Hideyuki ISHI

Graduate School of Mathematics,
Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 454-8602,



  1. An explicit description of positive Riesz distributions on homogeneous cones, Proc. Japan Acad. 74 (1998), 132--134.
  2. Representations of the solvable group acting on a homogeneous Siegel domain, Proc. Japan Acad. 75 (1999), 118--121.
  3. Representations of the affine transformation groups acting simply transitively on Siegel domains, J. Funct. Anal. 167 (1999), 425--462.
  4. Positive Riesz distributions on homogeneous cones}, J. Math. Soc. Japan 52 (2000), 161--186.
  5. Basic relative invariants associated to homogeneous cones and applications, J. Lie Theory 11 (2001), 155--171.
  6. Determinant type differential operators on homogeneous Siegel domains, J. Funct. Anal. 183 (2001), 526--546.
  7. Decomposition of the $L^2$-function space on the Shilov boundary of a homogeneous Siegel domain, Sophia Kokyuroku in Mathematics 45 (2002), pp. 121--136.
  8. Unitarizability of holomorphically induced representations of a split solvable Lie group, in Proceedings of the ESI workshops 'Quantization and Analysis on Symmetric Spaces', pp. 96--100, 2005.
  9. The gradient maps associated to certain non-homogeneous cones, Proc. Japan Acad. 81 (2005), 44--46.
  10. Wavelet transforms for semidirect product groups with not necessarily commutative normal subgroups, J. Fourier Anal. Appl. 12 (2006), 37--52.
  11. On symplectic representations of normal $j$-algebras and their application to Xu's realizations of Siegel domains, Differential Geom. Appl. 24 (2006), 588--612.
  12. Matrix realizations of homogeneous Siegel domains, Proceedings of 'Workshop on Complex Geometry and Group Actions' pp. 79--85, 2007.
  13. (with T. Nomura) Tube domain and an orbit of a complex triangular group, Math. Z. 259 (2008), 697--711.
  14. (with T. Nomura) Irreducible homogeneous non-symmetric cones linearly isomorphic to the dual cones, in 'Contemporary geometry and topology and related topics', pp. 167--171, Cluj Univ. Press, 2008.
  15. A torus subgroup of the isotropy group of a bounded homogeneous domain, Manuscripta Math. 130 (2009), 353--358.
  16. (with T. Nomura) An irreducible homogeneous non-selfdual cone of arbitrary rank linearly isomorphic to the dual cone, in 'Infinite dimensional harmonic analysis IV', pp. 129--134, World Sci. Publ., 2009.
  17. (with C. Kai) The representative domains of a homogeneous bounded domain, Kyushu J. Math. 64 (2010), 35--47.
  18. Continuous wavelet transforms and non-commutative Fourier analysis, RIMS Kokyuroku Bessatsu B20 (2010), 173--185.
  19. (with S. Yamaji) Some estimates of the Bergman kernel of minimal bounded homogeneous domains, J. Lie Theory 21 (2011), 755--769.
  20. Unitary holomorphic multiplier representations over a homogeneous bounded domain, Adv. Pure Appl. Math. 2 (2011), no. 3-4, 405--419.
  21. Representation of clans and homogeneous cones, Vestnik Tambov University, 16 (2011), 1669--1675.
  22. (with A. J. Di Scala and A. Loi) Kaehler immersions of homogeneous Kaehler manifolds into complex space forms, Asian J. Math. 16 (2012), 479--488.
  23. The unitary representations parametrized by the Wallach set for a homogeneous bounded domain, Adv. Pure Appl. Math. 4 (2013), 93--102.
  24. On a class of homogeneous cones consisting of real symmetric matrices, Josai Mathematical Monograph 6 (2013), 71--80.
  25. (with P. Graczyk) Riesz measures and Wishart laws associated to quadratic maps, J. Math. Soc. Japan 66 (2014), 317--348.