TPPmark10

October 29, 2010

In this problem we consider games like tic-tac-toe or gomoku-narabe, but for simplicity we have only one dimension (all points are aligned).

1. Linear tic-tac-toe

In this game, we play on the integer line \mathbf{Z}. Two players, an attacker and a defender, take positions (integers) in turn. A position can be taken only once, and by one player. The attacker plays first. The attacker wins if she can take 3 consecutive positions (i.e. $x, x+1$, and $x+2$). The defender succeeds if she has a strategy such that the attacker can never win.
a. Prove that the defender has a succesful strategy.

2. Arithmetic tic-tac-toe

In this game, we play on the integer line \mathbf{Z}. Two players, an attacker and a defender, take positions (integers) in turn. A position can be taken only once, and by one player. The attacker plays first. The attacker wins if she can take n equidistant positions (i.e. $x, x+d, x+2 d, \ldots x+(n-1) d$ for some $d>0$). The defender succeeds if she has a strategy such that the attacker can never win.
a. Prove that for $n=3$ and $n=4$, an attacker can win against any defender.
b. Prove it also for $n=5$ (we conjecture this is true).
c. For $n>6$, try to provide a proof of whether the attacker or the defender have a successful strategy.

Note For arithmetic tic-tac-toe, you may use the rational line \mathbf{Q} instead of \mathbf{Z}. They are equivalent for finite games.

