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Succinct Data Structures

• Representation optimized for both time and space

• “Compression without need to decompress”

• Much used for Big Data

• Application examples
• Compression for Data Mining
• Google’s Japanese IME
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Rank and Select

To allow fast access, two primitive functions are heavily
optimized. They can be computed in constant time.

• rank(i) = number of 1’s up to position i

• select(i) = position of the i th 1: rank(select(i)) = i
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Computing Rank in constant time
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2 3 6 3 3 7 2 4 5 2 4

7 15 21

Figure: The rank algorithm (sz2 = 4, sz1 = 4 × sz2, n = 58)

• By using a two-level index, one can compute rank in
constant time

• The size of the indexes is in o(n)

• Certified implementation [Tanaka A., Affeldt, Garrigue 2016]
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Coq specifications

rank counts occurrences of (b : T).

Definition rank i (s : list T) :=
count_mem b (take i s).

select is its (minimal) inverse.

Definition select i (s : list T) : nat :=
index i [seq rank k s | k <- iota 0 (size s).+1].

pred s y is the last b before y (included).

Definition pred s y := select (rank y s) s.

succ s y is the first b after y (included).

Definition succ s y := select (rank y.-1 s).+1 s.

Getting the indexing right is challenging.
Here indices start from 1, but there is no fixed convention.
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Today’s story

Trees in Succinct Data Structures

Featuring two views

Tree as sequence Encode the structure of a tree as a bit
sequence, providing efficient navigation through rank
and select

Sequence as tree Balanced trees (here red-black) can be used
to encode dynamic bit sequences

• Both implemented and proved in Coq/SSReflect

• They can be combined together
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L.O.U.D.S.

Level-Order Unary Degree Sequence
[Navarro 2016, Chapter 8]

• Unary coding of node arities, put in breadth-first order

• Each node of arity a is represented by a 1’s followed by 0

• The structure of a tree uses just 2n bits
• Useful for dictionaries (e.g. Google Japanese IME)

• Allows to include a full Japanese dictionary in 50 MB
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What is a Japanese IME ?

• Incremental input

• Select a word in the
dictionary according
to a prefix

• Using LOUDS:
each node contains
one character; can
collect them in a
separate array
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Implementation of primitives

Navigation primitives work by moving inside the LOUDS

The basic operations are

• Position of the i th child of a node

• Position of its parent

• Number of children

Variable B : list bool. (* our LOUDS *)

Definition LOUDS_child v i :=
select false (rank true (v + i) B).+1 B.

Definition LOUDS_parent v :=
pred false B (select true (rank false v B) B).

Definition LOUDS_children v :=
succ false B v.+1 - v.+1.
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LOUDS navigation
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LOUDS_parent v := pred false B (select true (rank false v B) B).

• rank false v B = 5 for v = 14

The number of nodes i before position v.

• select true i B = 6 for i = 5

The position w of the branch leading to this node.

• pred false B w = 4 for w = 6

The position w ′ of the node containing this branch.
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LOUDS_parent v := pred false B (select true (rank false v B) B).

• rank false v B = 5 for v = 14

The number of nodes i before position v.

• select true i B = 6 for i = 5

The position w of the branch leading to this node.

• pred false B w = 4 for w = 6 (due to index shift)
The position w ′ of the node containing this branch.
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Functional correctness

Assume an isomorphism LOUDS_position between valid paths in
the tree, and valid positions in the LOUDS.
Our 3 primitives shall satisfy the following invariants.

Definition LOUDS_position (t : tree A) (p : list nat) : nat.
Variable t : tree A.
Let B := LOUDS t.

Theorem LOUDS_childE (p : list nat) (x : nat) :
valid_position t (rcons p x) ->
LOUDS_child B (LOUDS_position t p) x = LOUDS_position t (rcons p x).

Theorem LOUDS_parentE (p : list nat) (x : nat) :
valid_position t (rcons p x) ->
LOUDS_parent B (LOUDS_position t (rcons p x)) = LOUDS_position t p.

Theorem LOUDS_childrenE (p : list nat) :
valid_position t p ->
children t p = LOUDS_children B (LOUDS_position t p).

How do we prove it ?

14 / 34



Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

First attempt

Define traversal by recursion on the height of the tree.

Fixpoint LOUDS' n (s : forest A) :=
if n is n'.+1 then

map children_description s ++ LOUDS' n' (children_of_forest s)
else [::].

Definition LOUDS (t : tree A) := flatten (LOUDS' (height t) [:: t]).

Definition LOUDS_position (t : tree A) (p : list nat) :=
lo_index t p + (lo_index t (rcons p 0)).-1.

(* number of 0's number of 1's *)

Theorem LOUDS_positionE t (p : list nat) :
let B := LOUDS t in valid_position t p ->
LOUDS_position t p = foldl (LOUDS_child B) 0 p.

lo_index t p is the number of valid paths preceding p in
breadth first order.
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First attempt

Success ! Could prove the correctness of all primitives.

Various problems

• Breadth first traversal does not follow the tree structure

• Cannot use structural induction

• No natural correspondence to use in proofs

• Oh, the indices!

As a result

• LOUDS related proofs took more than 800 lines

• Many lemmas had proofs longer than 50 lines

• There should be a better approach...
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Second try

• Introduce traversal up to a path : lo_traversal_lt

Generalization of lo_index, returning a list

• For easy induction, work on forests rather than trees

• A generating forest need not be on the same level!

!"#$%&'()*+,-./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcdefghijklmnopqrstuvwxyz{|}~

generating 
forest

traversed
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Traversal and Remainder

Parameters of the traversal

Variables (A B : Type) (f : tree A -> B).

Traversal of the nodes preceding path p

Fixpoint lo_traversal_lt (s : forest A) (p : list nat) : list B.

Generating forest for nodes following path p, aka fringe

Fixpoint lo_fringe (s : forest A) (p : list nat) : forest A.

Relation between traversal and fringe

Lemma lo_traversal_lt_cat s p1 p2 :
lo_traversal_lt s (p1 ++ p2) =
lo_traversal_lt s p1 ++ lo_traversal_lt (lo_fringe s p1) p2.

All paths lead to Rome, i.e. complete traversals are all equal

Theorem lo_traversal_lt_max t p :
size p >= height t ->
lo_traversal_lt [:: t] p = lo_traversal_lt [:: t] (nseq (height t) 0).
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Path, index, and position in LOUDS
Index of a node in level-order, using the traversal

Definition lo_index s p := size (lo_traversal_lt id s p).

LOUDS_lt generates the LOUDS as a path-indexed traversal

Definition LOUDS_lt s p :=
flatten (lo_traversal_lt children_description s p).

Use it to define the position of a node in the LOUDS

Definition LOUDS_position s p := size (LOUDS_lt s p).

Main lemmas : relate position in LOUDS and index in traversal.
Suffix p' allows completion to the whole LOUDS t.

Lemma LOUDS_position_select s p p' :
valid_position (head dummy s) p ->
LOUDS_position s p = select false (lo_index s p) (LOUDS_lt s (p ++ p')).

Lemma lo_index_rank s p p' n :
valid_position (head dummy s) (rcons p n) ->
lo_index s (rcons p n) =
size s + rank true (LOUDS_position s p + n) (LOUDS_lt s (p ++ n :: p')).
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LOUDS perspectives

Advantages of the new approach

• Could prove naturally all invariants

• All proofs are by induction on paths

• Common lemmas arise naturally

• Only about 500 lines in total, long proofs about 20 lines

Remaining problems

• There are still longish lemmas (lo_index_rank, . . . )

• Paths all over the place

Future work

• Can we apply that to other breadth-first traversals ?
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Bonus: A Structural Traversal

• lo_traversal_lt is nice, but still uses a path for induction

• How can we do a purely structural traversal?

• The idea is to to split the output in levels

• Then one can merge traversals by concatenating each level

• Gibbons and Jones gave a Squiggle algorithm in 1993,
using the “long zip with plussle” g⊕:

levels.[x / ts] = [x] :: g++/.levels.ts

where gM can be defined as mzip for any monoid M

Variable (A : Type) (e : A) (M : Monoid.law e).
Fixpoint mzip (l r : seq A) : seq A := match l, r with

| (l1::ls), (r1::rs) => (M l1 r1) :: mzip ls rs
| nil, s | s, nil => s
end.
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mzip defines itself a new monoid, which we instantiate with the
concatenation monoid

Lemma mzipA : associative mzip.
Lemma mzip1s s : mzip [::] s = s. Lemma mzips1 s : mzip s [::] = s.
Canonical mzip_monoid := Monoid.Law mzipA mzip1s mzips1.

Variables (A : eqType) (B : Type) (f : tree A -> B).
Definition mzip_cat := mzip_monoid (cat_monoid B).

Fixpoint level_traversal t := [:: f t] ::
foldr (mzip_cat \o level_traversal) nil (children_of_node t).

Lemma level_traversalE t :
level_traversal t = [:: f t] ::
\big[mzip_cat/nil]_(i <- children_of_node t) level_traversal i.

Definition lo_traversal_st t := flatten (level_traversal t).

• To let Coq recognize the structural recursion, we have to
use the recursor foldr in the definition of level_traversal

• The breadth-first traversal itself is lo_traversal_st

• Used morphism size ◦ flatten ◦ flatten� + to prove
size (LOUDS t) = (number_of_nodes t) * 2 - 1

22 / 34



Proving tree
algorithms for
succinct data

structures

Introduction

Rank&Select

Plan

LOUDS

Primitives

First attempt

Second try

Perspectives

Bonus

Dynamic data

Principle

Simply typed

Perspectives

Dynamic succinct data structures

• Succinct data that can be updated (insertion/deletion)

• Concrete use cases: e.g. update in a dictionary

• Optimal static representation do not support updates.
We cannot have both constant time rank/select and
efficient insertion/deletion

• Using balanced trees, all operations are O(log n)

[Navarro 2016, Chapter 12]
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Dynamic bit sequence as tree

num=16
ones=3

num=8
ones=2

10000010 00000100

num=16
ones=5num=8

ones=2

00001010 00001011

10000001

1000001000000100000010100000101110000001

• num is the number of bits in the left subtree

• ones is the number of 1’s in the left subtree
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Implementation

• Used red-black trees to implement
• complexity is the same for all balanced trees
• easy to represent in a functional style
• already several implementations in Coq
• however we need a different data layout with new

invariants, so we had to reimplement

• Two implementations using types differently

1 simply typed implementations, with invariants expressed as
separate theorems

2 dependent types, directly encoding all the required
invariants (explained yesterday in Coq workshop)

• We implemented rank, select, insert and delete
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Simply typed implementation
A red-black tree for bit sequences

Inductive color := Red | Black.
Inductive btree (D A : Type) : Type :=
| Bnode of color & btree D A & D & btree D A
| Bleaf of A.
Definition dtree := btree (nat * nat) (list bool).

The meaning of the tree is given by dflatten

Fixpoint dflatten (B : dtree) :=
match B with
| Bnode _ l _ r => dflatten l ++ dflatten r
| Bleaf s => s
end.

Invariants on the internal representation

Variables low high : nat.
Fixpoint wf_dtree (B : dtree) :=

match B with
| Bnode _ l (num, ones) r => [&& num == size (dflatten l),

ones == count_mem true (dflatten l), wf_dtree l & wf_dtree r]
| Bleaf arr => low <= size arr < high
end.
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Basic operations

Fixpoint drank (B : dtree) (i : nat) := match B with
| Bnode _ l (num, ones) r =>

if i < num then drank l i else ones + drank r (i - num)
| Bleaf s => rank true i s
end.

Lemma drankE (B : dtree) i :
wf_dtree B -> drank B i = rank true i (dflatten B).

Proof. move=> wf; move: B wf i. apply: dtree_ind. (* ... *) Qed.

Fixpoint dselect_1 (B : dtree) (i : nat) := match B with
| Bnode _ l (num, ones) r =>

if i <= ones then dselect_1 l i
else num + dselect_1 r (i - ones)

| Bleaf s => select true i s
end.

Lemma dselect_1E B i :
wf_dtree B -> dselect_1 B i = select true i (dflatten B).

where dtree_ind is a custom induction principle.
All proofs are only a few lines long.
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Insertion

Definition dins_leaf s b i :=
let s' := insert1 s b i in (* insert bit b in s at position i *)
if size s + 1 == high then

let n := size s' %/ 2 in
let sl := take n s' in let sr := drop n s' in
Bnode Red (Bleaf _ sl) (n, count_mem true sl) (Bleaf _ sr)

else Bleaf _ s'.

Fixpoint dins (B : dtree) b i : dtree := match B with
| Bleaf s => dins_leaf s b i
| Bnode c l d r =>

if i < d.1 then balanceL c (dins l b i) r (d.1.+1, d.2 + b)
else balanceR c l (dins r b (i - d.1)) d

end.

Definition dinsert B b i : dtree := blacken (dins B b i).

The real work is in balanceL/balanceR
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Balancing

Variables addD subD : D -> D -> D.

Definition balanceL col (l r : btree D A) dl : btree D A :=
match col with
| Red => Bnode Red l dl r
| Black => match l with

| Bnode Red (Bnode Red a da b) dab c =>
Bnode Red (Bnode Black a da b) dab

(Bnode Black c (subD dl dab) r)
| Bnode Red a da (Bnode Red b db c) =>

Bnode Red (Bnode Black a da b) (addD da db)
(Bnode Black c (subD (subD dl da) db) r)

| _ => Bnode Black l dl r
end

end.

• Separated balanceL and balanceR

• This avoids creating two many cases during the proof
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Balancing

• Number of cases is the main difficulty for red-black trees

• Expanding balanceL generates 11 cases

• Following SSReflect style, we avoid opaque automation

Ltac decompose_rewrite :=
let H := fresh "H" in
case/andP || (move=>H; rewrite ?H ?(eqP H)).

Lemma balanceL_wf c (l r : dtree) :
wf_dtree l -> wf_dtree r -> wf_dtree (balanceL c l r).

Proof.
case: c => /= wfl wfr. by rewrite wfl wfr ?(dsizeE,donesE,eqxx).
case: l wfl =>
[[[[] lll [lln llo] llr|llA] [ln lo] [[] lrl [lrn lro] lrr|lrA]
|ll [ln lo] lr]|lA] /=;
rewrite wfr; repeat decompose_rewrite;
by rewrite ?(dsizeE,donesE,size_cat,count_cat,eqxx).

Qed.
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Properties of insertion
Functional correctness

Lemma dinsertE (B : dtree) b i : wf_dtree' B ->
dflatten (dinsert B b i) = insert1 (dflatten B) b i.

Well-formedness and red-black invariants

Lemma dinsert_wf (B : dtree) b i :
wf_dtree' B -> wf_dtree' (dinsert B b i).

Lemma dinsert_is_redblack (B : dtree) b i n :
is_redblack B Red n ->
exists n', is_redblack (dinsert B b i) Red n'.

where

• wf_dtree' is needed for small sequences

Definition wf_dtree' t :=
if t is Bleaf s then size s < high else wf_dtree low high t.

• is_redblack checks the red-black tree invariants:
• the child of a red node cannot be red
• both children have the same black depth
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The mysterious side

• Omitted in Okasaki’s Book

• Enigmatic algorithm by Stefan Kahrs, with an invariant
but no details

Chose to rediscover it

• Started with dependent types, guessing invariants

• Used extraction to retrieve the computational part

• Rewrote and proved the simply typed version
Proofs are small, but use Ltac for repetitive cases.

• As case analysis generates hundreds of cases, performance
can be a problem.

Lemma ddelete_is_redblack B i n :
is_redblack B Red n -> exists n', is_redblack (ddel B i) Red n'.
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Deletion main function

Fixpoint bdel B (i : nat) { struct B } : deleted_btree :=
match B with
| Bnode c (Bleaf l) d (Bleaf r) => delete_from_leaves c l r i
| Bnode Black (Bnode Red (Bleaf ll) ld (Bleaf lr) as l) d (Bleaf r) =>

if lt_index i d
then balanceL' Black (bdel l i) d (Bleaf _ r)
else balanceR' Black (Bleaf _ ll) ld

(delete_from_leaves Red lr r (right_index i ld))
| Bnode Black (Bleaf l) ld (Bnode Red (Bleaf rl) d (Bleaf rr) as r) =>

if lt_index (right_index i ld) d
then balanceL' Black (delete_from_leaves Red l rl i)

(addD ld d) (Bleaf _ rr)
else balanceR' Black (Bleaf _ l) ld (bdel r (right_index i ld))

| Bnode c l d r =>
if lt_index i d
then balanceL' c (bdel l i) d r
else balanceR' c l d (bdel r (right_index i d))

| Bleaf x =>
let (leaf, ret) := delete_leaf x i in
MkD (Bleaf _ leaf) false ret

end.
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Dynamic bit sequence perspectives

• Simply typed approach
• SSReflect style worked well, providing short and

maintainable proofs
• could obtain proofs of balancing without complex

machinery (just automatic case analysis)
• however many small lemmas are required

• Dependently typed version
• all properties are in the types, no need for dispersed proofs
• Coq support not perfect yet

• Future work
• We have not yet started working on complexity
• We also need to extract efficient implementations

https://github.com/affeldt-aist/succinct
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