Cluster tilting in 2-Calabi-Yau categories II
 Osamu Iyama

This is the second part in a series of two lectures with Idun Reiten. We shall show that cluster tilting mutation is compatible with quiver mutation and QP mutation. Throughout let K be an algebraically closed field, and let \mathcal{C} be a Homfinite 2-Calabi-Yau triangulated category over K with the suspension functor Σ. Let T be a basic cluster tilting object in \mathcal{C} with an indecomposable decomposition $T=T_{1} \oplus \cdots \oplus T_{n}$, and let $1 \leq k \leq n$. The following result [BMRRT, IY] is fundamental.

Theorem 1 (cluster tilting mutation)
(a) There exists a unique indecomposable object $T_{k}^{*} \in \mathcal{C}$ such that $T_{k}^{*} \not 千 T_{k}$ and $\mu_{k}(T):=\left(T / T_{k}\right) \oplus T_{k}^{*}$ is a basic cluster tilting object in \mathcal{C}.
(b) There exist triangles (called exchange sequences)

$$
T_{k}^{*} \xrightarrow{g} U_{k} \xrightarrow{f} T_{k} \rightarrow \Sigma T_{k}^{*} \quad \text { and } \quad T_{k} \xrightarrow{g^{\prime}} U_{k}^{\prime} \xrightarrow{f^{\prime}} T_{k}^{*} \rightarrow \Sigma T_{k}
$$

such that f and f^{\prime} are right $\operatorname{add}\left(T / T_{k}\right)$-approximations and g and g^{\prime} are left $\operatorname{add}\left(T / T_{k}\right)$-approximations.
Clearly we have $\mu_{k} \circ \mu_{k}(T) \simeq T$.
Example 2 Let \mathcal{C} be a cluster category of type A_{3}.

Following [FZ], we introduce mutation of quivers.
Definition 3 (quiver mutation) Let Q be a quiver ${ }^{1}$ without loops. Assume that $k \in Q_{0}$ is not contained in 2 -cycles. Define a quiver $\widetilde{\mu}_{k}(Q)$ by applying the following (i)-(iii) to Q.
(i) For each pair (a, b) of arrows in Q with $e(a)=k=s(b)$, add a new arrow $[a b]: s(a) \rightarrow e(b)$.
(ii) Replace each arrow $a \in Q_{1}$ with $e(a)=k$ by a new arrow $a^{*}: k \rightarrow s(a)$.
(iii) Replace each arrow $b \in Q_{1}$ with $s(b)=k$ by a new arrow $b^{*}: e(b) \rightarrow k$.

Define a quiver $\mu_{k}(Q)$ by applying the following (iv) to $\widetilde{\mu}_{k}(Q)$.
(iv) Remove a maximal disjoint collection of 2-cycles.

[^0]Then $\mu_{k}(Q)$ has no loops, k is not contained in 2-cycles in $\mu_{k}(Q)$, and $\mu_{k} \circ \mu_{k}(Q) \simeq$ Q holds.
Example 4 For the following quiver Q of type A_{3}, we calculate $\mu_{1}(Q), \mu_{2}(Q)$ and $\mu_{2} \circ \mu_{2}(Q)$. (For simplicity we denote $a^{* *}$ and $b^{* *}$ by a and b respectively.)

$$
\begin{aligned}
& Q=(1 \xrightarrow{a} 2 \xrightarrow{b} 3) \xrightarrow{\mu_{1}}\left(1 \stackrel{a^{*}}{\leftarrow} 2 \xrightarrow{b} 3\right) \\
& \downarrow^{\mu_{2}}
\end{aligned}
$$

From now on, we assume that \mathcal{C} has a cluster structure [BIRSc]. This means that the quiver Q_{T} of the endomorphism algebra $\operatorname{End}_{\mathcal{C}}(T)$ of any cluster tilting object T in Q has no loops and 2-cycles. In this case we have the following.

Observation 5 Combining the exchange sequences in Theorem 1, we have a complex ${ }^{2}$

$$
T_{k} \xrightarrow{g^{\prime}} U_{k}^{\prime} \xrightarrow{f^{\prime} g} U_{k} \xrightarrow{f} T_{k}
$$

such that the following sequences are exact for the Jacobson radical $J_{\mathcal{C}}$ of \mathcal{C}.

$$
\begin{aligned}
& \left(T, U_{k}^{\prime}\right) \xrightarrow{f^{\prime} g}\left(T, U_{k}\right) \xrightarrow{f} J_{\mathcal{C}}\left(T, T_{k}\right) \rightarrow 0, \\
& \left(U_{k}, T\right) \xrightarrow{f^{\prime} g}\left(U_{k}^{\prime}, T\right) \xrightarrow{g^{\prime}} J_{\mathcal{C}}\left(T_{k}, T\right) \rightarrow 0 .
\end{aligned}
$$

Thus the quiver and relations of $\operatorname{End}_{\mathcal{C}}(T)$ can be controlled by exchange sequences.
Using Observation 5, we have the following result [BMR, BIRSc] which asserts that cluster tilting mutation is compatible with quiver mutation.
Theorem $6 Q_{\mu_{k}(T)} \simeq \mu_{k}\left(Q_{T}\right)$.
Using Theorem 6, we can show the following result [BIRSm].
Corollary 7 Cluster tilted algebras are determined by their quivers.
Following [DWZ], we introduce quivers with potentials.
Definition 8 Let Q be a quiver. We denote by A_{i} the K-vector space with the basis consisting of paths of length i, and by $A_{i, \text { cyc }}$ the subspace of A_{i} spanned by all cycles. We denote by $\widehat{K Q}:=\prod_{i \geq 0} A_{i}$ the complete path algebra. Its Jacobson radical is given by $J_{\widehat{K Q}}=\prod_{i \geq 1} A_{i}$.

A quiver with a potential (or $Q P$) is a pair (Q, W) consisting of a quiver Q without loops and an element $W \in \prod_{i \geq 1} A_{i, \text { cyc }}$ (called a potential). It is called reduced if $W \in \prod_{i \geq 3} A_{i, \text { cyc }}$. Define $\partial_{a} W \in \widehat{K Q}$ by

$$
\partial_{a}\left(a_{1} \cdots a_{\ell}\right):=\sum_{a_{i}=a} a_{i+1} \cdots a_{\ell} a_{1} \cdots a_{i-1}
$$

[^1]and extend linearly and continuously. The Jacobian algebra is defined by
$$
\mathcal{P}(Q, W):=\widehat{K Q} / \overline{\left\langle\partial_{a} W \mid a \in Q_{1}\right\rangle}
$$
where \bar{I} is the closure of I with respect to the $\left(J_{\widehat{K Q}}\right)$-adic topology on $\widehat{K Q}$.
Two potentials W and W^{\prime} are called cyclically equivalent if $W-W^{\prime} \in \overline{[K Q, K Q]}$. Two QP's (Q, W) and $\left(Q^{\prime}, W^{\prime}\right)$ are called right-equivalent if $Q_{0}=Q_{0}^{\prime}$ and there exists a continuous K-algebra isomorphism $\phi: \widehat{K Q} \rightarrow \widehat{K Q^{\prime}}$ such that $\left.\phi\right|_{Q_{0}}=$ id and $\phi(W)$ and W^{\prime} are cyclically equivalent. In this case ϕ induces an isomorphism $\mathcal{P}(Q, W) \simeq \mathcal{P}\left(Q^{\prime}, W^{\prime}\right)$.

It was shown in [DWZ] that for any QP (Q, W), there exists a reduced QP ($\left.Q^{\prime}, W^{\prime}\right)$ such that $\mathcal{P}(Q, W) \simeq \mathcal{P}\left(Q^{\prime}, W^{\prime}\right)$, and such $\left(Q^{\prime}, W^{\prime}\right)$ is uniquely determined up to right-equivalence. We call $\left(Q^{\prime}, W^{\prime}\right)$ a reduced part of (Q, W).
Example 9 Let (Q, W) be the QP below. Its reduced part is given by the QP $\left(Q^{\prime}, W^{\prime}\right)$ below.

Definition 10 ($Q P$ mutation) Let (Q, W) be a QP. Assume that $k \in Q_{0}$ is not contained in 2 -cycles. Replacing W by a cyclically equivalent potential, we assume that no cycles in W start at k. Define a QP $\widetilde{\mu}_{k}(Q, P):=\left(\widetilde{\mu}_{k}(Q),[W]+\Delta\right)$ as follows:

- $\widetilde{\mu}_{k}(Q)$ is given in Definition 3.
- $[W]$ is obtained by substituting $[a b]$ for each factor $a b$ in W with $e(a)=$ $k=s(b)$.
- $\Delta:=\sum_{a, b \in Q_{1}, e(a)=k=s(b)} a^{*}[a b] b^{*}$.

Define a QP $\mu_{k}(Q, P)$ as a reduced part of $\widetilde{\mu}_{k}(Q, P)$.
Then k is not contained in 2-cycles in $\mu_{k}(Q, W)$, and it was shown in [DWZ] that $\mu_{k} \circ \mu_{k}(Q, W)$ is right-equivalent to (Q, W).
Example 11 For a QP (Q, W) below, we calculate $\mu_{2}(Q, W)$ and $\mu_{2} \circ \mu_{2}(Q, W)$. (The reduced part of $\widetilde{\mu}_{2} \circ \mu_{2}(Q, W)$ was calculated in Example 9.)

$$
\begin{aligned}
& (Q, W)=(1 \xrightarrow{a} 2 \xrightarrow{b} 3,0) \quad \xrightarrow{\mu_{2}} \quad(1 \underbrace{\left.\stackrel{a^{*}}{\leftarrow} 2 a b\right]} \stackrel{b}{*}_{*}^{\sim} 3, a^{*}[a b] b^{*}) \\
& \xrightarrow{\widetilde{\mu}_{2}}(1 \xrightarrow[{\xrightarrow{\overbrace{a}} 2 \xrightarrow{[a b]}}]{\stackrel{\left[b^{*} a^{*}\right]}{b}},[a b]\left[b^{*} a^{*}\right]+b\left[b^{*} a^{*}\right] a) \quad \xrightarrow{\text { reduced }} \quad(1 \xrightarrow{a} 2 \xrightarrow{b} 3,0)
\end{aligned}
$$

Using Observation 5, we have the following result [BIRSm] which asserts that cluster tilting mutation is compatible with QP mutation.
Theorem 12 If $\operatorname{End}_{\mathcal{C}}(T) \simeq \mathcal{P}(Q, W)$, then $\operatorname{End}_{\mathcal{C}}\left(\mu_{k}(T)\right) \simeq \mathcal{P}\left(\mu_{k}(Q, W)\right)$.
Immediately we have the following conclusion.
Corollary 13 If $\operatorname{End}_{\mathcal{C}}(T)$ is a Jacobian algebra of a $Q P$, then so is $\operatorname{End}_{\mathcal{C}}\left(T^{\prime}\right)$ for any cluster tilting object $T^{\prime} \in \mathcal{C}$ reachable from T by successive mutation.

We have the following applications [BIRSm] of Corollary 13 (see also [K]).
Example 14 (a) Cluster tilted algebras are Jacobian algebras of QP's.
(b) Let Λ be a preprojective algebra and W the corresponding Coxeter group. For any $w \in W$, we have a 2 -CY triangulated category $\mathcal{C}:=\underline{\operatorname{Sub}} \Lambda_{w}$ [BIRSc]. For any cluster tilting object $T \in \mathcal{C}$ reachable from a cluster tilting object given by a reduced expression of w by successive mutation, $\operatorname{End}_{\mathcal{C}}(T)$ is a Jacobian algebra of a QP.

We end this report by the following nearly Morita equivalence for Jacobian algebras [BMR2, BIRSm], where f.l. is the category of modules with finite length.
Theorem 15 For a $Q P(Q, W)$, we have an equivalence

$$
\text { f.l. } \mathcal{P}(Q, W) / \operatorname{add} S_{k} \simeq \text { f.l. } \mathcal{P}\left(\mu_{k}(Q, W)\right) / \operatorname{add} S_{k}^{\prime}
$$

where S_{k} and S_{k}^{\prime} are simple modules associated with the vertex k.

References

[BIRSc] A. Buan, O. Iyama, I. Reiten, J. Scott, Cluster structures for 2-Calabi-Yau categories and unipotent groups, arXiv:math/0701557.
[BIRSm] A. Buan, O. Iyama, I. Reiten, D. Smith, Mutation of cluster tilting object and quiver with potentials, in preparation.
[BMR] A. Buan, R. Marsh, I. Reiten, Cluster mutation via quiver representations, Comment. Math. Helv. 83 (2008), no. 1, 143-177.
[BMR2] A. Buan, R. Marsh, I. Reiten, Cluster-tilted algebras, Trans. Amer. Math. Soc. 359 (2007), no. 1, 323-332.
[BMRRT] A. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572-618
[DWZ] H. Derksen, J. Weyman, A. Zelevinsky, Quivers with potentials and their representations I: Mutations, arXiv:0704.0649.
[FZ] S. Fomin, A. Zelevinsky, Cluster algebras. I. Foundations, J. Amer. Math. Soc. 15 (2002), no. 2, 497-529.
[I] O. Iyama, Higher-dimensional Auslander-Reiten theory on maximal orthogonal subcategories, Adv. Math. 210 (2007), no. 1, 22-50.
[IY] O. Iyama, Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, to appear in Invent. Math., arXiv:math/0607736.
[K] B. Keller, in preparation.

[^0]: ${ }^{1}$ We use the convention $a: s(a) \rightarrow e(a)$ for each $a \in Q_{1}$.

[^1]: ${ }^{2}$ Such a complex is called a 2-almost split sequence in [I] and an $A R$ 4-angle in [IY].

