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Structural polymorphism [FOOL02]

A typing framework for polymorphic variants and records

– faithful description of the core of OCaml

– polymorphism is described by local constraints

– constraints may be recursive;

they are kept in a recursive kinding environment

– constraints are abstract, and constraint domains with

their δ-rules can be defined independently

– the paper only proves completeness of unification;

it is assumed to be sufficient for inference
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What I have been doing

Proved type soundness in Coq.

– last year’s TPP

– proof is based on “Engineering formal metatheory”

Proved soundness and principality of type inference.

– extends the above proof of type soundness

– inference algorithm can be extracted and run as

ocaml code
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Synopsis

– Structural polymorphism

– Types and kinds

– Constraint domains

– Typing rules

– “Engineering formal metatheory”

– Type soundness

– Soundness and completeness of unification

– Soundness and principality of inference

– Using the algorithm.

– Concluding remarks



Jacques Garrigue — Type inference for structural polymorphism 4

Types and kinds

Types are mixed with kinds in a mutually recursive way.

T ::= α type variable
| u base type
| T → T function type

σ ::= T | ∀ᾱ.K . T polytypes
K ::= ∅ | K, α :: k kinding environment
k ::= • | (C;R) kind
R ::= {r(a, T ), . . .} relation set

Type judgments contain both a type and a kinding

environment. K;E ` e : T
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Example: polymorphic variants

Kinds have the form (L, U ;R), such that L ⊂ U .

Number(5) : α :: ({Number},L; {Number : int}) . α

l2 = [Number(5), Face(”King”)]
l2 : α :: ({Number , Face},L; {Number : int , Face : string}) . α list

length = function Nil() → 0 | Cons(a, l) → 1 + length l
length : α :: (∅, {Nil , Cons}; {Nil : unit , Cons : β × α}) . α → int

length ′ = function Nil() → 0 | Cons(l) → 1 + length l
length ′ : α :: (∅, {Nil , Cons}; {Nil : unit , Cons : α}) . α → int

f l = length l + length2 l
f : α :: (∅, {Nil , Cons}; {Nil : unit , Cons : β × α, Cons : α}) . α → int
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Constraint domain

A set of abstract constraints C with entailment |=

– ⊥ ∈ C such that ∀C.⊥ |= C and C |= ⊥ decidable

– |= reflexive and transitive

– for any C and C′, C ∧ C′ is the weakest constraint entailing both
C and C′

Observations C ` p(a) (a a symbol) compatible with entailment

Relating predicates r(a, T ) with propagation rules of the form:

∀x.(r(x, α1) ∧ r(x, α2) ∧ p(x) ⇒ α1 = α2)

Typed constants and δ-rules, which should satisfy subject reduction
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Admissible substitution

K ` θ : K′ (θ admissible), if for all α :: (C, R) in K, θ(α) is

a type variable α′ and it satisfies the following properties.

1. α′ :: (C′, R′) ∈ K′ keep kinding

2. C′ |= C entailment of constraints

3. θ(R) ⊆ R′ keep types

Every C in K′ shall be valid, and R satisfy propagation.
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Typing rules

Variable
K, K0 ` θ : K Dom(θ) ⊂ B

K;E, x : ∀B.K0 . T ` x : θ(T )

Abstraction
K;E, x : T ` e : T ′

K;E ` fun x → e : T → T ′

Application
K;E ` e1 : T → T ′ K;E ` e2 : T

K;E ` e1 e2 : T ′

Generalize
K;E ` e : T B ∩ FVK(E) = ∅
K|B;E ` e : ∀B.K|B . T

Let
K;E ` e1 : σ K;E, x : σ ` e2 : T

K;E ` let x = e1 in e2 : T

Constant
K0 ` θ : K Tconst(c) = K0 . T

K;E ` c : θ(T )
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Engineering formal metatheory [POPL08]

Aydemir, Charguéraud, Pierce, Weirich

Soundness for various type systems (F≤, ML, CoC)

Two main ideas to avoid renaming:

– Locally nameless definitions

Use de-bruijn indices inside terms and types,

but named variables for environments.

– Co-finite quantification

Allows reuse of derivations in different contexts.
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Typing rules (co-finite)

Variable
K, Kᾱ

0 ` θ : K Dom(θ) = ᾱ

K;E, x : K0 . T ` x : T θ(ᾱ)

Abstraction
∀x 6∈ L K;E, x : T ` ex : T ′

K;E ` λe : T → T ′

Application
K;E ` e1 : T → T ′ K;E ` e2 : T

K;E ` e1 e2 : T ′

Generalize
∀ᾱ 6∈ L K, Kᾱ

o ;E ` e : T ᾱ

K;E ` e : K0 . T

Let ∀x 6∈ L
K;E ` e1 : σ K;E, x : σ ` ex

2 : T

K;E ` let e1 in e2 : T

Constant
Kᾱ

0 ` θ : K Tconst(c) = K0 . T

K;E ` c : T θ(ᾱ)
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Equivalence of finite and co-finite quantif.

While the co-finite approach may not be very intuitive, it

is easy to see that one can build a finite derivation from

a co-finite one (you just have to pick variables)

The opposite tranformation requires renaming lemmas,

for terms and types. In “Engineering metatheory” it is

claimed that these lemmas can be built from the

substitution lemmas, but in this system there is still lots

of work to obtain them.
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Soundness results

Lemma preservation : forall K E t t’ T,
K ; E |= t ~: T ->
t --> t’ ->
K ; E |= t’ ~: T.

Lemma progress := forall K t T,
K ; empty |= t ~: T ->

value t
∨ exists t’, t --> t’.

Lemma value_irreducible : forall n t t’,
value n t -> ~(t --> t’).
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Adding a non-structural rule

Kind GC
K, K′;E ` e : T FVK(E, T ) ∩ Dom(K′) = ∅
K;E ` e : T

Co-finite version
∀ᾱ 6∈ L K, Kᾱ

0 ;E ` e : T

K;E ` e : T

– Formalizes the intuition that kinds not appearing in

either E or T are not relevant to the typing judgment

– The original type system requires all kinds used in a

derivation to be in K from the beginning
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Looking for an inversion lemma

For domain proofs, we would like to prove the following

lemma:
K;E `GC e : T ⇒ ∃K′, K, K′;E ` e : T

The proof in the co-finite system is difficult, as co-finite

quantifications do not commute. The proof is more than

1300 lines, with renaming lemmas for terms and types.

A much simpler approach is to only limit Kind GC to

appear just above Let or Abstraction. The proof is

about 100 lines, and requires no renaming.
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Type inference

Type inference can be done in the usual way:

– W-like algorithm relying on type unification

– Unification updates the kinding environment

kenv -> subs -> list (typ*typ) -> option (kenv*subs)

– All substitutions must be admissible

– Termination measure 〈number of variables, size of types〉
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Unification (abstract version)

Incompatible
ϕ ∧ T1

.
= T2

⊥
when sortϕ(T1) 6= sortϕ(T2)

Cyclic
ϕ ∧ α

.
= T

⊥
when α 6= T and α ∈ FV∅(T )

Redundancy
ϕ ∧ T

.
= T

ϕ
Function
ϕ ∧ T1 → T2

.
= T ′

1 → T ′
2

ϕ ∧ T1
.
= T ′

1 ∧ T2
.
= T ′

2
Substitution
ϕ ∧ α

.
= T

ϕ[T/α] ∧ α
.
= T

when α :: (C, R) 6∈ ϕ and α 6∈ FV∅(T )
and α ∈ FV(ϕ) and T 6= β ∨ β ∈ FV(ϕ)

Bad constraint
ϕ ∧ α :: (C, R)

⊥
when C |= ⊥

Constraint
ϕ ∧ α1 :: (C1, R1) ∧ α2 :: (C2, R2) ∧ α1

.
= α2

ϕ ∧ α :: (C1 ∧ C2, R1 ∪ R2) ∧ α1
.
= α ∧ α2

.
= α

α fresh

Propagation

r(x, α1) ∧ r(x, α2) ∧ p(x) ⇒ α1 = α2 ∈ E
ϕ ∧ α :: (C, R) r(a, T1) ∈ R r(a, T2) ∈ R C ` p(a)
ϕ ∧ α :: (C, R) ∧ T1

.
= T2

when T1 6= T2
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Fixpoint unify0 unify (h:nat)(pairs:list(typ*typ))(K:kenv)(S:subs)
{struct h} : option (kenv * subs) :=
match h with 0 => None
| S h’ =>

match pairs with nil => Some (K,S)
| (typ_fvar x, typ_fvar y) :: pairs’ =>

if x == y then unify0 unify h’ pairs’ K S else
match unify_vars K x y with None => None
| Some (K’, pairs) =>

unify (pairs ++ pairs’) K’ (compose (x ~ typ_fvar y) S)
end

| ...
end end.

Fixpoint unify (h:nat) pairs K S {struct h} :=
match h with 0 => None
| S h’ =>

unify0 (unify h’)(pairs_size pairs+1)(subst_pairs S pairs) K S
end.
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Properties of unification

Theorem unify_sound : forall h pairs K S K’ S’,
unify h pairs K S = Some (K’,S’) ->
is subst S

Dom(S) ∩ FV∅(Img(S)) = ∅

-> disjoint (dom S) (dom K) ->
unifies S’ pairs ∧ well subst K K’ S’

K ` S′ : K′
∧

extends S’ S ∧ disjoint (dom S’) (dom K’).
Theorem unify_mgu : forall h pairs K0 K S,

unifies S’ pairs ->
well_subst K0 K’ S’ ->
unify h pairs K0 id = Some (K,S) ->
extends S’ S ∧ well_subst K K’ S’.

Theorem unify_complete : forall h pairs K0 K S,
unifies S pairs ->
well_subst K0 K S ->
cardinal (all_fv K0 pairs) < h ->
unify h pairs K0 id <> None.
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Type inference

(* L is a set of used variables, for fresh variable generation *)
Fixpoint typinf (K:kenv) (E:env sch) (t:trm) (T:typ) (L:vars)

(S:subs) (h:nat) {struct h} : option (kenv * subs) * vars := ...

(* Simpler version, inferring the most general scheme of a term *)
Definition typinf’ trm :=

let v := var_fresh {} in
let Lv := S.singleton v in
let V := typ_fvar v in
match typinf empty empty trm V Lv empty (trm_depth trm + 1)
with (None, _) => None
| (Some (K, S), _) =>

Some (map (kind_subst S) K, typ_subst S V)
end.
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Generalization

Definition typinf_generalize K’ E’ L T1 :=
(* Closure of variables free in the environment *)
let ftve := close_fvk K’ (env_fv E’) in
let (K’’, KA) := split_env ftve K’ in
(* Closure of variables free in the result type *)
let B := close_fvk K’ (typ_fv T1) in
(* Keep variables in B but not in ftve *)
let (_, KB) := split_env B K’’ in
let (Bs, Ks) := split KB in
let Bs’ := S.elements (S.diff B (ftve ∪ dom KB)) in
let Ks’ := List.map (fun x:var => @None ckind) Bs’ in
(* Duplicate kinds imported from the original environment *)
let (_, KC) := split_env L K’’ in
(KA & KC, sch_generalize (Bs++Bs’) T1 (Ks++Ks’)).
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Soundness of type inference

Theorem typinf_sound : forall h t K0 E T L0 S0 K S L,
typinf K0 E t T L0 S0 h = (Some (K, S), L) ->
is_subst S0 -> env_prop type S0 ->
kenv_ok K0 -> disjoint (dom S0) (dom K0) ->
fvs S0 K0 E ∪ typ_fv T << L0 ->
env_ok E -> type T ->
extends S S0 ∧ env_prop type S ∧ is_subst S ∧
disjoint (dom S) (dom K) ∧ fvs S K E ∪ L0 << L ∧
well_subst K0 K S ∧
K; map (sch_subst S) E |(false,GcLet)|= t ~: typ_subst S T.

Corollary typinf_sound’ : forall t K T,
typinf’ t = Some (K, T) -> K; empty |(false,GcLet)|= t ~: T.
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Principality of type inference

Definition principality : forall S0 K0 E0 S K E t T L h,
is_subst S0 -> env_prop type S0 ->
kenv_ok K0 -> disjoint (dom S0) (dom K0) ->
env_ok E0 -> moregen_env K (map (sch_subst S) E0) E ->
env_prop type S -> dom S ∪ fvs S0 K0 E0 ∪ typ_fv T << L ->
extends S S0 -> well_subst K0 K S -> trm_depth t < h ->
K; E |(false,GcAny)|= t ~: typ_subst S T ->
exists K’, exists S’, exists L’,

typinf K0 E0 t T L S0 h = (Some (K’, S’), L’) ∧ extends S’ S0 ∧
exists S’’, dom S’’ << S.diff L’ L ∧ env_prop type S’’ ∧

extends (S & S’’) S’ ∧ well_subst K’ K (S & S’’).
Corollary typinf_principal’ : forall K t T,

K; empty |(false,GcAny)|= t ~: T ->
exists K’, exists T’, typinf’ t = Some (K’, T’) ∧

exists S, well_subst K’ K S ∧ T = typ_subst S T’.
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About the proofs

Proofs are large: about 2000 lines for unification, 3500 lines for type
inference, including many small lemmas.

They work directly on the algorithms, but some functional induction
schemes are defined (unify_ind for unify, soundness_ind for typinf).

The main difficulty is having to maintain many invariants
simultaneously.

Use finite sets, but the library has only a bare minimum of lemmas.

Lots of proofs are about set invariants. Developed some tactics for
set inclusion and disjointness that helped a lot.
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Impact of locally nameless and co-finite

Since local and global variables are distinct, many definitions must
be duplicated, and we need lemmas to connect them.

– This is particularly painful for kinding environments, as they are
recursive.

– Yet having to handle explicitly names of bound type variables
would probably be even more painful.

Co-finite approach seems to be always a boon. Even for type
inference, only few proofs use renaming lemmas:

– principality only requires term variable renaming once.

– soundness requires both term and value variables renaming, not
surprising since we build a co-finite proof from a finite one.
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Dependent types in values

They are used in the “engineering metatheory” framework only
when generating fresh variables:

Lemma var_fresh : forall (L : vars), { x : var | x 6∈ L }.
I used dependent types in values in one other place: all kinds are
valid and coherent by construction.

– A bit more complexity in
domain proofs.

– But a big win since this
property is kept by sub-
stitution.

Record ckind : Set := Kind {
kcstr : Cstr.cstr;
kvalid : Cstr.valid kcstr;
krel : list (var*typ);
kcoherent : coherent kcstr krel }.

Also attempted to use dependent types for schemes (enforcing that
they are well-formed), but dropped them as it made proofs about
the type inference algorithm more complex.
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Instantiating the framework

The Coq proof uses functors to reflect faithfully

constraint domain parameterization.

The final proof is obtained by applying all functors to

domain proofs. The domain definitions and proofs are

∼ 800 lines, mostly for δ-rules. Only 50 extra lines were

needed for type inference.

Once the framework is instantiated, one can extract the

type inference algorithm to ocaml, and run it.
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Using the algorithm

(* This example is equivalent to the ocaml term [fun x -> ‘A0 x] *)
# typinf1 (Coq_trm_cst (Const.Coq_tag (Variables.var_of_nat O)));;
- : (var * kind) list * typ =
([(1, None);

(2,
Some
{kind_cstr = {cstr_low = {0}; cstr_high = None};
kind_rel = Cons (Pair (0, Coq_typ_fvar 1), Nil)})],

Coq_typ_arrow (Coq_typ_fvar 1, Coq_typ_fvar 2))
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Conclusion

– Formalized completely strutural polymorphism

– Proved not only type soundness, but also soundness

and principality of inference

– First step towards a certified reference

implementation of OCaml

– The techniques in “engineering formal metatheory”

proved useful
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Locally nameless definitions

• α-conversion is a pain

• de Bruijn indices in derivations not so nice

Idea: use de Bruijn indices only for bound variables in

terms (or type schemes), and name free variables.

x /∈ Dom(E) ∪ FV(t) E, x:S ` tx : T

E ` λt : S → T
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Co-finite quantification

• we need to change non-locally bound names

Idea: quantify bound names universally, using a co-finite

exclusion set

∀x 6∈ L E, x:S ` tx : T

E ` λt : S → T

Intuition: L should be a superset of Dom(E) ∪ FV(T ),

so that there is no conflict, but we can grow L as needed

when transforming proofs.
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Example with weakening

Usually weakening requires renaming if x ∈ Dom(E′)

x /∈ Dom(E) ∪ FV(t)
E, x:S ` tx : T

E ` λt : S → T
−→

y /∈ Dom(E, E′) ∪ FV(t)
E, E′, y:S ` ty : T

E, E′ ` λt : S → T

No renaming needed if we enlarge L !

∀x /∈ L E, x:S ` tx : T

E ` λt : S → T
−→

∀x /∈ L ∪ Dom(E′)
E, E′, x:S ` tx : T

E, E′ ` λt : S → T
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Co-finite quantification and ML let

The translation of ML’s let is a bit more involved:

E ` t1 : T1 ᾱ ∩ FV(E) = ∅ E, x:∀ᾱ.T1 ` t2 : T

E ` let x = t1 in t2 : T

becomes

∀ᾱ /∈ L1 E ` t1 : T ᾱ
1 ∀x /∈ L2 E, x:∀|ᾱ|T1 ` tx2 : T

E ` let t1 in t2 : T

The only condition on ᾱ is the derivability of E ` t1 : T ᾱ
1
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Example with weakening

Again, without co-finite quantification, one has to rename the ᾱ if E
grows, as they may be referred by new bindings. This is particularly
stupid as the new bindings do not contribute to the derivation.

An alternative approach would be to explictly consider only relevant
bindings.

E ` t1 : T1 ᾱ ∩ FV(E|FV(t1)
) = ∅ E, x:∀ᾱ.T1 ` t2 : T

E ` let x = t1 in t2 : T

The co-finite approach, where the constraint on ᾱ is left implicit, is
much smarter.
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Engineering formal metatheory

Proofs are extremely short.

– Thanks to clever automation of the notion of freshness used by
co-finite quantification, maintaining the conditions is easy.

– Many simple lemmas are required, but they are about types and
terms, not derivations.

– Renaming inside derivations is very rarely needed. Soundess of
F≤ or ML doesn’t involve it.

– It is claimed that renaming lemmas for derivations can be
obtained from substitution lemmas if needed.


