein Algebras, introduced in [3] and stud-
ied further in [1] (see [2] for a short account). This class of algebras form a
natural generalization of Gorenstein algebras and algebras of finite representa-
tion type. To recall the definition of virtually Gorenstein algebras and to ex-
plain the connection with thick subcategories, we need some definitions and no-
tation. For a subcategory A of Mod(Λ) or mod(Λ), ⊥A consists of all mod-
ules X in Mod(Λ) or mod(Λ) respectively such that Extn

Λ(X, A) = 0, ∀A ∈ A,
∀n ≥ 1. The subcategory A⊥ is defined dually. We denote by CM(PΛ) the
full subcategory of Mod(Λ) consisting of the Cohen-Macaulay modules, i.e. mod-
ules A for which there exists an exact sequence 0 → A → P 0 → P 1 → · · ·
where the P i are projective and Ker(P i → P i+1) ∈ ⊥Λ, ∀i ≥ 0. We set
P≺∞

Λ = CM(PΛ)⊥ and I≺∞
Λ = ⊥CoCM(IΛ), and CM(PΛ) = CM(PΛ) ∩ mod(Λ)

and CoCM(IΛ) = CoCM(IΛ)∩mod(Λ). Note that CM(PΛ) is the full subcategory
of mod(Λ) of modules with G-dimension zero in the sense of Auslander.

Definition. The algebra Λ is called virtually Gorenstein if P≺∞
Λ = I≺∞

Λ .
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It is shown in [1] that for any algebra it holds P≺∞
Λ ∩mod(Λ) = I≺∞

Λ ∩mod(Λ),
which is a thick subcategory of mod(Λ), and moreover CM(PΛ) is always con-
travariantly finite in Mod(Λ). Moreover Λ is virtually Gorenstein iff P≺∞

Λ ∩mod(Λ)
is contravariantly finite (or equivalently covariantly finite) in mod(Λ). Henning
Krause observed that we always have an equality: Thick(PΛ ∪ IΛ) = P≺∞

Λ ∩
mod(Λ). In other words virtual Gorensteinness, originally defined using infinitely
generated modules, may be defined using thick subcategories of finitely generated
modules as follows:

Lemma. Λ is virtually Gorenstein iff Thick(PΛ∪IΛ) is contravariantly finite (or
equivalently covariantly finite) in mod(Λ). Moreover if Λ is virtually Gorenstein,
then CM(PΛ) is contravariantly finite in mod(Λ).

If Λ is in particular Gorenstein, then it is not difficult to see that we have an
equality: Thick(PΛ ∪ IΛ) = P<∞

Λ = I<∞
Λ . A natural question then arises, see [1]:

Question. Are all Artin algebras virtually Gorenstein?

This question gains its interest from the fact that virtually Gorenstein alge-
bras, besides that they provide a natural enlargement of Gorenstein algebras and
algebras of finite representation type, form a class of algebras which is very well
behaved from many different aspects, see [1] for more information. In particular a
virtually Gorenstein algebra satisfies the Gorenstein Symmetry Conjecture [1, 3].

Last years there was a common feeling shared by many people that there should
exist an example of a algebra which is not virtually Gorenstein. By the above
Lemma, to find such an example it suffices to find an example of an algebra Λ such
that CM(PΛ) fails to be contravariantly finite in mod(Λ). During the Workshop,
Osamu Iyama pointed out that such an example was recently constructed by Yuji
Yoshino [6], see also [5]. (Srikanth Iyengar also pointed out that such examples
should possibly constructed using recent results of David Jorgensen and Liana
Sega).

The Example. (Yoshino [6]) Let K be a field and consider the ideal I := 〈xz−
y2, yx−z2, zy−x2〉 in the polynomial ring K[x, y, z]. Set Γ := K[x, y, z]/I. This is a
one-dimensional Cohen-Macaulay non-Gorenstein homogeneous ring over the field
K. Let Λ := Γ/x2Γ which is a 6-dimensional K-algebra with radical cubed zero
which is non-Gorenstein. More explicitly it is easy to see that Λ has the following
presentation Λ = K[x, y, z]/J where J := 〈x2, yz, y2 − xz, z2 − yx〉. It is shown in
[6] (in a more general setting) that the trivial Λ-module K has no right CM(PΛ)-
approximation, hence CM(PΛ) fails to be contravariantly finite in mod(Λ). The
proof uses the graded structure of Λ and its Hilbert series. Consequently, by the
above Lemma, Λ is an example of a finite-dimensional K-algebra which is not
virtually Gorenstein.

Acknowledgments. I would like to thank Henning Krause, Osamu Iyama,
Srikanth Iyengar and Apostolos Thoma for useful conversations.
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Derived categories of sheaves on varieties

Andrei Căldăraru

One of the most active areas of study of triangulated categories is in algebraic
geometry, primarily motivated by Kontsevich’s homological mirror symmetry con-
jecture [8]. My talk consisted of a survey of the most important results in the
field, with the emphasis being placed on the new notion of stability condition on
a trangulated category due to Bridgeland [4].

The first half of the talk was devoted to presenting by-now classic results.
Mukai’s equivalence [9] Db

coh(A) ∼= Db
coh(Â) between the derived category of an

abelian variety A and its dual Â was presented alongside Bondal and Orlov’s rigid-
ity result [1], which can be stated as saying that varieties with ample or anti-ample
canonical class have no non-trivial derived equivalent partners. We stated Orlov’s
result [10] that any derived equivalence between smooth varieties in characteris-
tic zero is induced by a unique kernel, and we used a technique similar to those
of Happel [6] and Keller [7] to argue that this implies the derived equivalence of
Hochschild homology and cohomology groups. We also presented Bridgeland’s
theorem [2] on the invariance of derived categories of threefolds under flops, as
well as the Bridgeland-King-Reid [3] version of the McKay correspondence: under
certain assumptions, if G is a finite group acting on a smooth manifold X , the
derived category Db

coh([X/G]) of G-equivariant sheaves on X is equivalent to the
derived category Db

coh(Y ) of a crepant resolution Y of the scheme quotient X/G.
During the second half of the talk we reviewed Bridgeland’s definition of a

stability condition on a triangulated category [4], following ideas of Douglas [5].
As an application, we discussed stability conditions on the derived category of

sheaves on a smooth curve X , and in particular we argued that while rotating the
standard stability structure on X , one reaches a point where the structure sheaf
of a point P , OP , stops being an element of the heart of the t-structure of the
corresponding stability condition. At that point the usual triangle

IP → OX → OP → Ip[1]
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which arises from the short exact sequence

0→ IP → OX → OP → 0

in the standard t-structure, becomes the short exact sequence

0→ OP [−1]→ IP → OX → 0

in the new t-structure.
A discussion relating this to tilting a t-structure with respect to a torsion pair

and interpretations from physics ended the talk.
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Dubreil et Marie-Paule Malliavin, 39e année (Paris 1987/1988), Springer LNM 1404 (1989),
108–126

[7] Keller, B., Hochschild cohomology and derived Picard groups, J. Pure Appl. Algebra 190
(2004) 177–196

[8] Kontsevich, M., Homological algebra of mirror symmetry, in Proceedings of the 1994 Inter-
national Congress of Mathematicians I, Birkhäuser, Zürich, 1995, p. 120; alg-geom/9411018
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Thick subcategories in stable homotopy theory (work of Devinatz,
Hopkins, and Smith).

Sunil K. Chebolu

In this series of lectures we give an exposition of the seminal work of Devinatz,
Hopkins, and Smith which is surrounding the classification of the thick subcate-
gories of finite spectra in stable homotopy theory. The lectures are expository and
are aimed primarily at non-homotopy theorists. We begin with an introduction to
the stable homotopy category of spectra, and then talk about the celebrated thick
subcategory theorem and discuss a few applications to the structure of the Bous-
field lattice. Most of the results that we discuss below were conjectured by Ravenel
[Rav84] and were proved by Devinatz, Hopkins, and Smith [DHS88, HS98].
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1. The stable homotopy category of spectra

Recall that in homotopy theory one is interested in studying the homotopy
classes of maps between CW complexes (spaces that are built in a systematic way
by attaching cells): If f and g are maps (continuous) between CW complexes X
and Y , we say that they are homotopic if there is a map from the cylinder X×[0, 1]
to Y whose restriction to the two ends (top and bottom) of the cylinder gives f
and g respectively. The homotopy classes of maps between X and Y is denoted by
[X, Y ]. In stable homotopy theory one studies a weaker notion of homotopy called
stable homotopy – maps f and g as above are said to be stably homotopic if Σnf
and Σng are homotopic for some n. (Σ denotes the reduced suspension functor on
the homotopy category of pointed CW complexes.) The notion of stable homotopy
is much weaker than homotopy. For example, the obvious quotient map from the
torus to the two sphere is not null homotopic but stably null homotopic. The
importance of stable homotopy classes of maps comes from an old result due to
Freudenthal which implies that if X and Y are finite CW complexes, then the
sequence

[X, Y ]→ [ΣX, ΣY ]→ [Σ2X, Σ2Y ]→ · · ·

eventually stabilises. The stable homotopy classes of maps from X to Y is precisely
the above colimit. In particular when X is the n-sphere Sn, we get the n-th stable
homotopy group of Y , denoted πs

n(Y ). Computing stable homotopy groups is, in
general, a more manageable problem than that of homotopy groups. However, it
became abundantly clear to homotopy theorists by 1960s that in order to do seri-
ous stable calculations efficiently it is absolutely essential to have a nice category
in which the objects are stabilised analogue of spaces each of which represent a
cohomology theory. The finite objects of such a category can be easily described.
This is called the (finite) Spanier-Whitehead category which captures finite stable
phenomena, and is defined as follows. The objects are ordered pairs (X, n) where
X is a finite CW complex and n is an integer, and morphisms between objects
(X, n) and (Y, m) are given by

{(X, n), (Y, m)} := colim
k

[Σn+kX, Σm+kY ].

This category has a formal suspension Σ(X, n) := (X, n + 1) which agrees with
the geometric suspension, i.e., (X, n + 1) ∼= (ΣX, n). While there is no geometric
desuspension, there is a formal desuspension Σ−1(X, n) = (X, n − 1). Thus by
passing to the Spanier-Whitehead category we have inverted the suspension func-
tor on CW complexes! Moreover, this category has a tensor triangulated structure:
exact triangles are induced by mapping sequences and the product comes from the
smash product of CW complexes. Although this category is the right stabilisation
of finite CW complexes, it has its limitations. The key point here is that one needs
infinite dimensional CW complexes to understand finite CW complexes. For exam-
ple, the singular cohomology theories on finite CW complexes are represented by
Eilenberg-Mac Lane spaces which are infinite dimensional. So naturally one has to
enlarge the finite Spanier-Whitehead category so that it has all the desired prop-
erties; one at least demands arbitrary coproducts and the Brown representability
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theorem. Building the “stable category” with all the desired properties is quite
challenging. Several stable categories have been proposed; the first satisfactory
category was constructed by Mike Boardman in his 1964 Warwick thesis [Boa64],
and then by Frank Adams [Ada74], followed by several others. All these models
share a set of properties which can be taken to be the defining properties of the
stable homotopy category. Following Margolis [Mar83], we take this axiomatic
approach.

Theorem 1. There is a category S called the stable homotopy category (whose
objects are called spectra) which has the following properties.

(1) S is a triangulated category which admits arbitrary set indexed coproducts.
(2) S has a unital, commutative and associative smash product which is com-

patible with the triangulation.
(3) The sphere spectrum is a graded weak generator: π∗(X) = 0 implies X = 0.
(4) The full subcategory of compact objects of S is equivalent to the Spanier-

Whitehead category of finite CW complexes.

Note that there are a lot of categories in the literature which satisfy the first
three properties. It is the property (4) that makes the theorem very unique, im-
portant and non-trivial. It is also worth pointing out that the study of spectra
is equivalent to that of generalised homology theories on CW complexes (theo-
ries which satisfy all the Eilenberg-Steenrod axioms except the dimension axiom.)
Some standard examples of such theories are the singular homology, complex K-
theory are Complex bordism which are represented by the Eilenberg-Mac Lane
spectrum, the K-theory spectrum BU and the Thom spectrum MU respectively.
The study of these two subjects is in turn essentially equivalent to the study
of infinite loop spaces. To get a better picture of the strong connections between
spectra, generalised homology theories and infinite loop spaces, we refer the reader
to Adams excellent account [Ada78].

The stable homotopy category is very rich in its structural complexity, and one
of the goals of the subject is to understand the global structure of this category.
Doug Ravenel in the late 70s suspected some deep and interesting structure in this
category (which was inspired by his algebraic calculations) and has formulated
seven conjectures [Rav84] on the structure of S. All but one of them have been
solved by 1986, due largely to the seminal work of Devinatz, Hopkins, and Smith
[DHS88, HS98]. We discuss some of these conjectures which are surrounding the
thick subcategory theorem.

To start, let f : X → Y be a map between spectra. Then we can ask several
questions, the first one is when is f null-homotopic? Detecting null homotopy of
maps is an extremely difficult problem. A long standing conjecture of Peter Freyd
[Fre66] called Generating Hypothesis says that if X and Y are finite spectra, then
f is null homotopic if π∗(f) is zero. Some partial results are known due to Dev-
inatz [Dev90], the conjecture remains open; see [Fre66] for some very interesting
consequences of this conjecture. The second question is when is f nilpotent under
composition. The nilpotence theorem which was conjectured by Ravenel gives an
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answer to this question when the spectra in question are finite. This theorem
is very deep and its proof involves some hard homotopy theory. It generalises a
well-known theorem of Nishida which tells that every positive degree self map of
the sphere spectrum is nilpotent.

Theorem 2. [DHS88] (Nilpotence theorem) There is a generalised homology the-
ory known as MU∗(−) (complex bordism) such that a map f : X → Y between
finite spectra is nilpotent if and only if MU∗(f) is nilpotent.

A much sharper view of the stable homotopy theory is obtained when one
localises at the prime p and studies the p-local stable category whose objects are
spectra whose homotopy groups are p-local, i.e., π∗(X) ∼= π∗(X)⊗Z(p). It is a very
standard practise in stable homotopy theory to localise at a prime p. When this
is done, there are distinguished field objects known as Morava K-theories K(n)
(with the prime p suppressed) which play a key role in the p-local stable category.
We now begin discussing these objects which also play an important role in the
thick subcategory theorem.

2. Morava K-theories and the thick subcategory theorem.

To set the stage, let F denote the category of compact objects in the p-local sta-
ble homotopy category S. There are many naturally arising properties of spectra
called generic properties which are properties that are preserved under cofibra-
tions, retractions and suspensions. Recall that a subcategory is thick precisely
when it is closed under these operations. Thus one is naturally led to the study
the lattice of thick subcategories of F .

The lattice of thick subcategories of F is determined by the Morava K-theories.
For each n ≥ 1 there is a spectrum K(n) called the n-th Morava K-theory whose
coefficient ring K(n)∗ is isomorphic to Fp[vn, v−1

n ] with |vn| = 2(pn − 1). We
also set K(0) to be the rational Eilenberg-Mac Lane spectrum and K(∞) the
mod-p Eilenberg-Mac Lane spectrum. These theories have the following pleasant
properties.

(1) For every spectrum X , K(n) ∧ X has the homotopy type of a wedge of
suspensions of K(n).

(2) Künneth isomorphism: K(n)∗(X ∧Y ) ∼= K(n)∗X⊗K(n)∗ K(n)∗Y . In par-
ticular K(n)∗(X∧Y ) = 0 if and only if either K(n)∗X = 0 or K(n)∗Y = 0.

(3) If X 6= 0 and finite, then for all n >> 0, K(n)∗X 6= 0.
(4) For each n, K(n + 1)∗X = 0 implies K(n)∗X = 0
(5) (Nilpotence theorem) Morava K-theories detect ring spectra: If R is a

non-trivial ring spectrum, then there exists an n (0 ≤ n ≤ ∞) such that
K(n)∗R 6= 0

The first three properties can be easily derived from the fact that every graded
module over K(n)∗ is a direct sum of suspensions of K(n). The third property is
proved in [Rav84], and the last property can be derived from the MU -version of
the nilpotence theorem stated above; see [HS98] for a proof of this implication. In
view of the above properties, one prefers to work with K(n) as opposed to MU
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because it is easier to do computations with K(n). Set C0 = F , and for n ≥ 1, let
Cn := {X ∈ F : K(n − 1)∗X = 0}, and finally let C∞ denote the subcategory of
contractible spectra. We can now state the celebrated thick subcategory theorem.

Theorem 3. [HS98] (Thick subcategory theorem) A subcategory C of F is thick
if and only if C = Cn for some n. Further these subcategories form a nested
decreasing filtration of F :

C∞ ( · · · ( Cn+1 ( Cn ( Cn−1 ( · · · ( C1 ( C0

We say that a spectrum X is of type-n if it belongs to Cn−Cn+1, and we write
type(X) = n. For example the sphere spectrum is of type 0 and the mod-p Moore
spectrum is of type-1. The existence of type-n spectra was first proved by Mitchell
[Mit85].

It is not hard to prove the above theorem using the nilpotence theorem. The
proof we sketch below is following Rickard. The only other tool that we need is
finite localisation.

Theorem 4. [Mil92] (Finite Localisation) Let C be a thick subcategory of F , and
let D denote the localising subcategory generated by C. Then there is a localisation

functor Lf
C : S → S called ”finite localisation away from C” which has the following

properties.

(1) For X finite, Lf
CX = 0 if and only if X belongs to F .

(2) For X arbitrary, Lf
CX = 0 if and only if X belongs to D.

(3) Lf
C is a smashing localisation functor, i.e., Lf

CX ∼= L
f
CS0 ∧X, where S0 is

the p-local sphere spectrum.

The idea involved in the construction of such a localisation functor is well-
known to homotopy theorists. For instance, it shows up in the proof of the Brown
representability theorem. A very good treatment of this construction is also given
by Rickard [Ric97] where he constructs idempotent modules in the stable module
category using finite localisation.

We should mention at this point that a version of Ravenel’s telescope conjecture
states that every smashing localisation functor (a localisation functor that satisfies

property (3) above) on S is isomorphic to Lf
Cn

for some integer n. This is the only
conjecture of Ravenel that is still open; some experts believe that it is false, see
[Rav92].

Now we give a proof (due to Rickard) of the thick subcategory theorem. Let C
be a non-zero thick subcategory of F . Then define

n := max {l : C ⊆ Cl}.

From property (3) of the Morava K-theories we infer that n is a well-defined non-
negative integer. We claim that C = Cn. Note that we only have to show that

Cn ⊆ C. In showing this inclusion we use the finite localisation functors Lf
C . So

let X in Cn. Now to show that X is in C, it is enough to show that Lf
C X = 0.

But since these functors are smashing we have to show X ∧ Lf
C S0 = 0. Since

every finite spectrum (X) is Bousfield equivalent to a ring spectrum (X ∧ DX),
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we can assume without loss of generality that X is a ring spectrum. Then by

property (5) it suffices to show that for all 0 ≤ l ≤ ∞, K(l)∗ (X ∧ Lf
CS0) = 0.

Further by property (2) we have to show that for each l, either K(l)∗ X = 0 or

K(l)∗(L
f
CS0) = 0. Since X is in Cn, the former holds for all 0 ≤ l < n by property

(4). So we have to show that the latter holds for n ≤ l ≤ ∞. Now by the definition
of n, we have for each n ≤ l ≤ ∞, a spectrum Xl in C such that K(l)∗(Xl) 6= 0.

Since Xl is in C, we have Lf
CXl = Xl ∧ L

f
CS0 = 0. So clearly K(l)∗L

f
CXl = 0, but

since K(l)∗ (Xl) 6= 0, we must have for all n ≤ l ≤ ∞, that K(l)∗L
f
CS0 = 0 as

desired.
Note that this proof highlights the key properties of Morava K-theories which

are used in proving the thick subcategory theorem, and therefore it can be adapted
easily to the other algebraic settings such as derived categories of rings and stable
module categories of group algebras. The role played by the Morava K-theories
in the former are the residue fields and in the latter are the kappa modules; see
[HPS97] for a thick subcategory theorem in an axiomatic stable homotopy category.

We now illustrate how one can use the thick subcategory theorem. Suppose P is
some generic property of spectra and we want to identify the subcategory of finite
spectra which satisfy P. If we can find a type-k spectrum which satisfies P and
a type-(k − 1) spectrum which does not satisfy P, that forces the subcategory in
question to be Ck. For example, consider the generalised homology theory BP 〈n〉
whose coefficient ring is given by Zp[v1, v2, · · · vn] with |vi| = 2(pi − 1). Using the
above strategy one can easily show that the full subcategory of finite spectra which
have bounded BP 〈n〉 homology (spectra X such that BP 〈n〉iX = 0 for i >> 0)
is precisely Cn+1.

3. Bousfield classes of finite spectra

There are several interesting applications of the thick subcategory theorem.
We focus on its applications to the Bousfield lattice – an important lattice which
encapsulates the gross structure of stable homotopy theory. This was introduced
by Bousfield in [Bou79a, Bou79b]. Given a spectrum E, define its Bousfield Class
〈E〉 to be the collection of all spectra which are invisible to the E-homology theory,
i.e., spectra X such that E∗(X) = 0 or equivalently E ∧X = 0. Then we say that
spectra E and F are Bousfield equivalent if 〈E〉 = 〈F 〉. It is a result by Ohkawa
that there is only a set of Bousfield classes. With the partial order given by reverse
inclusion, the set of Bousfield classes form a lattice which is called the Bousfield
lattice and will be denoted by B. One can perform various operations on B.
The two important ones being the wedge (∨) : 〈X〉 ∨ 〈Y 〉 = 〈X ∨ Y 〉 and the
smash (∧): 〈X〉 ∧ 〈Y 〉 = 〈X ∧ Y 〉. In this lattice, the Bousfield class of the sphere
spectrum is the largest element and that of the trivial spectrum is the smallest.
This lattice plays an important role in the study of modern stable homotopy theory.
While much of the current knowledge about the B is only conjectural, the thick
subcategory theorem completes determines the Bousfield classes of finite spectra.
We describe them in the next theorem which was conjectured by Ravenel.



18 Oberwolfach Report 8/2006

Theorem 5. [HS98] (Class-invariance theorem) Let X and Y be finite p-local
spectra, then 〈X〉 ≤ 〈Y 〉 if and only if type(X) ≥ type(Y ).

Although this theorem follows as an immediate corollary to the thick subcate-
gory theorem, it is a very non-trivial statement about finite spectra. It says that
the Bousfield class of a finite spectrum is completely determined by its type.

We now discuss the Boolean algebra conjecture of Ravenel which identifies the
Boolean subalgebra generated by the Bousfield classes of finite p-local spectra.
But first we have to introduce some important non-nilpotent maps of finite spectra
called vn-self maps. A self map f : Σ?X → X is a vn-self map (n ≥ 1) if K(n)∗(f)
is an isomorphism and K(m)∗(f) is zero for m 6= n. For example, the degree p
map on the sphere spectrum is a v0-self map, and the Adams map [Ada66] on
the Moore spectrum: Σ?M(p) → M(p) which induces isomorphism in complex
K-theory is a v1-self map. These vn-self maps are important because give rise
to periodic families in the stable homotopy groups of spheres. For example, one
can iterate Adams maps and get a periodic family in π∗(S

0) called the α-family.
Showing the existence of such maps is highly non-trivial. A deep result of Hopkins
and Smith called the periodicity theorem produces a wealth of such maps. More
precisely:

Theorem 6. [HS98] (Periodicity Theorem)

(1) Every type-n spectrum admits an asymptotically unique vn-self map φX :
Σ?X → X

(2) If h : X → Y is a map between type-n spectra, then there exits integers i
and j such that the follow diagram commutes:

Σ?X
Σ?h

//

φi
X

��

Σ?Y

φj

Y

��

X
h

// Y

Using this periodicity theorem it is not hard to show that the full subcategory
of finite p-local spectra admitting vn self map is precisely Cn. So this theorem
gives another characterisation of the thick subcategories of F .

For every positive integer n, let F (n) denote some spectrum of type-n. Note
that the Bousfield class of F (n) is well-defined by the class-invariance theorem.
Now the periodicity theorem says that F (n) admits an essentially unique vn-self
map. So let T (n) denote the mapping telescope of this vn-self map. It follows that
the Bousfield classes of T (n) is also well-defined.

A Bousfield class 〈E〉 is said to be complemented if there exists another class 〈F 〉
such that 〈E〉∧〈F 〉 = 〈0〉 and 〈E〉∨〈F 〉 = 〈S0〉. The collection of all complemented
Bousfield classes forms a Boolean algebra with respect to the smash and wedge
operations and will be denoted by BA. Bousfield [Bou79b] showed that every
possibly infinite wedge of finite spectra belongs to BA. A pleasant consequence
of the thick subcategory theorem is the classification of the Boolean subalgebra
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generated by the finite p-local spectra and their complements in the p-local sphere
spectrum.

Theorem 7. [Rav84] (Boolean Algebra Theorem) Let FBA denote the Boolean
subalgebra generated by the Bousfield classes of the finite p-local spectra and their
complements in 〈S0〉. Then FBA is the free (under complements, finite unions
and finite intersections) Boolean algebra generated by the Bousfield classes of the
telescopes 〈T (n)〉 for n ≥ 0.

So by this theorem one can identify FBA with the Boolean algebra of finite and
cofinite subsets of non-negative integers: the Bousfield class 〈T (n)〉 corresponds
to the subset {n}, and 〈F (n)〉 corresponds to the subset {n, n + 1, n + 2, · · · }. By
the way, the Boolean algebra conjecture of Ravenel uses K(n) instead of T (n) in
the above theorem; according to telescope conjecture (which is still open) these
two spectra are Bousfield equivalent.

There are several other interesting sublattices of B which have been studied. For
example there is a distributive lattice DL which consists of the Bousfield classes
〈X〉 such that 〈X〉∧〈X〉 = 〈X〉 which has some nice properties. A good discussion
on the structure of the Bousfield lattice can be found in [HP99]. These authors use
lattice theoretic methods to explore the structure of the Bousfield lattice. They
also pose a number of interesting conjectures and study their implications.

We end by mentioning briefly one other application of the thick subcategory
theorem. Thomason has given a brilliant K-theory recipe [Tho97] which refines
the thick subcategory theorem and gives a classification of the triangulated sub-
categories of finite spectra. This recipe amounts to computing the Grothendieck
groups of the thick subcategories of the finite p-local spectra. We refer the reader
to [Che06] where we use this recipe to study the lattice of triangulated subcate-
gories of finite spectra.
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Triangulated categories of rational equivariant cohomology theories

J.P.C. Greenlees

1. Introduction.

This article is designed to provide an introduction to some examples of trian-
gulated categories that arise in the study of G-equivariant cohomology theories
for a compact Lie group G. We focus on cohomology theories whose values are
rational vector spaces since one may often give explicit algebraic constructions of
the triangulated category in that case.

As general references for equivariant cohomology theories see [3, 13, 14].

2. Examples of equivariant cohomology theories

Here are some examples of reduced equivariant cohomology theories on a based
G-space X .

• Borel cohomology theories: F ∗(EG+ ∧G X) for any non-equivariant
cohomology theory F ∗(·). [Here EG is the universal free G space, and
EG+ is the same space with a G-fixed basepoint adjoined].
• Equivariant K-theory K∗

G(X): The theory is defined for unbased com-
pact G-spaces Y by taking KG(Y ) to be the Grothendieck group of equi-
variant vector bundles on Y . This defines K0

G(X) = ker(KG(X) −→
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KG(∗)) in the usual way, and this is extended to all degrees by Bott peri-
odicity. Note that K0

G = KG(∗) = R(G), the complex representation ring,
and K1

G = 0.
• Equivariant Bordism MU∗

G(X): The stabilized form of bordism of G-
manifolds with a complex structure on their stable normal bundle defined
by tom Dieck. [15]

3. Definition of genuine cohomology theories

A näıve equivariant cohomology theory is a contravariant exact functor

F ∗
G : Based G-spaces −→ Graded abelian groups.

If in addition F ∗
G(·) is equipped with an extension to an RO(G)-graded theory in

such a way that

F k+V
G (SV ∧X) ∼= F k

G(X)

for any representation V (where SV is the one point compactification of V ), we say
that F ∗

G(·) is a ‘genuine’ equivariant cohomology theory. The Examples in Section
2 all have the stronger property that they are complex stable in the sense that

F
k+|V |
G (SV ∧X) ∼= F k

G(X)

for every complex representation V . This is clear by the Serre spectral sequence
for the Borel theories, it follows from Bott periodicity for equivariant K theory,
and it is built into the definition for stabilized bordism.

One reason (beyond the existence of interesting examples) for considering gen-

uine cohomology theories is that if H ⊆ K there is an induction map indK
H :

F ∗
H(X) −→ F ∗

K(X) in addition to the restriction map map resK
H : F ∗

K(X) −→
F ∗

H(X) that exists for any näıve theory and is induced by the projection G/H+ −→
G/K+. Henceforth we drop the adjective ‘genuine’ since all cohomology theories
will be genuine.

It is convenient to work in a context where equivariant cohomology theories are
represented. Indeed, one may form the model category G-spectra [3], which can
be thought of as a category of stable based G-spaces. Thus every based G-space
gives rise to a suspension spectrum Σ∞X , and for every G-equivariant cohomology
theory F ∗

G(·) there is a G-spectrum F so that

F ∗
G(X) = [Σ∞X, F ]∗G,

where [A, B]G means maps in the homotopy category of G-spectra. Henceforth we
omit the notation Σ∞ for the suspension spectrum functor.

As in the case of non-equivariant spectra, one may attempt to classify thick
subcategories of finite G-spectra, but there are some additional complications. For
instance, if X is a finite p-local G-spectrum the geometric fixed point spectrum XH

has a chromatic type nX(H). N.P.Strickland [18] has studied the functions nX that
can occur. For example, chromatic Smith theory shows that nX(H) ≥ nX(K)− 1
if K is normal and of index p in H .
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4. Ordinary equivariant cohomology and Mackey functors

The basic building blocks for G-spaces are the cells (G/H×Dn, G/H×Sn−1) for
closed subgroups H and n ≥ 0. Thus the relevant 0-spheres are G/H+. Accord-
ingly a cohomology theory F ∗

G(·) satisfies the dimension axiom if F i
G(G/H+) = 0

for i 6= 0 and all closed subgroups H . A cohomology theory satisfying the dimen-
sion axiom is called an ordinary cohomology theory. Note also that

F i
G(G/H+) = [G/H+, F ]iG = [S0, F ]iH = πH

−i(F )

so F represents an ordinary cohomology theory if and only if all its equivariant
homotopy groups are concentrated in degree 0.

However the groups F i
G(G/H+) for various subgroups H are related. First,

define the stable orbit category SO to be the full subcategory of the homotopy
category of G-spectra with objects G/H+, it has morphisms SO(G/H+, G/K+) =
lim
→ V

(SV ∧G/H+, SV ∧G/H+)G, where (A, B)G denotes homotopy classes of G-

maps. We may then define an additive functor

πG
i (F ) : SO −→ Ab

by πG
i (F )(G/H+) = πH

i (F ). Quite generally, any additive functor M : SO −→ Ab
is called a Mackey functor, and if we rewrite it by taking M ′(H) := M(G/H+) then
the way to think of a Mackey functor is that if K ⊆ H then there is a restriction
map resH

K : M ′(H) −→ M ′(K) (induced by the projection π : G/K −→ G/H),
a conjugation map cg : M ′(H) −→ M ′(Hg) (induced by right multiplication by

g−1 as a map G/Hg −→ G/H), and an induction map indH
K : M ′(K) −→M ′(H)

(induced by a certain stable map G/H −→ G/K (the dual of π if G is finite). These
satisfy the Mackey induction restriction formula (or Feshbach’s generalization if
G is of positive dimension [2]). If G is finite there is a purely algebraic definition
[1], which can be shown to be equivalent to this definition via topology.

Lemma 1. Ordinary cohomology theories correspond bijectively to Mackey func-
tors.

Proof: We have seen that the zeroth homotopy group of an ordinary cohomology
theory defines a Mackey functor, and conversely, given a Mackey functor M we
may construct a cohomology theory H∗

G(·; M) by using cellular chain complexes,
or alternatively construct the representing Eilenberg-MacLane G-spectrum HM
directly by realising a resolution of M by free Mackey functors. �

5. All cohomology is ordinary for finite groups.

It is an immediate consequence of Serre’s calculation of the rational homotopy
of spheres that every non-equivariant rational cohomology theory is ordinary. Here
is a generalization to any finite group; a precursor for equivariant K-theory was
the early result of Slominska [17]
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Theorem 1. [12] If G is a finite group then every rational cohomology theory
F ∗

G(·) is ordinary:

F k
G(X) ∼=

∏

n

Hk+n
G (X ; πG

n (F )).

Proof: For the proof we define a related cohomology theory. Given any injective
rational Mackey functor I we may define a cohomology theory hI∗G(·) by

hIn
G(X) = Hom(πG

n (X), I),

There are two special facts about finite groups that let us proceed.

Lemma 2. If G is finite every rational Mackey functor is injective.

Proof: This is due to the fact that the rational Burnside ring splits as a product
of copies of Q and Maschke’s theorem. �

For each n we may therefore choose the map F −→ ΣnhπG
n (F ) corresponding

to the identity map of πG
n (F ), and we may assemble these to give a map

F
≃
−→

∏

n

ΣnhπG
n (F ).

Lemma 3. The spectrum hI is an Eilenberg-MacLane spectrum: hI = HI.

Proof: Since πG
0 (G/H+) = [·, G/H+]G is the free functor, it is clear that hI has

the correct homotopy groups in degree 0. We must calculate hIn
G(G/H+) for each

subgroup H , and show that it is zero if n 6= 0.
For this we need to examine the functor πG

n (G/H+), which is made up from the
groups πK

n (G/H+). The tom Dieck splitting theorem for the G-space X states

πK
n (X) =

⊕

(L)

πn(EWK(L)+ ∧WK(L) XL)

where the sum is over K-conjugacy classes of subgroups L. Since we are work-
ing rationally, the homotopy may be replaced by homology, and since the groups
concerned are finite, there is no higher homology; since X = G/H+ is zero dimen-
sional the result follows. �

It follows that the map ν induces an isomorphism of πH
n for all n and H and is

therefore an equivalence by the Whitehead theorem: the G-spectrum F splits as
a product of Eilenberg-MacLane spectra

F
≃
−→

∏

n

ΣnHπG
n (F ).

The statement about cohomology theories follows. �
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6. Algebraic models for categories of rational cohomology

theories.

The idea is that for any compact Lie group G there is an abelian category
A(G) modelling rational G-equivariant cohomology theories. On a practical level,
we want to be able to calculate in this homotopy category, but if we understand the
category completely we can also construct interesting new cohomology theories [8].
The idea is that objects ofA(G) should be a rather small, and based on information
easily accessible from the cohomology theories they represent.

Conjecture 2. For a compact Lie group G there is an abelian category A(G) and
a Quillen equivalence

G-spectra/Q ≃ dgA(G)

such that

(1) A(G) is abelian
(2) InjDim(A(G)) = rank(G)
(3) The category consists of sheaves of modules over a space of closed sub-

groups of G; the object corresponding to a cohomology theory E∗
G(·) has

fibre over H built from the Borel theory E∗
TWG(H)(ETWG(H)+ ∧ XH).

The additional structure is built from these Borel theories using their re-
lation under localization and inflation.

(4) The model of E∗
G(·) is built from its values on spheres and a little extra

structure.

6.1. Consequences of the conjecture. Note immediately that if the conjecture
holds we have an equivalence of homotopy categories

Ho(G-spectra/Q) ≃ D(A(G))

as triangulated categories. This reduces to algebra the problem of classifying
rational equivariant cohomology theories and the process of calculation with them.
Furthermore, it provides a universal homology theory

π
A(G)
∗ : G-spectra −→ A(G)

and an Adams spectral sequence

Ext∗,∗
A(G)(π

A(G)
∗ (X), π

A(G)
∗ (Y ))⇒ [X, Y ]G∗

for calculation. Finally, because of the injective dimension of A(G), the Adams
spectral sequence is only non-zero on s-line for 0 ≤ s ≤ r, so the calculation is
very accessible.

6.2. Status of the conjecture.

• G finite. The conjecture is true. From the result of Section 5 it is not
hard to see

A(G) =
∏

(H)

QWG(H)-mod.
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• The circle group G = T . Again the theorem is true. Indeed, [5] con-
structs A(G) and shows that there is a triangulated equivalence of ho-
motopy categories. Shipley [16] upgraded this to a Quillen equivalence.
We describe the models for free T -spectra in Section 7 and the model for
semifree spectra in Section 8.
• The groups G = O(2), SO(3) and their double covers. In this case

the equivalence of homotopy categories is proved in [6, 7].
• The tori G = T g. The Adams spectral sequence exists [9], and in

[10, 11] we show that the Quillen equivalence holds.

7. Free T -spaces.

We spend the rest of the article on the circle group G = T , and to simplify the
discussion we consider actions with restricted isotropy. In this section we give a
complete classification of rational cohomology theories on free T -spaces.

First note that an arbitrary space X is equivalent to a free T -space if and only
if the map ET+ ∧X −→ S0 ∧X = X is an equivalence. For homotopical work it
is convenient to adopt this as the definition of a free space or spectrum.

Lemma 4. Cohomology theories on free T -spaces are represented by free spectra.

Proof: If X is free then [X, F ]∗T ←− [X, F ∧ET+]∗T is an isomorphism since maps
from a free space into a non-equivariantly contractible space are null-homotopic.
Hence F ∗

T (·) is represented by the free T -spectrum ET+ ∧ F . �

We may thus concentrate on classifying free T -spectra.

Lemma 5. For any free X, the homotopy groups πT
∗ (X) are naturally a module

over Q[c], where c is of degree −2. Furthermore, πT
∗ (X) is torsion in the sense

that every element is annihilated by a power of c.

Proof: Note that [ET+, ET+]T∗ acts on πT
∗ (X) = πT

∗ (X ∧ ET+). Now calculate

[ET+, ET+]T∗ = [ET+, S0]T∗ = [BT+, S0]T∗ = H∗(BT+) = Q[c].

For the torsion statement, note that any element x ∈ πT
∗ (X) is supported on a

finite subcomplex K, and πT
∗ (K) is bounded below. Since c is in degree −2, the

statement follows. �

We are now equipped to state the classification.

Theorem 3. Associating the module πT
∗ (F ∧ET+) to the cohomology theory F ∗

T (·)
gives a bijective correspondence

Cohomology theories on free T -spaces↔ Torsion Q[c]-modules

Furthermore, for any free T -spectra X and F , there is a short exact sequence

0 −→ ExtQ[c](π
T
∗ (ΣX), πT

∗ (F )) −→ [X, F ]T∗ −→ HomQ[c](π
T
∗ (X), πT

∗ (F )) −→ 0.
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We first need the Whitehead theorem.

Lemma 6. If X and Y are free and f : X −→ Y is a map inducing an isomor-
phism of πT

∗ , then f is an equivalence.

Proof: Change of groups and the Gysin sequence. �

Proof: The short exact sequence is an Adams spectral sequence. The method of
proof is therefore standard. We need only note that there are realizable injectives
F for which the short exact sequence exists, and that any free T -spectrum can be
resolved by these.

To realize an injective, note that

πT
∗ (ET+) = π∗(ΣBT+) = H∗(ΣBT+) = Σ−1Q[c, c−1]/Q[c]

is c-divisible and hence injective. It is easy to show

[X, ET+]T∗
∼= HomQ[c](π

T
∗ (X), πT

∗ (ET+))

(both sides are cohomology theories in X so only need to check on X = T+). This
establishes the injective case.

Let us now show there are enough injectives of this form, and that they and the
resulting resolutions are realizable. First, there are algebraically enough injectives
of the form πT

∗ (ET+). For simplicity assume that F is bounded below and of finite
type. Hence we may construct an embedding πT

∗ (F ) −→ πT
∗ (

∨
i ΣniET+) where

the wedge is locally finite and hence equivalent to the product. We may then lift
it to a map F −→

∨
i ΣniET+ =: I. Since Q[c] is of injective dimension 1, the

mapping cone J also has injective homotopy, and, as a matter of algebra, this is
necessarily isomorphic to πT

∗ (
∨

j Σnj ET+) for suitable integers nj . By the injective
case of the short exact sequence we can construct a map from the cofibre to this
wedge, and by 6 it is an equivalence. This gives a cofibre sequence F −→ I −→ J ,
realizing the injective resolution of πT

∗ (F ), and where I and J are both wedges
of suspensions of ET+ (for which the theorem is known). Now apply [X, ·]T∗ and
obtain the exact sequence.

The classification of free T -spectra now follows easily. To construct enough
spectra we realize a resolution of a torsion Q[c] -module. To show that if πT

∗ (X) ∼=
πT
∗ (Y ) then X ≃ Y , we just lift the algebraic isomorphism to a map X −→ Y and

then apply 6 to deduce it is an equivalence. �

Corollary 1. There is an equivalence of triangulated categories

Free T -spectra ≃ D(Isomorphism classes of torsion Q[c] -modules)

where the derived category on the right is obtained from dg torsion Q[c] -modules
by inverting homology isomorphisms.

Proof: Use the Adams short exact sequence and the fact that c is in degree 2,
together with a Toda bracket argument. �
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8. Semi-free T -spaces.

In this section we give a complete classification of rational cohomology theories
on semi-free T -spaces (those whose isotropy groups are either 1 or T ). The pattern
of the argument is very similar to that in Section 7, so we will omit most of the
proofs.

First note that an arbitrary space X is equivalent to a semi-free T -space where
EF is the universal F -space, where F is the set of finite subgroups. For homo-
topical work it is convenient to adopt this as the definition of a semi-free space or
spectrum.

Lemma 7. Cohomology theories on semi-free T -spaces are represented by semi-
free spectra. �

Thus we turn to the study of semifree T -spectra.
Now, for any semi-free X we have a cofibre sequence

ET+ ∧X −→ X −→ ẼF ∧X,

where ẼF =
⋃

V T =0 SV is H-contractible for all finite H . We described the

spectra ET+ ∧X in Section 7, and it is easy to see that ẼF ∧X ≃ ẼF ∧XT , so

that ẼF ∧X is determined by the graded rational vector space π∗(X
T ). It thus

remains to describe how to splice these two pieces of information. For this we take
the cue from the classical Localization theorem which states that if X is finite and
semifree then

H∗(ET+ ∧T X)[1/c] ∼= H∗(ET+ ∧T XT )[1/c] ∼= H∗(BT+)[1/c]⊗H∗(XT )

= Q[c, c−1]⊗H∗(XT ).

Thus the Borel cohomology of X very nearly determines the cohomology of the
fixed point space. Inspired by this we may define an appropriate category.

Definition 1. The localization category A has objects β : N −→ Q[c, c−1] ⊗ V ,
where N is a Q[c] -module, and β is a Q[c] -map which becomes an isomorphism
when c is inverted. We call N the nub, V the vertex and β the basing map. The
morphisms in A are given by commutative squares in which the map is the identity
on Q[c, c−1].

The following lemma is an elementary exercise.

Lemma 8. The category A is abelian and of injective dimension 1. In fact the

objects (I −→ 0) with I an injective torsion Q[c] -module, and (Q[c, c−1]⊗ V
1
−→

Q[c, c−1]⊗ V ) together give enough injectives. �

The final three results are direct counterparts of results in Section 7.
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Lemma 9. For any semi-free X, the object

πA
∗ (X) =

(
πT
∗ (X ∧DET+) −→ πT

∗ (X ∧DET+ ∧ ẼF) ∼= Q[c, c−1]⊗ π∗(X
T )

)

is an object of A.

Proof: The cofibre of the map X∧DET+ −→ X∧DET+∧ẼF is X∧DET+∧ET+;
this is free and hence its homotopy is annihilated when c is inverted. �

We are now equipped to state the classification.

Theorem 4. Associating the module πA
∗ (F ) to the cohomology theory F ∗

T (·) gives
a bijective correspondence

Cohomology theories on semifree T -spaces↔ Isomorphism classes of objects of A

Furthermore, for any semifree T -spectra X and F , there is a short exact sequence

0 −→ ExtA(πT
∗ (ΣX), πT

∗ (F )) −→ [X, F ]T∗ −→ HomA(πT
∗ (X), πT

∗ (F )) −→ 0. �

Corollary 2. There is an equivalence of triangulated categories

Semifree T -spectra ≃ D(A)

where the derived category on the right is obtained from dg objects of A by in-
verting homology isomorphisms. �

9. Some applications.

Here are some consequences which do not require much explanation to state.

• The Atiyah-Hirzebruch spectral sequence for F ∗
T (X) with X free collapses

if and only if πT
∗ (F ∧ ET+) is injective over Q[c] .

• (McClure) The Atiyah-Hirzebruch spectral sequence for K∗
T (X) with X

free always collapses.
• For an arbitary semifree space X , the K-theory K∗

T (X) is determined by
the map

H∗(ET+ ∧T XT ) −→ H∗(ET+ ∧T X).

• There are infinitely many non-isomorphic finite indecomposable semi-free
spectra with πT

∗ (ET+ ∧ X) ∼= πT
∗ (ET+ ∧ (S0 ∨ S2 ∨ S4)) and π∗(X

T ) ∼=
π∗(S

0 ∨ S2 ∨ S4)
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Strongly exceptional sequences of line bundles on toric varieties

Lutz Hille

(joint work with Markus Perling)

Let k be an algebraically closed field. All varieties and algebras are over the
fixed ground field k. A classical result of Beilinson states that the bounded derived
category of coherent sheaves Db(Pn) on the projective space is equivalent to the
bounded derived category Db(mod–A) of finitely generated right modules over the
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finite dimensional algebra A := End(⊕n
i=0O(i)). More precisely, the functor

RHom(⊕n
i=0O(i),−) : Db(Pn) −→ Db(mod–A)

is an equivalence of triangulated categories. It is an open question whether a
similar equivalence exists for any smooth projective toric variety X . The aim of
this talk is to discuss new results in this direction. In the first part we present
some motivation for the problem. In the second part we consider surfaces and
threefolds.

1. Motivation

We shortly mention some motivation for considering derived equivalences for
toric varieties.
1) Homological mirror symmetry.

The famous conjecture of Kontsevich states that the bounded derived category of
coherent sheaves Db(Y ) for a Calabi-Yau variety Y is equivalent to the Fukaya
category on the mirror dual of Y ([Ko]). So it is of interest to understand the
category Db(Y ).
2) Batyrev’s construction of Calabi-Yau varieties.

There is a construction of Batyrev for Calabi-Yau varieties as complete intersec-
tions in toric varieties X . So it is useful to understand first Db(X) (for X toric)
an then the subcategory Db(Y ) for Y a Calabi-Yau subvariety.
3) The endomorphism algebra of a direct sum of line bundles on toric varieties.

The endomorphism algebra of a direct sum of line bundles on a toric variety is
well understood. In particular, in case we can find a full strongly exceptional se-
quence (see the following definition) of line bundles on a toric variety X we obtain
a derived equivalence as above.

2. The conjecture

For an understanding of the derived equivalences the following two notions are
crucial. For we work in an abelian or bounded triangulated category D, so that
⊕lExtl(M, N) is finite dimensional for all objects M and N . The examples we
have in mind are the category of coherent sheaves on a smooth projective variety,
the category of finitely generated modules over a finite dimensional algebra of finite
global dimension and the corresponding derived categories.

Definition. A sequence ε = (L1, . . . , Lt) of objects in D is called exceptional

if Extl(Li, Li) = 0 for all i = 1, . . . , t; l 6= 0, End(Li) = k (we also say Li is

exceptional) and Extl(Lj, Li) = 0 for all j > i and all l. Such a sequence is

called strongly exceptional if in addition Extl(Li, Lj) = 0 for all l 6= 0. Finally, it
is called full if t is the rank of the Grothendieck group K0(D) (this condition is
slightly weaker than the usual one).

It was conjectured that on any smooth toric variety a full strongly exceptional
sequence of line bundles exists (see e. g. [AKO, CM, Hi, Ka] and the references
therin for some recent related results). We present a counter example to this
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conjecture ([HP]). However, for toric Fano varieties of dimension less or equal
to three we can prove the conjecture. We discuss the problem for surfaces and
threefolds in more detail.

3. Toric surfaces

Let X be a toric surface (always smooth and projective). We denote by Di for
i = 1, . . . , t the T –invariant toric prime divisors numbered so that DiDi+1 = 1
for i ∈ Z/t. Note that the rank of the Grothendieck group is t. We consider the
following sequence of line bundles

ε := (O,O(D1),O(D1+D2),O(D1+D2+D3), . . . ,O(D1+D2+ . . .Dt−2+Dt−1)).

Note that we can not proceed, since Ext2(O(D1 + D2 + . . . Dt−1 + Dt),O) 6= 0.
Moreover, the only choice we have to form ε is to chose the starting divisor D1

and then we have two choices for the next one (corresponding to the two possible
orientations).

Theorem 1. a) The sequence ε is full exceptional.
b) The sequence ε is strongly exceptional precisely when the self intersection num-
bers satisfy D2

i ≥ −1 for all i = 1, . . . , t− 1.

Note that the condition D2
i ≥ −1 for all i corresponds to X is Fano (there exist

precisely 5 non-isomorphic toric Fano surfaces). Moreover, note that we do not
need any assumption on D2

t in part b). In particular, this construction yields a
full strongly exceptional sequence of line bundles on each Hirzebruch surface Fm.
Looking closer to the construction, one can show that a possible counter example
can occure only for t ≥ 7. We now present such a counter example:

We start with the second Hirzebruch surface and its T –invariant prime divisors
with self intersection numbers D2

1 = D2
3 = 0, D2

2 = −2, and D2
4 = 2. Now we blow

up iteratively as follows: X1 is the blow up in D1∩D4 with exceptional divisor E1,
X2 is the blow up in D1∩E1 with exceptional divisor E2 and finally X is the blow
up of D1 ∩ E2 with exceptional divisor E3. Thus X has seven T –invariant prime
divisors Di (ordered as above), where Di = Ei, i = 1, 2, 3 and Di+3 = π−1Di,
i = 1, 2, 3, 4 (here π : X −→ X is the projection). For the self intersection numbers

we get D
2

4 = −3, D
2

i = −2 for i = 1, 2, 5, D
2

3 = −1, D
2

6 = 0, and D
2

7 = 1.

Theorem 2. [HP] On the variety X constructed above a full strongly exceptional
sequence of line bundles cannot exist.

4. Toric threefolds

Now let X be a toric threefold. We keep the notation from above: Di for
i = 1, . . . , t are the T –invariant toric prime divisors. Note that there does not
exist a nutaral “cyclic order” on the divisors. So we start with an arbitrary order
and consider again the sequence ε of line bundles on X as in the previous part.
To formulate the result we need to intersect the fan of X with the two-sphere and
obtain a graph Γ (the vertices correspond to the divisors Di and an edge between
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Di and Dj corresponds to a non-empty intersection between Di and Dj). Note
that the construction also makes sense in higher dimension. Recall that a cycle in
a graph is called hamiltonian if it meets each vertex of the graph precisely once.

Theorem 3. (we can assume here that X is of arbitrary dimension)
a) If ε is exceptional then D1,D2, . . . ,Dt,D1 is an Hamiltonian cycle in Γ.
b) Assume dim X ≤ 3 and D1,D2, . . . ,Dt,D1 is an Hamiltonian cycle in Γ then ε
is exceptional.

Note first that the theorem generalizes the result in the previous section. More-
over, if dimX ≥ 3 then the sequence is only full if X is the projective space. So we
need to construct further bundles. Finally, the condition is only a condition on the
topology of the fan of X , whereas it turns out (as already can be seen in dimension
2) that strongly exceptional depends also on the convex geometric properties of
the fan. Finally, we can prove the following result based on the classification of
toric Fano threefolds (see [O], fig. 2.6).

Theorem 4. Let X be a toric Fano threefold. Then the sequence ε is strongly
exceptional and can be completed, using various hamiltonian cycles in Γ, to a full
strongly exceptional sequence of line bundles.
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Tilting modules over Calabi-Yau algebras

Osamu Iyama

(joint work with Idun Reiten)

We review some results in [IR]. Throughout let R be a d-dimensional normal
complete Gorenstein local ring and Λ a module-finite R-algebra. We denote by
mod Λ the category of finitely generated Λ-modules, and by fl Λ the category of
Λ-modules of finite length.



Mini-Workshop: Thick Subcategories - Classifications and Applications 33

1. Calabi-Yau algebras and symmetric orders
We denote by D the Matlis duality on flR. For an integer n, we call Λ n-Calabi-

Yau (n-CY for short) if there exists a functorial isomorphism

HomDb(modΛ)(X, Y [n]) ≃ D HomDb(modΛ)(Y, X) (∗)

for any X, Y ∈ Db(fl Λ). Similarly, we call Λ n-Calabi-Yau− (n-CY− for short) if
there exists a functorial isomorphism (∗) for any X ∈ Db(fl Λ) and
Y ∈ Dperf(mod Λ). By a theorem of Rickard, any n-CY algebra is n-CY−. On
the other hand, we call a module-finite R-algebra Λ symmetric if HomR(Λ, R) is
isomorphic to Λ as a (Λ, Λ)-module. We call Λ an R-order if Λ is a (maximal)
Cohen-Macaulay R-module. Our first result is a characterization of n-CY and
n-CY− algebras.

Theorem 1.1 Assume that the structure morphism R→ Λ is injective.
(1) If Λ is n-CY or n-CY−, then n = d(= dimR).
(2) Λ is d-CY− if and only if Λ is a symmetric R-order.
(3) Λ is d-CY if and only if Λ is a symmetric R-order with gl.dimΛ = d.

Examples 1.2 (1) Assume that Λ is commutative. Then Λ is d-CY− if and
only if it is Gorenstein, and d-CY if and only if it is regular.

(2) A finite dimensional algebra over a field is 0-CY if and only if it is semisimple.
(3) Let R be a complete discrete valuation ring and Λ a module-finite R-algebra.

If Λ is 1-CY, then it is a maximal R-order. The converse is not true in general.
(4) Let k be a field of characteristic zero and G a finite subgroup of SLd(k) acting

on V := kd naturally. The action of G naturally extends to S := k[[x1, · · · , xd]].
We denote by SG the invariant subring, and by S ∗G the skew group ring, i.e. a
free S-module with a basis G, where the multiplication is given by (s1g1) ·(s2g2) =
(s1g1(s2))(g1g2) for si ∈ S and gi ∈ G. Then SG is d-CY− and S ∗G is d-CY.

In the rest we study tilting modules over d-CY algebras Λ. If d = 0 or 1, then
any tilting Λ-module is projective since Λ is Morita equivalent to a finite product
of local rings by (2) and (3) above. Let us consider the case d = 2.

2. Tilting modules over 2-Calabi-Yau algebras
Let Λ be a basic ring-indecomposable 2-CY algebra and tilt1 Λ the set of

isoclasses of basic tilting Λ-modules of projective dimension at most one. Let
e1, · · · , en be a complete set of orthogonal primitive idempotents of Λ. Put
Ii := Λ(1− ei)Λ. The set of 2-sided ideals of Λ forms a monoid by multiplication
of ideals. We denote by I(Λ) the submonoid generated by the ideals I1, · · · , In.

Theorem 2.1 I(Λ) = tilt1 Λ and I(Λ) = tilt1 Λop hold.

We give an explicit description of I(Λ). Following Happel-Preiser-Ringel [HPR],
we call the valued graphs below generalized extended Dynkin diagrams.

(i) An extended Dynkin diagram,

(ii) n•—– •—– •—– • · · · · · · •—– •—– •—– • n

(iii) n•—– •—– •—– • · · · · · · •—– •—–•
(a b)
—– • (a, b) = (2, 1) or (1, 2)
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(iv) n•—– •—– •—– • · · · · · · •—– •—– •�
��

P
PP

•

•For a generalized extended Dynkin diagram ∆, define a valued quiver called the

double of ∆ as follows: We replace a valued edge •
(a b)
—– • by two valued arrows

•
(a b)
−→
(b a)
←−

• of opposite direction. We replace a loop by a loped arrow.

Theorem 2.2 The valued quiver of Λ is a double of a generalized extended
Dynkin diagram. The corresponding affine Weyl group acts transitively and freely
on I(Λ).

3. Tilting modules over 3-Calabi-Yau algebras
We call X ∈ mod Λ reflexive if the natural map X → HomR(HomR(X, R), R) is

an isomorphism. We denote by ref Λ the category of reflexive Λ-modules. Follow-
ing Van den Bergh [V], we say that M gives a non-commutative crepant resolution
(NCCR for short) Γ of Λ if

(1) M ∈ ref Λ, and M℘ is a generator of Λ℘ for any ℘ ∈ Spec R with ht℘ = 1,
(2) Γ = EndΛ(M) is an R-order with gl.dimΓ = d(= dimR).
In [V], Van den Bergh gave a non-commutative analogue of a conjecture of

Bondal-Orlov: All NCCR of a normal Gorenstein domain Λ are derived equivalent.
The following theorem shows that his conjecture is true for d = 3.

Theorem 3.1 Let Λ be a module-finite algebra with d = 3. If Mi ∈ ref Λ
(i = 1, 2) gives a NCCR Γi := EndΛ(Mi) of Λ, then U := HomΛ(M1, M2) is a
reflexive tilting Γ1-module with EndΓ1

(U) = Γ2. Consequently, all NCCR of Λ are
derived equivalent.

For 3-CY− algebras we have the following stronger assertion.

Theorem 3.2 Let Λ be 3-CY− and M a Λ-module giving a NCCR Γ :=
EndΛ(M). Then the equivalence HomΛ(M,−) : ref Λ → ref Γ gives a one-one
correspondence between Λ-modules giving NCCR and reflexive tilting Γ-modules.

Choosing M := Λ in 3.2 for a 3-CY algebra, we have the relationship below
between tilting modules and NCCR. Note that any M ∈ ref Λ over a 3-CY algebra
Λ has projective dimension at most one.

Corollary 3.3 Let Λ be 3-CY. Then Λ-modules giving NCCR are exactly re-
flexive tilting Λ-modules.
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Thick subcategories of perfect complexes over a commutative ring

Srikanth Iyengar

Let R a commutative noetherian ring and D the derived category of R-modules.
A perfect complex of R-modules is one of the form

0→ Ps → · · · → Pi → 0

where each Pi is a finitely generated projective R-module. Let P the full subcat-
egory of D consisting of complexes isomorphic to perfect complexes. These are
precisely the compact objects, also called small objects, in D.

These notes are an abstract of two lectures I gave at the workshop. The main
goal of the lectures was to present various proofs of a theorem of Hopkins [7] and
Neeman [8], Theorem 1 below, that classifies the thick subcategories of P , and to
discuss results from [5], which is inspired by this circle of ideas.

As usual Spec R denotes the set of prime ideals in R with the Zariski topology;
thus, the closed subsets are precisely the subsets Var(I) = {p ⊇ I |p ∈ Spec R},
where I is an ideal in R. A subset V of Spec R is specialization closed if it is a
(possibly infinite) union of closed subsets; in other words, if p and q are prime
ideals such that p is in V and q ⊇ p, then q is in V .

For a prime ideal p, we write k(p) for Rp/pRp, the residue field of R at p. The
support of a complex of R-modules M is the set of prime ideals

SuppR M = {p ∈ Spec R |k(p)⊗L

RM 6≃ 0}

In the literature, this is sometimes referred to as the homological support, while
the word ‘support’ refers to the set of primes p such that Mp 6≃ 0; this latter
set contains SuppR M , but is typically larger. They coincide when the R-module
H(M) is finitely generated, in which case SuppR M is a closed subset of Spec R.

With this notation, the theorem of Hopkins and Neeman is as follows.

Theorem 1. There is a bijection of sets
{

Thick subcategories

of P

}
S

//

T

oo

{
Specialization closed

subsets of Spec R

}

where the maps in question are

S(T ) =
⋃

M∈T

SuppR M and T(V ) = {M | SuppR M ⊆ V }

Proof. Note that both S and T are inclusion reversing.
It is easy to prove ST(V ) = V when V ⊆ Spec R is specialization closed.
Indeed, it is clear from definitions that ST(V ) ⊆ V . Conversely, given p in

V , pick a set {x1, . . . , xn} which generates the ideal p, and let K be the Koszul
complex on x. It is readily verified that SuppR K = Var(x) = Var(p) ⊆ V , so K
is in T(V ), and hence p ∈ Var(p) = SuppR K ⊆ ST(V ). Therefore, V ⊆ ST(V ).

Let T be a thick subcategory of P . Evidently T ⊆ TS(T ), so it remains to
verify the reverse inclusion.
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Suppose M is in TS(T ), so that SuppR M ⊆ S(T ). Since the R-module H(M) is
finitely generated, SuppR M is a closed subset of Spec R, and hence it has finitely
many minimal primes. Therefore, there exist complex N1, . . . , Ns in T such that

SuppR M ⊆
s⋃

i=1

SuppR Ni = SuppR

( s⊕

i=1

Ni

)
.

It remains to invoke Theorem 2 below. �

In what follows, given complexes M and N in (some full subcategory) of D,
we say that N builds M , and write N =⇒ M if M is in the thick subcategory
generated by N ; when R needs to be specified, we write N =⇒

R
M .

Note that if N =⇒ M , then SuppR M ⊇ SuppR N .

Theorem 2. If M and N in P are such that SuppR M ⊆ SuppR N , then N =⇒
R

M .

There are (at least) three proofs of this theorem.

First proof of Theorem 2. This is due to Neeman. The basic idea is to classify
the localizing subcategories of D. These turn out to be in bijection with arbitrary
subsets of Spec R, see [8]. Hence, if SuppR M ⊆ SuppR N , then M is in the
localizing subcategory of D generated by N . Since M and N are both in P , they
are compact objects in D, so another result of Neeman’s [9, (2.2)], implies that M
is in fact in the thick subcategory generated by N . �

Second proof of Theorem 2. This is inspired by work of Dwyer and Greenlees [3].
Consider the DG algebra E = RHomR(N, N), the right E-module RHomR(N, M),
and the following natural morphism in D

θ : RHomR(N, M)⊗L

E N −→M .

The point is that one knows a posteriori that θ represents the natural morphism
RΓI(M)→ (M), where RΓI(M) is local cohomology with respect to the ideal I,
with SuppR N = Var(I). Thus, since SuppR M is contained in Var(I), it must be
that θ is an isomorphism. This can be proved directly, as follows:

An elementary calculation shows that the support of cone(θ) is a subset of
SuppR M ∪ SuppR N , and hence of SuppR N , by hypothesis. On the other hand,
RHomR(N, cone(θ)) ≃ 0, since RHomR(N, θ) is isomorphism, as can be easily
verified, keeping in mind that N is compact. Given this, it is not difficult to prove
that cone(θ) ≃ 0, so θ is an isomorphism.

Now, the R-algebra H(E) is noetherian, and H(RHomR(N, M)) is finitely gen-
erated over H(E), so in the derived category of right E-modules, one has that

RHomR(N, M) ≃ hocolim
n

Xn

where Xn is in the thick subcategory generated by E , that is to say, E =⇒
E

Xn.

Therefore, in D, one has isomorphisms

M ≃ RHomR(N, M)⊗L

E N ≃ hocolim
n

(
Xn ⊗L

E N
)
,



Mini-Workshop: Thick Subcategories - Classifications and Applications 37

where the first isomorphism is θ, and the second one is obtained by base change.
Since M is compact, a standard argument yields that M is a retract of Xn⊗L

E N ,
for some N . It remains to note that by base change

E =⇒
E

Xn implies N =⇒
R

Xn ⊗L

E N .

Therefore, M is in the thick subcategory generated by N , as desired. �

Third proof of Theorem 2. This proof is the original one, due to Hopkins [7], also
see [8], especially the discussion on the first page, and Thomason’s article [10].
The main step in it is the proof of the following ‘tensor-nilpotence’ theorem.

Theorem 3. Let α : X → Y be a morphism of perfect complexes. If for each p in
Spec R, one has H(k(p)⊗R α) = 0, then there exists an integer n ≥ 0 such that

αn = 0: X⊗n −→ Y ⊗n .

In my lectures, I discussed a proof of this result, and also Hopkins’ argument
for Theorem 2; see [7], [8], and [10]. �

Theorem 2 gives a new approach to some problems concerning descent of prop-
erties along a local homomorphism

ϕ : (Q, q, h) −→ (R, m, k) .

This notation means that Q and R are (commutative noetherian) local rings, with
maximal ideals q and m, residue fields h and k, and ϕ is a homomorphism of rings
with ϕ(q) ⊆ m. This is the context for the rest of this write-up.

It is a classical result, found already in Cartan and Eilenberg [2], that for any
R-module M , if flat dimQR and flat dimRM are both finite, then so is flat dimQM .
A complex over a ring is said to have finite flat dimension if it is isomorphic, in
the derived category of the ring, to a bounded complex of flat modules.

In [6], Foxby and I proved the following converse.

Theorem 4. Let M be a perfect complex of R-modules, with H(M) 6= 0.
If flat dimQM is finite, then flat dimQR is finite as well.

In [5], we use Theorem 2 to give a totally different proof of this result. The
argument requires the following basic facts.

(1) flat dimQR <∞ if and only if sup(h⊗L

QR) = sup{n |Hn(h⊗L

QR) 6= 0} <∞.

(2) The subcategory {X ∈ D(R) | sup(h⊗L

QX) <∞} of D(R) is thick.

(3) Let K be the Koszul complex on a finite set of elements in R and Y be a
complex of R-modules such that the R-module Hn(Y ) is finitely generated
for each n. If sup(Y ⊗Q K) is finite, then sup(Y ) is finite.

Indeed, when flat dimQR is finite, it is clear that sup(h⊗L

QR) is finite. The
converse is a result of André, and is proved by a standard argument: since h is the
only simple Q-module, induction on length yields that sup(L⊗L

QR) is finite for any
finite length Q-module L. This is the basis of an induction on the Krull dimension
of L that proves that sup(L⊗L

QR) is finite for any finitely generated Q-module L,
and hence that flat dimQR is finite. This justifies the first claim.



38 Oberwolfach Report 8/2006

The second claim is a straightforward verification. As to (3), the Koszul complex

on an element x of R is the mapping cone of the morphism R
x
−→ R, so one obtains

an exact sequence of complexes

0 −→ Y −→ Y ⊗Q K −→ ΣY −→ 0 .

The homology long exact sequence and Nakayama’s lemma imply that when
sup(Y ⊗Q K) is finite, so is sup(Y ), as desired. The general case is settled by
an induction on the number of elements, for the corresponding Koszul complex
can be realized as an iterated mapping cone.

Proof of Theorem 4. Let K be the Koszul complex on a finite set of generators for
m. Since m is the unique closed point of Spec R, and SuppR M is a closed subset
of Spec R, Theorem 2 implies that M =⇒ K. In view of (2) above, this explains
the third implication in the chain below:

flat dimQN <∞ =⇒ sup(h⊗L

QN) <∞

=⇒ sup((h⊗L

QR)⊗L

RN) <∞

=⇒ sup((h⊗L

QR)⊗L

RK) <∞

=⇒ sup(h⊗L

QR) <∞

=⇒ flat dimQR <∞ .

The first implication is clear, the second one is by the associativity of tensor
products, the fourth follows from (3) above applied with Y = h⊗L

QR, while the

fifth is by (1). This completes the proof of Theorem 4. �

The paradigm of the preceding proof, see [5, (5.2)], is applicable to other ho-
mological invariants as well, and yields new results in commutative algebra, some
of which are not, as yet, accessible by more ‘traditional’ methods.

Note that the argument above allows for a stronger conclusion: all one needs
is that the thick subcategory generated by N contains a, homologically non-zero,
small (i.e., compact) object; in other words, N is virtually small, in the terminology
of [5]. This notion was suggested to us by the work in [4].

Evidently, any small object is virtually small; in [5], we identify various other
classes of virtually small objects. One noteworthy result in this direction is:

Theorem 5. Let R be a complete intersection local ring. Any complex M of
R-modules with H(M) finitely generated, is virtually small.

Compare this to the result that when R is a regular local ring, any complex
M of R-modules with H(M) finitely generated is small. This is one direction of
a theorem of Auslander, Buchsbaum, and Serre; the other direction asserts the
converse. We expect that the converse to the theorem above also holds, see [5, §9].

The notion of a virtually small object carries over to any triangulated category,
and the work in [4, 5] makes it is clear that it would be worthwhile to investigate
such objects. It is also useful to quantify the process of building one object from
another. This is being investigated in [1], where it provides the technical tools to
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bring to light an unexpected relationship between perfect complexes over a local
ring and free summands of its conormal modules.
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On well generated triangulated categories

Bernhard Keller

(joint work with Marco Porta)

In his book [4], A. Neeman introduced the class of well generated triangulated
categories. He showed that this class has truly wonderful properties: It is stable
under localizations (we always assume the kernel of a localization to be generated
by a set of objects) and that the Brown representability theorem holds for each
well generated triangulated category. The following characterization is due to
H. Krause [2]: A triangulated category T is well generated iff it admits arbitrary
(set-indexed) coproducts and admits a good set G of generators, i.e. a set of objects
in T which is stable under shifts in both directions and such that

1) G generates, i.e. an object X of T vanishes iff we have Hom(G, X) = 0 for
each G in G;

2) there is a cardinal α such that each object G of G is α-small, i.e. for each
family (Xi)i∈I of objects of T , each morphism

G→
∐

i∈I

Xi

factors through a subsum
∐

i∈J Xi indexed by a subset J ⊂ I of cardinality
strictly less than α;
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3) if fi : Xi → Yi, i ∈ I, is a family of morphisms in T such that the induced
map

Hom(G, Xi)→ Hom(G, Yi)

is surjective for each G ∈ G and each i ∈ I, then the fi induce a surjection

Hom(G,
∐

i∈I

Xi)→ Hom(G,
∐

i∈I

Yi).

The category T is compactly generated if in 2), we can take α to be the cardinality of
the set of natural numbers. In this case, condition 2) implies 3). Examples of well-
generated categories abound: If X is a topological space, the (unbounded) derived
category D(Pre(X)) of presheaves of abelian groups on X is compactly generated,
hence well generated, and thus the derived categoryD(Sh(X)) of sheaves of abelian
groups on X is well generated, since it is a localization of the derived category
of presheaves. However, as shown in [3], the derived category of sheaves is not
compactly generated in general: If X is a connected, non compact real manifold
of dimension at least 1, all compact objects in D(Sh(X)) vanish. Similarly, if
A is an arbitrary Grothendieck category, using the Popescu-Gabriel theorem [5]
one can show that the (unbounded) derived category of A is well-generated since
it is the localization of the derived category of a category of modules. Another
large class of examples is constructed as follows: Let B be a small differential
graded (=dg) category. Thus, B is a category which is enriched over the category
C(Z) of complexes of abelian groups. A dg B-module is a dg functor M : Bop →
C(Z). The derived category DB, cf. e.g. [1], is the localization of the category of dg
modules at the class of (pointwise) quasi-isomorphisms. By Neeman’s theorem,
any localization DB/N , where N is a localizing subcategory generated by a set of
objects, is well generated.

These examples lead one to ask whether any well generated triangulated cat-
egory is a localization of a compactly generated category. We do not know the
answer in general but the following theorem shows that it is positive if T is an
algebraic triangulated category, i.e. if it is triangle equivalent to a full triangulated
subcategory of the category up to homotopy of complexes over some additive cat-
egory (this allows one to construct an enriched Hom-functor RHom).

Theorem 1. Let T be an algebraic triangulated category. The following are equiv-
alent:

(i) T is well generated;
(ii) T is triangle equivalent to a localization of the derived category DB of a

small dg category B.

Moreover, if these conditions hold and G is any generator of T , i.e. an object X
of T vanishes iff we have T (G, X [n]) = 0 for all n ∈ Z, then the functor

RHom(G, ?) : T → DB

is a localization, where B = RHom(G, G).

In the case where T is compactly generated, one actually obtains a triangle
equivalence T → DB (cf. theorem 4.3 of [1]). The theorem can be considered
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as an analogue of the Popescu-Gabriel theorem and then shows that among the
algebraic triangulated categories, the well generated ones are analogous to the
Grothendieck abelian categories.
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On the Gabriel-Popescu theorem

Wendy Lowen

An abelian category is called Grothendieck if it has a generator, arbitrary coprod-
ucts and exact filtered colimits. Let us start by stating the theorem in the title of
the talk.

Theorem 1. [5] Let C be a Grothendieck category with a generator U and put
A = C(U, U). The functors

i : C −→ Mod(A) : C 7−→ C(U, C)

and the unique colimit preserving functor

a : Mod(A) −→ C

extending the natural inclusion A −→ C (where A is considered as a one object
category) constitute a localization, i.e. i is fully faithful and its left adjoint a is
exact.

This theorem is reminiscent of a slightly older theorem of Giraud characterizing
internally the localizations of presheaf categories Pr(u) = Fun(uop, Set) (where u

is a small category). Girauds proof realizes a category C satisfying a certain list
of axioms as a category of sheaves Sh(u, T ) for a Grothendieck topology T on a
full generating subcategory u. In fact, Theorem 1 is a perfect additive analogue of
Girauds theorem. Here additive means that we replace the base category Set by
the category Ab of abelian groups, we consider additive categories a (i.e. enriched
in Ab), additive functor categories Mod(a) = Add(aop, Ab), additive topologies on
a, and additive sheaves. As is shown more generally in [1], there is a one-one
correspondence

{additive topologies on a} −→ {localizations of Mod(a)} : T 7−→ Sh(a, T )
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This raises the question, for a given Grothendieck category C, which representa-
tions of C as a category Sh(a, T ) can occur. We will now present a theorem which
characterizes those representations. We consider an additive functor a : a −→ C
from a small additive category to a Grothendieck category. We will call a collec-
tion of morphisms fi : Ai −→ A in a epimorphic if the induced

∐
i a(Ai) −→ a(A)

is an epimorphism in C.

Theorem 2. [2] Let a : a −→ C be as above. The following are equivalent:

(1) a induces a localization

i : C −→ Mod(a) : C 7−→ C(a(−), C)

(2) a satisfies the following conditions:
(G) a(a) generates C.
(F) for every morphism c : a(A) −→ a(A′) in C, there exists an epimor-

phic collection fi : Ai −→ A with ca(fi) = a(gi) for some gi.
(FF) for every f : A −→ A′ in a with a(f) = 0, there exists an epimorphic

collection fi : Ai −→ A with ffi = 0.
Moreover, if these conditions are satisfied, the epimorphic collections de-
fine an additive topology Tepi on a such that i factors over an equivalence
C ∼= Sh(a, Tepi).

From Theorem 2, one easily deduces the following characterization of the Yoneda
embedding:

Theorem 3. Let a : a −→ C be an additive functor from an additive category to
a Grothendieck category. The following are equivalent:

(1) a yields an equivalence Mod(a) ∼= C.
(2) a satisfies the conditions in Theorem 2 and Tepi is the trivial topology, i.e.

every covering subfunctor is representable.
(3) a is fully faithful and a(a) consists of finitely generated projective genera-

tors of C.

Our motivation for Theorem 2 comes from the fact that certain standard addi-
tive sheaf representations do not fit into the setting of Theorem 1, because the re-
striction of the left adjoint Mod(a) −→ Sh(a, T ) to a is not fully faithful, or, equiv-
alently, the representable functors in Mod(a) fail to be sheaves. A situation where
this occurs is the following. Let (X,O) be a ringed space and consider the cate-
gories Mod(O) of sheaves of O-modules and PMod(O) of presheaves of O-modules
on X . The localization i : Mod(O) −→ PMod(O) can be described in terms of
additive sheaves. Let a be the following additive category: Ob(a) = Open(X) and
a(U, V ) = O(U) if U ⊂ V and zero otherwise. There is a natural fuly faithful
a −→ PMod(O) : U 7−→ PU where PU is the presheaf extension by zero of OU .
This yields an equivalence of categories Mod(a) ∼= PMod(O). The additive topol-
ogy TX on a for which we obtain an equivalence Mod(O) ∼= Sh(a, TX) is inherited
directly from X : for U ⊂ V , put δU,V = 1 ∈ O(U) = a(U, V ). Then a covering of
U in a has to contain δUi,U for a covering Ui −→ U in X .
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The additive sheaf representation we just discussed is useful in the context of
deformations of ringed spaces. We will say a word about deformations of abelian
categories. Let k be a field and k[ǫ] the dual numbers.

Definition 1. [4] Let C be an abelian k-linear category. An infinitesimal abelian
deformation of C is an abelian k[ǫ]-linear category with an equivalence of categories
C ∼= Homk[ǫ](k,D), whereHomk[ǫ](k,D) is the category of k[ǫ]-linear functors from
the one object category k into D. In other words, it is the full k-linear subcategory
of D of objects anihilated by ǫ.

If A is a k-algebra and B an infinitesimal algebra deformation of A (i.e. we
have an isomorphism A ∼= k ⊗k[ǫ] B), then we naturally obtain that Mod(B) is an
abelian deformation of Mod(A). Moreover, with an appropriate notion of flatness,
we get a 1-1 correspondence between

• algebra deformations of A
• abelian deformations of Mod(A)

It is our intension to understand the deformations of other abelian categories, for
example to understand the deformations of Mod(O) in terms of certain algebraic
deformations of O.

To do so, we have a look at the module case first. If C is an abelian deformation
of Mod(A), there is a natural functor k⊗k[ǫ]− : C −→ Mod(A) along which we can
lift certain objects. Lifting of k-flat objects is governed by an obstruction theory
involving the second and first self-Ext groups. Since Ext2(A, A) = Ext1(A, A) = 0,
there is a unique (up to isomorphism) lift Ā of A, and Ā is shown to be a finitely
generated projective generator of C, whence C ∼= Mod(Ā).

When we start from a deformation of Mod(O), things are more complicated for
we have no control over Ext1,2(O,O). However, if we consider the stack Mod(O)
on X withMod(O)(U) = Mod(OU ), we do get a certain analogy with the module
case. Let Mod(k) be the stack of k-modules, with Mod(k)(U) = Mod(kU ) the
category of sheaves of k-modules on U . We get natural functors

Exti(OU ,−) : Mod(OU ) −→ Mod(kU )

where Exti(OU , M) is the sheafication of Exti(OU , M)(V ) = Exti(OV , M |V ).
Then we have that the OU are locally finitely generated projective, i.e Ext0(OU ,−)
preserves filtered colimits and Ext1(OU ,−) = 0.

Now let C(X) be a deformation of Mod(O). There are induced deformations
C(U) of Mod(O) constituting a stack C on X . We define a prestack Ō on X with

Ō(U) = {(flat) lifts of OU to C(U)}

We have the following

Theorem 4. [3] The map Ō −→ C yields an equivalence of stacks C ∼=Mod(Ō),
where Mod(Ō) = Hom(Ō,Mod(k[ǫ]) is the stack of morphisms of prestacks.

The proof of Theorem 4 is based upon a liftable characterization of “Yoneda”
morphisms A −→ C of prestacks yielding C ∼= Mod(A). This characterization is
twofold. First we need some assumptions on C: C has to be a stack of Grothendieck
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categories and the restrictions C(U) −→ C(V ) for V ⊂ U have to be exact with a
fully faithful right adjoint and an exact left adjoint. Next we need assumptions on
A −→ C. To formulate them we associate an additive category aU to A|U for every
U , in the same way that we associated a to O earlier on, and we consider the ad-
ditive topology TU on aU for which Mod(A|U ) ∼= Sh(aU , TU ). By the assumptions,
we get morphisms aU −→ C(U).

Theorem 5. [3] The following are equivalent:

(1) A −→ C yields C ∼=Mod(A).
(2) every aU −→ C(U) satisfies the conditions of Theorem 2 and Tepi = TU .
(3) (aU , TU ) −→ C(U) satisfies conditions (G), (F) and (FF) where in (F)

and (FF) we use TU -coverings instead of epimorphic collections, and the
objects of A are mapped to locally finitely generated projectives in C.

Clearly, Theorem 5 is a stack version of Theorem 3.
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A question arising from a theorem of Rosicky

Amnon Neeman

Let T be a triangulated category, and let S be a triangulated subcategory. For any
object t ∈ T the representable functor T(−, t) is a homological functor Top −→ Ab.
If we restrict to the subcategory S ⊂ T we obtain a homological functor S

op −→ Ab.
We will denote this functor T (−, t)|

S
. The first remarkable theorem, dealing with

a situation of this form, was a result due to Brown and Adams:

Theorem 1. Let T be the homotopy category of spectra, and let S ⊂ T be the
subcategory of finite spectra. Then the following three facts hold:

(i) Every homological functor H : Sop −→ Ab is isomorphic to T (−, t)|
S
, for

some object t ∈ T.
(ii) Every natural transformation T (−, t)|

S
−→ T (−, t′)|

S
is induced by some

morphism f : t −→ t′ in T.
(iii) If f : t −→ t′ is a morphism in T, and the natural transformation

T (−, f)|
S

: T (−, t)|
S
−−−−→ T (−, t′)|

S

is an isomorphism of functors on S, then f must be an isomorphism in T.
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Remark 1. The proof of Theorem 1(i), in the special case where H(s) is assumed
countable for any object s ∈ S, was due to Brown [6]. The general statement may
be found in Adams [1]. The theorem means that isomorphism classes of objects of
T may be identified with homological functors Sop −→ Ab. Given a homological
functor H : Sop −→ Ab, Theorem 1(i) tells us that exists an object t ∈ T and an
isomorphism

H(−) ∼= T (−, t)|
S

.

If t and t′ are two such objects, then we must have an isomorphism

T (−, t)|
S
−−−−→ T (−, t′)|

S
;

Theorem 1(ii) says it must be induced by a morphism f : t −→ t′, and Theo-
rem 1(iii) establishes that this morphism is an isomorphism.

It is natural to ask whether Theorem 1 generalizes to other pairs S ⊂ T. This
question was first asked in the case where T is a compactly generated triangulated
category and S = T

c is the subcategory of compact objects. The positive theorem
says

Theorem 2. Let T be a compactly generated triangulated category, and let S = Tc

be the subcategory of compact objects. Assume S is essentially countable; that is,
S is equivalent to a category S′ with countably many objects and morphisms. Then
the statements of Theorem 1(i), (ii) and (iii) are all true.

Remark 2. It should be noted that Theorem 1 is a special case of Theorem 2;
the homotopy category T of spectra is compactly generated, the subcategory S

of finite spectra is the category of compacts in T, and S is essentially countable.
Theorem 1 may be found in [8]. If S is not countable there are counterexamples.
The first example of a category in which Theorem 1(i) fails was found by Keller
and myself, and appears in [8]. The first example where Theorem 1(ii) fails is
due to Christensen, Keller and myself [7]. There is further work exploring this by
Beligiannis [2], and by Benson and Gnacadja [4, 5] and Benson [3].

In other words, by now we understand pretty well what happens when T is
compactly generated and S = Tc is the subcategory of compact objects. It is
natural to ask the question about other pairs S ⊂ T. Next we remind the reader
how the theory of well generated triangulated categories provides a whole slew
of such pairs. Let T be a triangulated category which contains arbitrary small
coproducts of its objects. Let α be any regular cardinal. Then there is a recipe to
produce a triangulated subcategory Tα ⊂ T. We recall:

Reminder 1. The category Tα ⊂ T is the largest triangulated subcategory S ⊂ T

such that, if s is an object of S and

f : s −−−−→
∐

λ∈Λ

tλ

is any morphism, then there exist:

(i) A subset Λ′ ⊂ Λ of cardinality < α
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(ii) For any λ ∈ Λ′ there is an object sλ ∈ S and a morphism fλ : sλ −→ tλ.

All of this data must be such that the morphism f factors as

s −−−−→
∐

λ∈Λ′

sλ

‘

λ∈Λ
fλ

−−−−−−→
∐

λ∈Λ′

tλ ⊂
∐

λ∈Λ

tλ .

Note that the existence of a unique maximal S, which we call Tα, is a theorem. It
is also a theorem that the coproduct of < α objects of Tα lies in Tα. The proofs
of these facts may be found in [9].

We remind the reader also of one of the equivalent definitions of well generated
triangulated categories

Definition 1. Let T be a triangulated category closed under small coproducts.
Let α be a regular cardinal. The category T is α–compactly generated if

(i) Tα is essentially small.
(ii) Any non-zero object x ∈ T admits a non-zero map s −→ x, with s ∈ T

α.

The category T is well generated if it is α–compactly generated for some regular
cardinal α.

It is natural to ask if some version of Theorem 1 holds in this context. That
is assume T is α–compactly generated, and let S = Tα. Do the conclusions of
Theorem 1 hold for this pair S ⊂ T?

To have a chance we must modify Theorem 1 a little bit. If t is any object of
T, then T (−, t)|

S
is not just any homological functor Sop −→ Ab. We know that

S = Tα is closed under the formation of coproducts of < α objects, and the functor
T (−, t)|

S
must respect these products. We therefore make a definition.

Definition 2. Let (T, α) be a pair consisting of a triangulated category T and a
regular cardinal α. Put S = Tα. We call (T, α) a Brown–Adams pair provided

(i) T is α–compactly generated.
(ii) If H : Sop −→ Ab is a homological functor, and H

(∐
λ∈Λ sλ

)
=

∏
λ∈Λ H(sλ)

for all coproducts of < α objects of S, then H is isomorphic to T (−, t)|
S

for
some t ∈ T.

(iii) Every natural transformation T (−, t)|
S
−→ T (−, t′)|

S
is induced by some

morphism f : t −→ t′ in T.

For the purpose of comparing with Theorem 1 note that, if f : t −→ t′ is a mor-
phism in T and T (−, f)|

S
is an isomorphism, then the fact that T is α–compactly

generated allows one to prove quite easily that f must be an isomorphism.

There is a recent preprint by Rosicky proving the following. Let M be a cofi-
brantly generated, locally presentable model category, and let T be its stable ho-
motopy category. Then for arbitrarily large cardinals α the pair (T, α) is Brown–
Adams. The question I want to ask is

Problem 1. Let T be a well generated triangulated category. Is it true that there
are arbitrarily large cardinals α for which (T, α) is a Brown–Adams pair? Can one
say more about the permissible α’s?
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Remark 3. Suppose M is a cofibrantly generated, locally presentable model cat-
egory and T is its stable homotopy category. Rosicky’s theorem tells us that there
exist regular cardinals α for which T is α–compactly generated; hence T is well
generated. From Keller’s talk at this workshop we know that if T is algebraic and
well generated, then it is the stable homotopy category of a cofibrantly generated,
locally presentable model category M. If T is algebraic, being well generated is
therefore equivalent to having a cofibrantly generated, locally presentable model.
When T is algebraic the answer part (i) of Problem 1 is Yes, by Rosicky’s theorem.
It would be interesting to have a proof which does not appeal to models.
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