Introduction

Rank&Selec

LOUDS

Primitives

.

D----

Dynamic dat

Dynamic dat

Simply type

Proving tree algorithms for succinct data structures

Reynald Affeldt ¹ Jacques Garrigue ²
Xuanrui Qi ² Kazunari Tanaka ²

 1 National Institute of Advanced Industrial Science and Technology, Japan 2 Graduate Scool of Mathematics, Nagoya University

September 9, 2019 https://github.com/affeldt-aist/succinct

Introduction

Rank&Selec

LOUDS

D

Primitive

FIRST STEEL

Perspectives Bonus

Dynamic data

Principle

Simply types Perspectives

Succinct Data Structures

- Representation optimized for both time and space
- "Compression without need to decompress"
- Much used for Big Data
- Application examples
 - Compression for Data Mining
 - Google's Japanese IME

Introduction

Rank&Select

LOUE

Primitives First atter

Second try Perspectives Bonus

Dynamic dat Principle

Simply typed Perspectives

Rank and Select

To allow fast access, two primitive functions are heavily optimized. They can be computed in constant time.

• rank(i) = number of 1's up to position i

• select(i) = position of the i^{th} 1: rank(select(i)) = i

Introduction

Rank&Select

LOUD

Primitive

First att

Second try Perspective

Dynami

Principle

Simply typed

Computing Rank in constant time

Figure: The rank algorithm ($sz_2 = 4$, $sz_1 = 4 \times sz_2$, n = 58)

- By using a two-level index, one can compute rank in constant time
- The size of the indexes is in o(n)
- Certified implementation [Tanaka A., Affeldt, Garrigue 2016]

Rank&Select

CoQ specifications

```
rank counts occurrences of (b : T).
 Definition rank i (s : list T) :=
    count_mem b (take i s).
select is its (minimal) inverse.
 Definition select i (s : list T) : nat :=
    index i [seq rank k s \mid k \le iota \emptyset (size s).+1].
pred s y is the last b before y (included).
 Definition pred s y := select (rank y s) s.
succ s y is the first b after y (included).
 Definition succ s y := select (rank y.-1 s).+1 s.
Getting the indexing right is challenging.
Here indices start from 1, but there is no fixed convention.
```

Today's story

Introduction

Rank&Sele

Primitive

First atte

Perspectives Bonus

Dynamic dat

Principle
Simply typed
Perspectives

Trees in Succinct Data Structures

Featuring two views

Tree as sequence Encode the structure of a tree as a bit sequence, providing efficient navigation through rank and select

Sequence as tree Balanced trees (here red-black) can be used to encode dynamic bit sequences

- Both implemented and proved in Coq/SSReflect
- They can be combined together

Introduction Rank&Select

Primitive

Primitives First atten Second try

Second try Perspectives Bonus

Dynamic dat

Simply typed

L.O.U.D.S.

Level-Order Unary Degree Sequence [Navarro 2016, Chapter 8]

- Unary coding of node arities, put in breadth-first order
- Each node of arity a is represented by a 1's followed by 0
- The structure of a tree uses just 2n bits
- Useful for dictionaries (e.g. Google Japanese IME)
 - Allows to include a full Japanese dictionary in 50 MB

LOUDS

What is a Japanese IME?

- Incremental input
- Select a word in the dictionary according to a prefix
- Using LOUDS: each node contains one character; can collect them in a separate array

古池や蛙飛込む水の音

Introduction Rank&Select

LOUDS

Primitivos

First attemp

Perspectives Bonus

Dynamic data

Simply typed Perspectives

Implementation of primitives

Navigation primitives work by moving inside the LOUDS

The basic operations are

Position of the ith child of a node

Variable B : list bool. (* our LOUDS *)

- Position of its parent
- Number of children

```
Definition LOUDS_child v i :=
   select false (rank true (v + i) B).+1 B.
Definition LOUDS_parent v :=
   pred false B (select true (rank false v B) B).
Definition LOUDS_children v :=
   succ false B v.+1 - v.+1.
```

Primitives

LOUDS navigation

- rank false v B = 5 for v = 14The number of nodes *i* before position v.
- select true i B = 6 for i = 5The position w of the branch leading to this node.
- pred false B w = 4 for w = 6The position w' of the node containing this branch.

Primitives

LOUDS navigation

- rank false v B = 5 for v = 14The number of nodes *i* before position v.
- select true i B = 6 for i = 5The position w of the branch leading to this node.
- pred false B w = 4 for w = 6The position w' of the node containing this branch.

Primitives

LOUDS navigation

- rank false v B = 5 for v = 14The number of nodes *i* before position v.
- select true i B = 6 for i = 5The position w of the branch leading to this node.
- pred false B w = 4 for w = 6The position w' of the node containing this branch.

Primitives

LOUDS navigation

- rank false v B = 5 for v = 14The number of nodes *i* before position v.
- select true i B = 6 for i = 5The position w of the branch leading to this node.
- pred false B w = 4 for w = 6 (due to index shift) The position w' of the node containing this branch.

Introduction

Rank&Select

LOUDS

First attempt Second try Perspectives

Bonus

Dynamic dat

Simply typed Perspectives

Functional correctness

Assume an isomorphism LOUDS_position between valid paths in the tree, and valid positions in the LOUDS.

Our 3 primitives shall satisfy the following invariants.

```
Definition LOUDS position (t : tree A) (p : list nat) : nat.
Variable t : tree A.
Let B := LOUDS t.
Theorem LOUDS_childE (p : list nat) (x : nat) :
  valid position t (rcons p x) ->
  LOUDS child B (LOUDS position t p) x = LOUDS position t (rcons p x).
Theorem LOUDS_parentE (p : list nat) (x : nat) :
  valid_position t (rcons p x) ->
  LOUDS_parent B (LOUDS_position t (rcons p x)) = LOUDS_position t p.
Theorem LOUDS_childrenE (p : list nat) :
  valid position t p ->
  children t p = LOUDS children B (LOUDS position t p).
```

How do we prove it?

First attempt

Introductio

Rank&Select

LOUDS

Primitives

First attempt

Perspectives Bonus

Dynamic data

Principle Simply typed Define traversal by recursion on the height of the tree.

```
Fixpoint LOUDS' n (s : forest A) :=
   if n is n'.+1 then
    map children_description s ++ LOUDS' n' (children_of_forest s)
   else [::].
Definition LOUDS (t : tree A) := flatten (LOUDS' (height t) [:: t]).

Definition LOUDS_position (t : tree A) (p : list nat) :=
   lo_index t p + (lo_index t (rcons p 0)).-1.
(* number of 0's number of 1's *)

Theorem LOUDS_positionE t (p : list nat) :
   let B := LOUDS t in valid_position t p ->
   LOUDS_position t p = foldl (LOUDS_child B) 0 p.
```

lo_index t p is the number of valid paths preceding p in breadth first order.

Introduction

Rank&Sele

LOUDS

Primitives

First attempt

.

Perspective

Bonus

Dynamic data

Principle

Simply type

Danna anti-

First attempt

Success! Could prove the correctness of all primitives.

First attempt

Rank&Select

Primitives

Primitives First attempt

Second try
Perspectives
Bonus

Dynamic dat
Principle
Simply typed

Success! Could prove the correctness of all primitives.

Various problems

- Breadth first traversal does not follow the tree structure
- Cannot use structural induction
- No natural correspondence to use in proofs
- Oh, the indices!

As a result

- LOUDS related proofs took more than 800 lines
- Many lemmas had proofs longer than 50 lines
- There should be a better approach...

Introduction Rank&Select

Primitives

First atter

Second try Perspective

Bonus

Principle
Simply typed

Second try

- Introduce traversal up to a path: lo_traversal_lt Generalization of lo_index, returning a list
- For easy induction, work on forests rather than trees
- A generating forest need not be on the same level!

Introduction

Rank&Select

LOUI

Primitives

Second try

Perspecti

Bonus

Dynamic data

Principle

Simply typed

Traversal and Remainder

Parameters of the traversal

```
Variables (A B : Type) (f : tree A -> B).
```

Traversal of the nodes preceding path p

```
\label{list B.} \mbox{Fixpoint lo\_traversal\_lt (s : forest A) (p : list nat) : list B.}
```

Generating forest for nodes following path p, aka fringe

```
Fixpoint lo_fringe (s : forest A) (p : list nat) : forest A.
```

Relation between traversal and fringe

```
Lemma lo_traversal_lt_cat s p1 p2 :
lo_traversal_lt s (p1 ++ p2) =
lo_traversal_lt s p1 ++ lo_traversal_lt (lo_fringe s p1) p2.
```

All paths lead to Rome, i.e. complete traversals are all equal

```
Theorem lo_traversal_lt_max t p :
size p >= height t ->
lo_traversal_lt [:: t] p = lo_traversal_lt [:: t] (nseq (height t) 0).
```

```
Proving tree
algorithms for
succinct data
structures
```

Introduction Rank&Select

LOUDS

Primitives First attem

Second try

Perspective Bonus

Dynamic data

Simply typed
Perspectives

Path, index, and position in LOUDS

Index of a node in level-order, using the traversal

Definition lo_index s p := size (lo_traversal_lt id s p).

LOUDS_1t generates the LOUDS as a path-indexed traversal

```
Definition LOUDS_lt s p :=
  flatten (lo_traversal_lt children_description s p).
```

Use it to define the position of a node in the LOUDS

 $\label{eq:definition LOUDS_position s p := size (LOUDS_lt s p).} \\$

Main lemmas: relate position in LOUDS and index in traversal.

Suffix p' allows completion to the whole LOUDS t.

```
Lemma LOUDS_position_select s p p' :
    valid_position (head dummy s) p ->
    LOUDS_position s p = select false (lo_index s p) (LOUDS_lt s (p ++ p')).

Lemma lo_index_rank s p p' n :
    valid_position (head dummy s) (rcons p n) ->
    lo_index s (rcons p n) =
    size s + rank true (LOUDS_position s p + n) (LOUDS_lt s (p ++ n :: p')).
```

19 / 34

Introduction

Rank&Select

LOUL

Primitive:

Second tr

Perspectives

Bonus

Dynamic data

Principle Simply typed

LOUDS perspectives

Advantages of the new approach

- Could prove naturally all invariants
- All proofs are by induction on paths
- Common lemmas arise naturally
- Only about 500 lines in total, long proofs about 20 lines

Remaining problems

- There are still longish lemmas (lo_index_rank, ...)
- Paths all over the place

Future work

Can we apply that to other breadth-first traversals?

Bonus

Bonus: A Structural Traversal

- lo_traversal_lt is nice, but still uses a path for induction
- How can we do a purely structural traversal?

Introduction Rank&Select

LOUDS

First attempt Second try Perspectives Bonus

Dynamic data Principle Simply typed

Bonus: A Structural Traversal

- lo_traversal_lt is nice, but still uses a path for induction
- How can we do a purely structural traversal?
- The idea is to to split the output in levels
- Then one can merge traversals by concatenating each level
- Gibbons and Jones gave a Squiggle algorithm in 1993, using the "long zip with plussle" Y_⊕:

levels.[
$$x \triangleleft ts$$
] = [x] :: Y_{++} /.levels.ts

where Υ_{M} can be defined as mzip for any monoid M

Introduction Rank&Select

LOUDS

First attem
Second try
Perspective

Perspectives
Bonus

Dynamic da Principle Simply typed Perspectives mzip defines itself a new monoid, which we instantiate with the concatenation monoid

```
Lemma mzipA : associative mzip.
Lemma mzip1s s : mzip [::] s = s. Lemma mzips1 s : mzip s [::] = s.
Canonical mzip_monoid := Monoid.Law mzipA mzip1s mzips1.

Variables (A : eqType) (B : Type) (f : tree A -> B).
Definition mzip_cat := mzip_monoid (cat_monoid B).

Fixpoint level_traversal t := [:: f t] ::
  foldr (mzip_cat \o level_traversal) nil (children_of_node t).
Lemma level_traversalE t :
  level_traversal t = [:: f t] ::
  \objg[mzip_cat/nil]_(i <- children_of_node t) level_traversal i.

Definition lo_traversal_st t := flatten (level_traversal t).</pre>
```

- To let CoQ recognize the structural recursion, we have to use the recursor foldr in the definition of level_traversal
- The breadth-first traversal itself is lo traversal st
- Used morphism size ∘ flatten ∘ flatten → + to prove size (LOUDS t) = (number_of_nodes t) * 2 - 1

Introduction

Rank&Select

LOUDS

First attemp Second try Perspectives

Dynamic data

Principle Simply typed Perspectives

Dynamic succinct data structures

- Succinct data that can be updated (insertion/deletion)
- Concrete use cases: e.g. update in a dictionary
- Optimal static representation do not support updates.
 We cannot have both constant time rank/select and efficient insertion/deletion
- Using balanced trees, all operations are $O(\log n)$

[Navarro 2016, Chapter 12]

Principle

Dynamic bit sequence as tree

- num is the number of bits in the left subtree
- ones is the number of 1's in the left subtree

Introduction

Rank&Selec

LOUDS

Datastations

First atter

Second to

Perspective

Dynamic data

Principle

Simply typed
Perspectives

Implementation

- Used red-black trees to implement
 - complexity is the same for all balanced trees
 - easy to represent in a functional style
 - ullet already several implementations in Coq
 - however we need a different data layout with new invariants, so we had to reimplement
- Two implementations using types differently
 - simply typed implementations, with invariants expressed as separate theorems
 - 2 dependent types, directly encoding all the required invariants (explained yesterday in Coq workshop)
- We implemented rank, select, insert and delete

Proving tree algorithms for succinct data

Introduction Rank&Select

LOUD

Primitive:

First attem

Perspectives Bonus

Dynamic data

Principle Simply typed

Simply typed implementation

A red-black tree for bit sequences

```
Inductive color := Red | Black.
Inductive btree (D A : Type) : Type :=
| Bnode of color & btree D A & D & btree D A
| Bleaf of A.
Definition dtree := btree (nat * nat) (list bool).
```

The meaning of the tree is given by dflatten

```
Fixpoint dflatten (B : dtree) :=
  match B with
  | Bnode _ 1 _ r => dflatten 1 ++ dflatten r
  | Bleaf s => s
  end.
```

Invariants on the internal representation

```
Variables low high : nat.
Fixpoint wf_dtree (B : dtree) :=
  match B with
  | Bnode _ 1 (num, ones) r => [&& num == size (dflatten 1),
      ones == count_mem true (dflatten 1), wf_dtree 1 & wf_dtree r]
  | Bleaf arr => low <= size arr < high
  end.</pre>
```

Simply typed

Basic operations

```
Fixpoint drank (B : dtree) (i : nat) := match B with
      Bnode _1 (num, ones) r \Rightarrow
      if i < num then drank l i else ones + drank r (i - num)
      Bleaf s => rank true i s
    end.
  Lemma drankE (B : dtree) i :
    wf_dtree B -> drank B i = rank true i (dflatten B).
  Proof. move=> wf; move: B wf i. apply: dtree_ind. (* ... *) Qed.
  Fixpoint dselect_1 (B : dtree) (i : nat) := match B with
      Bnode _1 (num, ones) r \Rightarrow
      if i <= ones then dselect 1 l i
                   else num + dselect_1 r (i - ones)
      Bleaf s => select true i s
    end.
  Lemma dselect 1E B i :
    wf_dtree B -> dselect_1 B i = select true i (dflatten B).
where dtree_ind is a custom induction principle.
```

All proofs are only a few lines long.

Insertion

```
Introduction
Rank&Select
Plan
LOUDS
Primitives
First attempt
Second try
Perspectives
Bonus
Dynamic da
Principle
Simply typed
Perspectives
```

```
Definition dins leaf s b i :=
  let s' := insert1 s b i in (* insert bit b in s at position i *)
  if size s + 1 == high then
   let n := size s' \%/ 2 in
   let sl := take n s' in let sr := drop n s' in
    Bnode Red (Bleaf _ sl) (n, count_mem true sl) (Bleaf _ sr)
  else Bleaf _ s'.
Fixpoint dins (B : dtree) b i : dtree := match B with
    Bleaf s => dins leaf s b i
   Bnode c 1 d r \Rightarrow
      if i < d.1 then balanceL c (dins 1 b i) r (d.1.+1, d.2 + b)
                 else balanceR c l (dins r b (i - d.1)) d
  end.
```

Definition dinsert B b i : dtree := blacken (dins B b i).

The real work is in balancel /balanceR

4□ > 4回 > 4 = > 4 = > = 900

Simply typed

```
Variables addD subD : D -> D -> D.
Definition balanceL col (l r : btree D A) dl : btree D A :=
  match col with
   Red => Bnode Red 1 d1 r
   Black => match 1 with
               Bnode Red (Bnode Red a da b) dab c =>
               Bnode Red (Bnode Black a da b) dab
                         (Bnode Black c (subD dl dab) r)
               Bnode Red a da (Bnode Red b db c) =>
               Bnode Red (Bnode Black a da b) (addD da db)
                         (Bnode Black c (subD (subD dl da) db) r)
             | => Bnode Black 1 dl r
             end
  end.
```

- Separated balanceL and balanceR
- This avoids creating two many cases during the proof

Simply typed

Balancing

- Number of cases is the main difficulty for red-black trees
- Expanding balanceL generates 11 cases
- Following SSReflect style, we avoid opaque automation.

```
Ltac decompose_rewrite :=
  let H := fresh "H" in
  case/andP || (move=>H; rewrite ?H ?(eqP H)).
Lemma balanceL_wf c (1 r : dtree) :
  wf_dtree l -> wf_dtree r -> wf_dtree (balanceL c l r).
Proof.
case: c => /= wfl wfr. by rewrite wfl wfr ?(dsizeE,donesE,eqxx).
case: 1 wfl =>
  [[[[] 111 []]n 110] []r||[]A] []n 10] [[] 1rl []rn 1ro] [rr|[]rA]
   | | 11 [ln lo] lr] | 1A] /=;
  rewrite wfr; repeat decompose_rewrite;
  by rewrite ?(dsizeE, donesE, size_cat, count_cat, eqxx).
Qed.
                                        4 0 3 4 4 5 3 4 5 5 4 5 5 5
```

```
Proving tree
algorithms for
succinct data
structures
```

Introduction

Primitives

Second try
Perspective

Dynamic data Principle Simply typed

Properties of insertion

Functional correctness

```
Lemma dinsertE (B : dtree) b i : wf_dtree' B ->
  dflatten (dinsert B b i) = insert1 (dflatten B) b i.
```

Well-formedness and red-black invariants

```
Lemma dinsert_wf (B : dtree) b i :
  wf_dtree' B -> wf_dtree' (dinsert B b i).
Lemma dinsert_is_redblack (B : dtree) b i n :
  is_redblack B Red n ->
  exists n', is_redblack (dinsert B b i) Red n'.
```

where

wf_dtree' is needed for small sequences

```
Definition wf_dtree' t :=
  if t is Bleaf s then size s < high else wf_dtree low high t.</pre>
```

- is_redblack checks the red-black tree invariants:
 - the child of a red node cannot be red
 - both children have the same black depth

Introduction Rank&Select

LOUD

Primitives
First attem
Second try

Second try Perspectives Bonus

Dynamic data

Simply typed

Deletion

The mysterious side

- Omitted in Okasaki's Book
- Enigmatic algorithm by Stefan Kahrs, with an invariant but no details

Chose to rediscover it

- Started with dependent types, guessing invariants
- Used extraction to retrieve the computational part
- Rewrote and proved the simply typed version
 Proofs are small, but use Ltac for repetitive cases.
- As case analysis generates hundreds of cases, performance can be a problem.

```
Lemma ddelete_is_redblack B i n :
   is_redblack B Red n -> exists n', is_redblack (ddel B i) Red n'.
```

Rank&Select

LOUDS

Primitives

Second try Perspectives

Dynamic da

Principle

Simply typed Perspectives

Deletion main function

```
Fixpoint bdel B (i : nat) { struct B } : deleted_btree :=
 match B with
   Bnode c (Bleaf 1) d (Bleaf r) => delete from leaves c l r i
  | Bnode Black (Bnode Red (Bleaf 11) ld (Bleaf 1r) as 1) d (Bleaf r) =>
    if lt index i d
    then balanceL' Black (bdel l i) d (Bleaf _ r)
    else balanceR' Black (Bleaf _ 11) 1d
                   (delete from leaves Red lr r (right index i ld))
  | Bnode Black (Bleaf 1) ld (Bnode Red (Bleaf rl) d (Bleaf rr) as r) =>
    if lt index (right index i ld) d
    then balanceL' Black (delete from leaves Red l rl i)
                   (addD ld d) (Bleaf _ rr)
    else balanceR' Black (Bleaf _ 1) ld (bdel r (right_index i ld))
   Bnode c 1 d r \Rightarrow
    if lt_index i d
    then balanceL' c (bdel l i) d r
    else balanceR' c l d (bdel r (right_index i d))
  | Bleaf x =>
   let (leaf, ret) := delete leaf x i in
    MkD (Bleaf _ leaf) false ret
  end.
```

Introduction

Rank&Selec

LOUD

First attempt Second try Perspectives

Dynamic data

Principle
Simply typed
Perspectives

Dynamic bit sequence perspectives

- Simply typed approach
 - SSReflect style worked well, providing short and maintainable proofs
 - could obtain proofs of balancing without complex machinery (just automatic case analysis)
 - however many small lemmas are required
- Dependently typed version
 - all properties are in the types, no need for dispersed proofs
 - Coq support not perfect yet
- Future work
 - We have not yet started working on complexity
 - We also need to extract efficient implementations

https://github.com/affeldt-aist/succinct