Cluster tilting in 2-Calabi-Yau categories II OSAMU IYAMA

This is the second part in a series of two lectures with Idun Reiten. We shall show that cluster tilting mutation is compatible with quiver mutation and QP mutation. Throughout let K be an algebraically closed field, and let \mathcal{C} be a Homfinite 2-Calabi-Yau triangulated category over K with the suspension functor Σ . Let T be a basic cluster tilting object in \mathcal{C} with an indecomposable decomposition $T = T_1 \oplus \cdots \oplus T_n$, and let $1 \leq k \leq n$. The following result [BMRRT, IY] is fundamental.

Theorem 1 (cluster tilting mutation)

- (a) There exists a unique indecomposable object $T_k^* \in \mathcal{C}$ such that $T_k^* \not\simeq T_k$ and $\mu_k(T) := (T/T_k) \oplus T_k^*$ is a basic cluster tilting object in \mathcal{C} .
- (b) There exist triangles (called exchange sequences)

$$T_k^* \xrightarrow{g} U_k \xrightarrow{J} T_k \to \Sigma T_k^* \text{ and } T_k \xrightarrow{g} U_k' \xrightarrow{J} T_k^* \to \Sigma T_k$$

such that f and f' are right $\operatorname{add}(T/T_k)$ -approximations and g and g' are left $\operatorname{add}(T/T_k)$ -approximations.

Clearly we have $\mu_k \circ \mu_k(T) \simeq T$.

Example 2 Let C be a cluster category of type A_3 .

Following [FZ], we introduce mutation of quivers.

Definition 3 (quiver mutation) Let Q be a quiver¹ without loops. Assume that $k \in Q_0$ is not contained in 2-cycles. Define a quiver $\tilde{\mu}_k(Q)$ by applying the following (i)-(iii) to Q.

- (i) For each pair (a, b) of arrows in Q with e(a) = k = s(b), add a new arrow $[ab] : s(a) \to e(b)$.
- (ii) Replace each arrow $a \in Q_1$ with e(a) = k by a new arrow $a^* : k \to s(a)$.
- (iii) Replace each arrow $b \in Q_1$ with s(b) = k by a new arrow $b^* : e(b) \to k$.

Define a quiver $\mu_k(Q)$ by applying the following (iv) to $\tilde{\mu}_k(Q)$.

(iv) Remove a maximal disjoint collection of 2-cycles.

¹We use the convention $a: s(a) \to e(a)$ for each $a \in Q_1$.

Then $\mu_k(Q)$ has no loops, k is not contained in 2-cycles in $\mu_k(Q)$, and $\mu_k \circ \mu_k(Q) \simeq Q$ holds.

Example 4 For the following quiver Q of type A_3 , we calculate $\mu_1(Q)$, $\mu_2(Q)$ and $\mu_2 \circ \mu_2(Q)$. (For simplicity we denote a^{**} and b^{**} by a and b respectively.)

$$Q = \begin{pmatrix} 1 \xrightarrow{a} 2 \xrightarrow{b} 3 \\ \downarrow^{\mu_2} \end{pmatrix} \xrightarrow{\mu_1} \begin{pmatrix} 1 \xrightarrow{a^*} 2 \xrightarrow{b} 3 \\ \downarrow^{\mu_2} \end{pmatrix} \begin{pmatrix} [b^*a^*] \\ 1 \xrightarrow{a^*} 2 \xrightarrow{b^*} 3 \\ \downarrow^{[ab]} \end{pmatrix} \xrightarrow{\tilde{\mu}_2} \begin{pmatrix} [b^*a^*] \\ 1 \xrightarrow{a^*} 2 \xrightarrow{b^*} 3 \\ \downarrow^{[ab]} \end{pmatrix} \xrightarrow{\mu_1} \begin{pmatrix} 1 \xrightarrow{a^*} 2 \xrightarrow{b^*} 3 \\ \downarrow^{[ab]} \end{pmatrix} \xrightarrow{\mu_2} \begin{pmatrix} [b^*a^*] \\ 1 \xrightarrow{a^*} 2 \xrightarrow{b^*} 3 \\ \downarrow^{[ab]} \end{pmatrix}$$

From now on, we assume that \mathcal{C} has a *cluster structure* [BIRSc]. This means that the quiver Q_T of the endomorphism algebra $\operatorname{End}_{\mathcal{C}}(T)$ of any cluster tilting object T in Q has no loops and 2-cycles. In this case we have the following.

Observation 5 Combining the exchange sequences in Theorem 1, we have a $\operatorname{complex}^2$

$$T_k \xrightarrow{g'} U'_k \xrightarrow{f'g} U_k \xrightarrow{f} T_k$$

such that the following sequences are exact for the Jacobson radical $J_{\mathcal{C}}$ of \mathcal{C} .

$$(T, U'_k) \xrightarrow{f'g} (T, U_k) \xrightarrow{f} J_{\mathcal{C}}(T, T_k) \to 0,$$
$$(U_k, T) \xrightarrow{f'g} (U'_k, T) \xrightarrow{g'} J_{\mathcal{C}}(T_k, T) \to 0.$$

Thus the quiver and relations of $\operatorname{End}_{\mathcal{C}}(T)$ can be controlled by exchange sequences.

Using Observation 5, we have the following result [BMR, BIRSc] which asserts that cluster tilting mutation is compatible with quiver mutation.

Theorem 6 $Q_{\mu_k(T)} \simeq \mu_k(Q_T)$.

Using Theorem 6, we can show the following result [BIRSm].

Corollary 7 Cluster tilted algebras are determined by their quivers.

Following [DWZ], we introduce quivers with potentials.

Definition 8 Let Q be a quiver. We denote by A_i the K-vector space with the basis consisting of paths of length i, and by $A_{i,cyc}$ the subspace of A_i spanned by all cycles. We denote by $\widehat{KQ} := \prod_{i\geq 0} A_i$ the complete path algebra. Its Jacobson radical is given by $J_{\widehat{KQ}} = \prod_{i\geq 1} A_i$.

A quiver with a potential (or QP) is a pair (Q, W) consisting of a quiver Q without loops and an element $W \in \prod_{i\geq 1} A_{i,\text{cyc}}$ (called a *potential*). It is called reduced if $W \in \prod_{i\geq 3} A_{i,\text{cyc}}$. Define $\partial_a W \in \widehat{KQ}$ by

$$\partial_a(a_1\cdots a_\ell) := \sum_{a_i=a} a_{i+1}\cdots a_\ell a_1\cdots a_{i-1}$$

 $^{^{2}}$ Such a complex is called a 2-almost split sequence in [I] and an AR 4-angle in [IY].

and extend linearly and continuously. The Jacobian algebra is defined by

$$\mathcal{P}(Q,W) := \widehat{KQ} / \overline{\langle \partial_a W \mid a \in Q_1}$$

where \overline{I} is the closure of I with respect to the $(J_{\widehat{KQ}})$ -adic topology on \widehat{KQ} .

Two potentials W and W' are called *cyclically equivalent* if $W-W' \in \overline{[KQ, KQ]}$. Two QP's (Q, W) and (Q', W') are called *right-equivalent* if $Q_0 = Q'_0$ and there exists a continuous K-algebra isomorphism $\phi : \widehat{KQ} \to \widehat{KQ'}$ such that $\phi|_{Q_0} = \mathrm{id}$ and $\phi(W)$ and W' are cyclically equivalent. In this case ϕ induces an isomorphism $\mathcal{P}(Q, W) \simeq \mathcal{P}(Q', W')$.

It was shown in [DWZ] that for any QP (Q, W), there exists a reduced QP (Q', W') such that $\mathcal{P}(Q, W) \simeq \mathcal{P}(Q', W')$, and such (Q', W') is uniquely determined up to right-equivalence. We call (Q', W') a reduced part of (Q, W).

Example 9 Let (Q, W) be the QP below. Its reduced part is given by the QP (Q', W') below.

$$(Q,W) = \left(\begin{array}{c} 1 \xrightarrow{a} 2 \xrightarrow{b} 3 \\ c \end{array}\right)^{a}, cd + abd \left(\begin{array}{c} Q',W' \right) = \left(\begin{array}{c} 1 \xrightarrow{a} 2 \xrightarrow{b} 3 \\ c \end{array}\right)^{a}, 0$$

Definition 10 (*QP mutation*) Let (Q, W) be a QP. Assume that $k \in Q_0$ is not contained in 2-cycles. Replacing W by a cyclically equivalent potential, we assume that no cycles in W start at k. Define a QP $\tilde{\mu}_k(Q, P) := (\tilde{\mu}_k(Q), [W] + \Delta)$ as follows:

- $\tilde{\mu}_k(Q)$ is given in Definition 3.
- [W] is obtained by substituting [ab] for each factor ab in W with e(a) = k = s(b).
- $\Delta := \sum_{a,b \in Q_1, e(a)=k=s(b)} a^*[ab]b^*.$

Define a QP $\mu_k(Q, P)$ as a reduced part of $\widetilde{\mu}_k(Q, P)$.

Then k is not contained in 2-cycles in $\mu_k(Q, W)$, and it was shown in [DWZ] that $\mu_k \circ \mu_k(Q, W)$ is right-equivalent to (Q, W).

Example 11 For a QP (Q, W) below, we calculate $\mu_2(Q, W)$ and $\mu_2 \circ \mu_2(Q, W)$. (The reduced part of $\tilde{\mu}_2 \circ \mu_2(Q, W)$ was calculated in Example 9.)

$$(Q,W) = \left(\begin{array}{ccc} 1 \xrightarrow{a} 2 \xrightarrow{b} 3 , 0\end{array}\right) \xrightarrow{\mu_2} \left(\begin{array}{ccc} 1 \xrightarrow{a^*} 2 \xrightarrow{b^*} 3 , a^*[ab]b^*\right)$$

$$\xrightarrow{\tilde{\mu}_2} \left(\begin{array}{ccc} 1 \xrightarrow{a} 2 \xrightarrow{b} 3 \\ 1 \xrightarrow{a} 2 \xrightarrow{b} 3 \end{array}, [ab][b^*a^*] + b[b^*a^*]a\right) \xrightarrow{\text{reduced}} \left(\begin{array}{ccc} 1 \xrightarrow{a} 2 \xrightarrow{b} 3 \\ 1 \xrightarrow{a} 2 \xrightarrow{b} 3 \end{array}, 0\right)$$

Using Observation 5, we have the following result [BIRSm] which asserts that cluster tilting mutation is compatible with QP mutation.

Theorem 12 If $\operatorname{End}_{\mathcal{C}}(T) \simeq \mathcal{P}(Q, W)$, then $\operatorname{End}_{\mathcal{C}}(\mu_k(T)) \simeq \mathcal{P}(\mu_k(Q, W))$.

Immediately we have the following conclusion.

Corollary 13 If $\operatorname{End}_{\mathcal{C}}(T)$ is a Jacobian algebra of a QP, then so is $\operatorname{End}_{\mathcal{C}}(T')$ for any cluster tilting object $T' \in \mathcal{C}$ reachable from T by successive mutation.

We have the following applications [BIRSm] of Corollary 13 (see also [K]).

Example 14 (a) Cluster tilted algebras are Jacobian algebras of QP's.

(b) Let Λ be a preprojective algebra and W the corresponding Coxeter group. For any $w \in W$, we have a 2-CY triangulated category $\mathcal{C} := \underline{\operatorname{Sub}}\Lambda_w$ [BIRSc]. For any cluster tilting object $T \in \mathcal{C}$ reachable from a cluster tilting object given by a reduced expression of w by successive mutation, $\operatorname{End}_{\mathcal{C}}(T)$ is a Jacobian algebra of a QP.

We end this report by the following *nearly Morita equivalence* for Jacobian algebras [BMR2, BIRSm], where f.l. is the category of modules with finite length.

Theorem 15 For a QP(Q, W), we have an equivalence

f.l. $\mathcal{P}(Q, W)$ / add $S_k \simeq$ f.l. $\mathcal{P}(\mu_k(Q, W))$ / add S'_k ,

where S_k and S'_k are simple modules associated with the vertex k.

References

- [BIRSc] A. Buan, O. Iyama, I. Reiten, J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups, arXiv:math/0701557.
- [BIRSm] A. Buan, O. Iyama, I. Reiten, D. Smith, Mutation of cluster tilting object and quiver with potentials, in preparation.
- [BMR] A. Buan, R. Marsh, I. Reiten, Cluster mutation via quiver representations, Comment. Math. Helv. 83 (2008), no. 1, 143–177.
- [BMR2] A. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323–332.
- [BMRRT] A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572–618
- [DWZ] H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potentials and their representations *I: Mutations*, arXiv:0704.0649.
 [E7] S. Fernin A. Zelevinsky, Cluster electron, I. Ferning, J. Amer. Math. Soc. 15 (2002)
- [FZ] S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497–529.
- O. Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), no. 1, 22–50.
- [IY] O. Iyama, Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, to appear in Invent. Math., arXiv:math/0607736.
- [K] B. Keller, in preparation.