
Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Proving tree algorithms for succinct data
structures

Reynald Affeldt 1 Jacques Garrigue 2

Xuanrui Qi 2 Kazunari Tanaka 2

1National Institute of Advanced Industrial Science and Technology, Japan

2Graduate Scool of Mathematics, Nagoya University

September 9, 2019
https://github.com/affeldt-aist/succinct

1 / 34

https://github.com/affeldt-aist/succinct

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Succinct Data Structures

• Representation optimized for both time and space

• “Compression without need to decompress”

• Much used for Big Data

• Application examples
• Compression for Data Mining
• Google’s Japanese IME

2 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Rank and Select

To allow fast access, two primitive functions are heavily
optimized. They can be computed in constant time.

• rank(i) = number of 1’s up to position i

• select(i) = position of the i th 1: rank(select(i)) = i

3 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Computing Rank in constant time

second-level
directory

first-level
directory

input
bitstring

n

sz1

sz2 sz2 sz2 sz2

sz1

sz2 sz2 sz2 sz2

sz1

sz2 sz2 sz2 sz2 sz2 sz2

1001 0100 1110 0100 1101 0000 1111 0100 1001 1001 0100 0100 0101 0101 10

2 3 6 3 3 7 2 4 5 2 4

7 15 21

Figure: The rank algorithm (sz2 = 4, sz1 = 4 × sz2, n = 58)

• By using a two-level index, one can compute rank in
constant time

• The size of the indexes is in o(n)

• Certified implementation [Tanaka A., Affeldt, Garrigue 2016]

4 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Coq specifications

rank counts occurrences of (b : T).

Definition rank i (s : list T) :=
count_mem b (take i s).

select is its (minimal) inverse.

Definition select i (s : list T) : nat :=
index i [seq rank k s | k <- iota 0 (size s).+1].

pred s y is the last b before y (included).

Definition pred s y := select (rank y s) s.

succ s y is the first b after y (included).

Definition succ s y := select (rank y.-1 s).+1 s.

Getting the indexing right is challenging.
Here indices start from 1, but there is no fixed convention.

5 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Today’s story

Trees in Succinct Data Structures

Featuring two views

Tree as sequence Encode the structure of a tree as a bit
sequence, providing efficient navigation through rank
and select

Sequence as tree Balanced trees (here red-black) can be used
to encode dynamic bit sequences

• Both implemented and proved in Coq/SSReflect

• They can be combined together

6 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

L.O.U.D.S.

Level-Order Unary Degree Sequence
[Navarro 2016, Chapter 8]

• Unary coding of node arities, put in breadth-first order

• Each node of arity a is represented by a 1’s followed by 0

• The structure of a tree uses just 2n bits
• Useful for dictionaries (e.g. Google Japanese IME)

• Allows to include a full Japanese dictionary in 50 MB

7 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

What is a Japanese IME ?

• Incremental input

• Select a word in the
dictionary according
to a prefix

• Using LOUDS:
each node contains
one character; can
collect them in a
separate array

8 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Implementation of primitives

Navigation primitives work by moving inside the LOUDS

The basic operations are

• Position of the i th child of a node

• Position of its parent

• Number of children

Variable B : list bool. (* our LOUDS *)

Definition LOUDS_child v i :=
select false (rank true (v + i) B).+1 B.

Definition LOUDS_parent v :=
pred false B (select true (rank false v B) B).

Definition LOUDS_children v :=
succ false B v.+1 - v.+1.

9 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

LOUDS navigation

1110

110

0 0

0 1110

0 10

0

0

level 0 level 1 level 2 level 3

1110 11001110 000100 0

LOUDS_parent v := pred false B (select true (rank false v B) B).

• rank false v B = 5 for v = 14

The number of nodes i before position v.

• select true i B = 6 for i = 5

The position w of the branch leading to this node.

• pred false B w = 4 for w = 6

The position w ′ of the node containing this branch.

10 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

LOUDS navigation

1110

110

0 0

0 1110

0 10

0

0

level 0 level 1 level 2 level 3

1110 11001110 000100 0

LOUDS_parent v := pred false B (select true (rank false v B) B).

• rank false v B = 5 for v = 14

The number of nodes i before position v.

• select true i B = 6 for i = 5

The position w of the branch leading to this node.

• pred false B w = 4 for w = 6

The position w ′ of the node containing this branch.

11 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

LOUDS navigation

1110

110

0 0

0 1110

0 10

0

0

level 0 level 1 level 2 level 3

1110 11001110 000100 0

LOUDS_parent v := pred false B (select true (rank false v B) B).

• rank false v B = 5 for v = 14

The number of nodes i before position v.

• select true i B = 6 for i = 5

The position w of the branch leading to this node.

• pred false B w = 4 for w = 6

The position w ′ of the node containing this branch.

12 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

LOUDS navigation

1110

110

0 0

0 1110

0 10

0

0

level 0 level 1 level 2 level 3

1110 11001110 000100 0

LOUDS_parent v := pred false B (select true (rank false v B) B).

• rank false v B = 5 for v = 14

The number of nodes i before position v.

• select true i B = 6 for i = 5

The position w of the branch leading to this node.

• pred false B w = 4 for w = 6 (due to index shift)
The position w ′ of the node containing this branch.

13 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Functional correctness

Assume an isomorphism LOUDS_position between valid paths in
the tree, and valid positions in the LOUDS.
Our 3 primitives shall satisfy the following invariants.

Definition LOUDS_position (t : tree A) (p : list nat) : nat.
Variable t : tree A.
Let B := LOUDS t.

Theorem LOUDS_childE (p : list nat) (x : nat) :
valid_position t (rcons p x) ->
LOUDS_child B (LOUDS_position t p) x = LOUDS_position t (rcons p x).

Theorem LOUDS_parentE (p : list nat) (x : nat) :
valid_position t (rcons p x) ->
LOUDS_parent B (LOUDS_position t (rcons p x)) = LOUDS_position t p.

Theorem LOUDS_childrenE (p : list nat) :
valid_position t p ->
children t p = LOUDS_children B (LOUDS_position t p).

How do we prove it ?

14 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

First attempt

Define traversal by recursion on the height of the tree.

Fixpoint LOUDS' n (s : forest A) :=
if n is n'.+1 then

map children_description s ++ LOUDS' n' (children_of_forest s)
else [::].

Definition LOUDS (t : tree A) := flatten (LOUDS' (height t) [:: t]).

Definition LOUDS_position (t : tree A) (p : list nat) :=
lo_index t p + (lo_index t (rcons p 0)).-1.

(* number of 0's number of 1's *)

Theorem LOUDS_positionE t (p : list nat) :
let B := LOUDS t in valid_position t p ->
LOUDS_position t p = foldl (LOUDS_child B) 0 p.

lo_index t p is the number of valid paths preceding p in
breadth first order.

15 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

First attempt

Success ! Could prove the correctness of all primitives.

Various problems

• Breadth first traversal does not follow the tree structure

• Cannot use structural induction

• No natural correspondence to use in proofs

• Oh, the indices!

As a result

• LOUDS related proofs took more than 800 lines

• Many lemmas had proofs longer than 50 lines

• There should be a better approach...

16 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

First attempt

Success ! Could prove the correctness of all primitives.

Various problems

• Breadth first traversal does not follow the tree structure

• Cannot use structural induction

• No natural correspondence to use in proofs

• Oh, the indices!

As a result

• LOUDS related proofs took more than 800 lines

• Many lemmas had proofs longer than 50 lines

• There should be a better approach...

16 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Second try

• Introduce traversal up to a path : lo_traversal_lt

Generalization of lo_index, returning a list

• For easy induction, work on forests rather than trees

• A generating forest need not be on the same level!

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

generating
forest

traversed

17 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Traversal and Remainder

Parameters of the traversal

Variables (A B : Type) (f : tree A -> B).

Traversal of the nodes preceding path p

Fixpoint lo_traversal_lt (s : forest A) (p : list nat) : list B.

Generating forest for nodes following path p, aka fringe

Fixpoint lo_fringe (s : forest A) (p : list nat) : forest A.

Relation between traversal and fringe

Lemma lo_traversal_lt_cat s p1 p2 :
lo_traversal_lt s (p1 ++ p2) =
lo_traversal_lt s p1 ++ lo_traversal_lt (lo_fringe s p1) p2.

All paths lead to Rome, i.e. complete traversals are all equal

Theorem lo_traversal_lt_max t p :
size p >= height t ->
lo_traversal_lt [:: t] p = lo_traversal_lt [:: t] (nseq (height t) 0).

18 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Path, index, and position in LOUDS
Index of a node in level-order, using the traversal

Definition lo_index s p := size (lo_traversal_lt id s p).

LOUDS_lt generates the LOUDS as a path-indexed traversal

Definition LOUDS_lt s p :=
flatten (lo_traversal_lt children_description s p).

Use it to define the position of a node in the LOUDS

Definition LOUDS_position s p := size (LOUDS_lt s p).

Main lemmas : relate position in LOUDS and index in traversal.
Suffix p' allows completion to the whole LOUDS t.

Lemma LOUDS_position_select s p p' :
valid_position (head dummy s) p ->
LOUDS_position s p = select false (lo_index s p) (LOUDS_lt s (p ++ p')).

Lemma lo_index_rank s p p' n :
valid_position (head dummy s) (rcons p n) ->
lo_index s (rcons p n) =
size s + rank true (LOUDS_position s p + n) (LOUDS_lt s (p ++ n :: p')).

19 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

LOUDS perspectives

Advantages of the new approach

• Could prove naturally all invariants

• All proofs are by induction on paths

• Common lemmas arise naturally

• Only about 500 lines in total, long proofs about 20 lines

Remaining problems

• There are still longish lemmas (lo_index_rank, . . .)

• Paths all over the place

Future work

• Can we apply that to other breadth-first traversals ?

20 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Bonus: A Structural Traversal

• lo_traversal_lt is nice, but still uses a path for induction

• How can we do a purely structural traversal?

• The idea is to to split the output in levels

• Then one can merge traversals by concatenating each level

• Gibbons and Jones gave a Squiggle algorithm in 1993,
using the “long zip with plussle” g⊕:

levels.[x / ts] = [x] :: g++/.levels.ts

where gM can be defined as mzip for any monoid M

Variable (A : Type) (e : A) (M : Monoid.law e).
Fixpoint mzip (l r : seq A) : seq A := match l, r with

| (l1::ls), (r1::rs) => (M l1 r1) :: mzip ls rs
| nil, s | s, nil => s
end.

21 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Bonus: A Structural Traversal

• lo_traversal_lt is nice, but still uses a path for induction

• How can we do a purely structural traversal?

• The idea is to to split the output in levels

• Then one can merge traversals by concatenating each level

• Gibbons and Jones gave a Squiggle algorithm in 1993,
using the “long zip with plussle” g⊕:

levels.[x / ts] = [x] :: g++/.levels.ts

where gM can be defined as mzip for any monoid M

Variable (A : Type) (e : A) (M : Monoid.law e).
Fixpoint mzip (l r : seq A) : seq A := match l, r with

| (l1::ls), (r1::rs) => (M l1 r1) :: mzip ls rs
| nil, s | s, nil => s
end.

21 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

mzip defines itself a new monoid, which we instantiate with the
concatenation monoid

Lemma mzipA : associative mzip.
Lemma mzip1s s : mzip [::] s = s. Lemma mzips1 s : mzip s [::] = s.
Canonical mzip_monoid := Monoid.Law mzipA mzip1s mzips1.

Variables (A : eqType) (B : Type) (f : tree A -> B).
Definition mzip_cat := mzip_monoid (cat_monoid B).

Fixpoint level_traversal t := [:: f t] ::
foldr (mzip_cat \o level_traversal) nil (children_of_node t).

Lemma level_traversalE t :
level_traversal t = [:: f t] ::
\big[mzip_cat/nil]_(i <- children_of_node t) level_traversal i.

Definition lo_traversal_st t := flatten (level_traversal t).

• To let Coq recognize the structural recursion, we have to
use the recursor foldr in the definition of level_traversal

• The breadth-first traversal itself is lo_traversal_st

• Used morphism size ◦ flatten ◦ flatten� + to prove
size (LOUDS t) = (number_of_nodes t) * 2 - 1

22 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Dynamic succinct data structures

• Succinct data that can be updated (insertion/deletion)

• Concrete use cases: e.g. update in a dictionary

• Optimal static representation do not support updates.
We cannot have both constant time rank/select and
efficient insertion/deletion

• Using balanced trees, all operations are O(log n)

[Navarro 2016, Chapter 12]

23 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Dynamic bit sequence as tree

num=16
ones=3

num=8
ones=2

10000010 00000100

num=16
ones=5num=8

ones=2

00001010 00001011

10000001

1000001000000100000010100000101110000001

• num is the number of bits in the left subtree

• ones is the number of 1’s in the left subtree

24 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Implementation

• Used red-black trees to implement
• complexity is the same for all balanced trees
• easy to represent in a functional style
• already several implementations in Coq
• however we need a different data layout with new

invariants, so we had to reimplement

• Two implementations using types differently

1 simply typed implementations, with invariants expressed as
separate theorems

2 dependent types, directly encoding all the required
invariants (explained yesterday in Coq workshop)

• We implemented rank, select, insert and delete

25 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Simply typed implementation
A red-black tree for bit sequences

Inductive color := Red | Black.
Inductive btree (D A : Type) : Type :=
| Bnode of color & btree D A & D & btree D A
| Bleaf of A.
Definition dtree := btree (nat * nat) (list bool).

The meaning of the tree is given by dflatten

Fixpoint dflatten (B : dtree) :=
match B with
| Bnode _ l _ r => dflatten l ++ dflatten r
| Bleaf s => s
end.

Invariants on the internal representation

Variables low high : nat.
Fixpoint wf_dtree (B : dtree) :=

match B with
| Bnode _ l (num, ones) r => [&& num == size (dflatten l),

ones == count_mem true (dflatten l), wf_dtree l & wf_dtree r]
| Bleaf arr => low <= size arr < high
end.

26 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Basic operations

Fixpoint drank (B : dtree) (i : nat) := match B with
| Bnode _ l (num, ones) r =>

if i < num then drank l i else ones + drank r (i - num)
| Bleaf s => rank true i s
end.

Lemma drankE (B : dtree) i :
wf_dtree B -> drank B i = rank true i (dflatten B).

Proof. move=> wf; move: B wf i. apply: dtree_ind. (* ... *) Qed.

Fixpoint dselect_1 (B : dtree) (i : nat) := match B with
| Bnode _ l (num, ones) r =>

if i <= ones then dselect_1 l i
else num + dselect_1 r (i - ones)

| Bleaf s => select true i s
end.

Lemma dselect_1E B i :
wf_dtree B -> dselect_1 B i = select true i (dflatten B).

where dtree_ind is a custom induction principle.
All proofs are only a few lines long.

27 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Insertion

Definition dins_leaf s b i :=
let s' := insert1 s b i in (* insert bit b in s at position i *)
if size s + 1 == high then

let n := size s' %/ 2 in
let sl := take n s' in let sr := drop n s' in
Bnode Red (Bleaf _ sl) (n, count_mem true sl) (Bleaf _ sr)

else Bleaf _ s'.

Fixpoint dins (B : dtree) b i : dtree := match B with
| Bleaf s => dins_leaf s b i
| Bnode c l d r =>

if i < d.1 then balanceL c (dins l b i) r (d.1.+1, d.2 + b)
else balanceR c l (dins r b (i - d.1)) d

end.

Definition dinsert B b i : dtree := blacken (dins B b i).

The real work is in balanceL/balanceR

28 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Balancing

Variables addD subD : D -> D -> D.

Definition balanceL col (l r : btree D A) dl : btree D A :=
match col with
| Red => Bnode Red l dl r
| Black => match l with

| Bnode Red (Bnode Red a da b) dab c =>
Bnode Red (Bnode Black a da b) dab

(Bnode Black c (subD dl dab) r)
| Bnode Red a da (Bnode Red b db c) =>

Bnode Red (Bnode Black a da b) (addD da db)
(Bnode Black c (subD (subD dl da) db) r)

| _ => Bnode Black l dl r
end

end.

• Separated balanceL and balanceR

• This avoids creating two many cases during the proof

29 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Balancing

• Number of cases is the main difficulty for red-black trees

• Expanding balanceL generates 11 cases

• Following SSReflect style, we avoid opaque automation

Ltac decompose_rewrite :=
let H := fresh "H" in
case/andP || (move=>H; rewrite ?H ?(eqP H)).

Lemma balanceL_wf c (l r : dtree) :
wf_dtree l -> wf_dtree r -> wf_dtree (balanceL c l r).

Proof.
case: c => /= wfl wfr. by rewrite wfl wfr ?(dsizeE,donesE,eqxx).
case: l wfl =>
[[[[] lll [lln llo] llr|llA] [ln lo] [[] lrl [lrn lro] lrr|lrA]
|ll [ln lo] lr]|lA] /=;
rewrite wfr; repeat decompose_rewrite;
by rewrite ?(dsizeE,donesE,size_cat,count_cat,eqxx).

Qed.

30 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Properties of insertion
Functional correctness

Lemma dinsertE (B : dtree) b i : wf_dtree' B ->
dflatten (dinsert B b i) = insert1 (dflatten B) b i.

Well-formedness and red-black invariants

Lemma dinsert_wf (B : dtree) b i :
wf_dtree' B -> wf_dtree' (dinsert B b i).

Lemma dinsert_is_redblack (B : dtree) b i n :
is_redblack B Red n ->
exists n', is_redblack (dinsert B b i) Red n'.

where

• wf_dtree' is needed for small sequences

Definition wf_dtree' t :=
if t is Bleaf s then size s < high else wf_dtree low high t.

• is_redblack checks the red-black tree invariants:
• the child of a red node cannot be red
• both children have the same black depth

31 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Deletion

The mysterious side

• Omitted in Okasaki’s Book

• Enigmatic algorithm by Stefan Kahrs, with an invariant
but no details

Chose to rediscover it

• Started with dependent types, guessing invariants

• Used extraction to retrieve the computational part

• Rewrote and proved the simply typed version
Proofs are small, but use Ltac for repetitive cases.

• As case analysis generates hundreds of cases, performance
can be a problem.

Lemma ddelete_is_redblack B i n :
is_redblack B Red n -> exists n', is_redblack (ddel B i) Red n'.

32 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Deletion main function

Fixpoint bdel B (i : nat) { struct B } : deleted_btree :=
match B with
| Bnode c (Bleaf l) d (Bleaf r) => delete_from_leaves c l r i
| Bnode Black (Bnode Red (Bleaf ll) ld (Bleaf lr) as l) d (Bleaf r) =>

if lt_index i d
then balanceL' Black (bdel l i) d (Bleaf _ r)
else balanceR' Black (Bleaf _ ll) ld

(delete_from_leaves Red lr r (right_index i ld))
| Bnode Black (Bleaf l) ld (Bnode Red (Bleaf rl) d (Bleaf rr) as r) =>

if lt_index (right_index i ld) d
then balanceL' Black (delete_from_leaves Red l rl i)

(addD ld d) (Bleaf _ rr)
else balanceR' Black (Bleaf _ l) ld (bdel r (right_index i ld))

| Bnode c l d r =>
if lt_index i d
then balanceL' c (bdel l i) d r
else balanceR' c l d (bdel r (right_index i d))

| Bleaf x =>
let (leaf, ret) := delete_leaf x i in
MkD (Bleaf _ leaf) false ret

end.

33 / 34

Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Dynamic bit sequence perspectives

• Simply typed approach
• SSReflect style worked well, providing short and

maintainable proofs
• could obtain proofs of balancing without complex

machinery (just automatic case analysis)
• however many small lemmas are required

• Dependently typed version
• all properties are in the types, no need for dispersed proofs
• Coq support not perfect yet

• Future work
• We have not yet started working on complexity
• We also need to extract efficient implementations

https://github.com/affeldt-aist/succinct

34 / 34

https://github.com/affeldt-aist/succinct

	Introduction
	Rank&Select
	Plan

	LOUDS
	Primitives
	First attempt
	Second try
	Perspectives
	Bonus

	Dynamic data
	Principle
	Simply typed
	Perspectives

