Information and Computatiob55 13400169 (1999)
Article ID inc0.1999.2830, available online at http://wvidealibrary.com

Semi-Explicit First-Class Polymorphism
for MLT

Jacques Garrigue

Kyoto University Research Institute for Mathematical 8cis, Kitashirakawa-Oiwakecho,
Sakyo-ku, Kyoto 606-01, Japan

and

Didier Rémy

INRIA-Rocquencourt, BP 105, 78153 Le Chesnay Cedex, France

We propose a modest conservative extension to ML that allows semi-
explicit first-class polymorphism while preserving the essential properties of
type inference. In our proposal, the introduction of polymorphic types is
fully explicit, that is, both introduction points and exact polymorphic types
are to be specified. However, the elimination of polymorphic types is semi-
implicit: only elimination points are to be specified as polymorphic types
themselves are inferred. This extension is particularly useful in Objective
ML where polymorphism replaces subtyping. (©1999 Academic Press

INTRODUCTION

The success of the ML language is due to its combination araattractive fea-
tures. Undoubtedly, the polymorphism of ML [Damas and Mili®82] —orpoly-
morphisma la ML— with the type inference it allows, is a major advantage. The
ML type system stays in close correspondence with the ridllesgy, following the
Curry-Howard isomorphism between types and formulas, wprovides a simple
intuition, and a strong type discipline. Simultaneousjpet inference relieves the
user from the burden of writing types: an algorithm autoo@dly checks whether
the program is well-typed and, if true, returns a principalet

Based on this simple system, many extensions have beengaaippolymorphic
records, first-class continuations, first-class abstratitgpes, type-classes, over-
loading, objectsetc. In all these extensions, type inference remains straigh#ial
first-order unification with toplevel polymorphism. Thiscsts the robustness of
ML-style type inference.

A preliminary version of this paper has been presented &ffthied International Symposium on
Theoretical Aspects of Computer Software [Garrigue anchiR@997].”

134
Copyright(©1999 by Academic Press
All rights of reproduction in any form reserved.

There are of course cases where one would like to have fass@olymorphism,
as in systenf. ML allows for polymorphic definitions, but abstractionshaanly
be monomorphic. Traditionally, ML polymorphism is used &m&finitions of first-
class functions such as folding or iteration over a pararizete datatype. Some
higher-order functionals require polymorphic functiossaaguments. These situa-
tions mostly appear in encodings, and occurrences in regr@ms can usually be
solved by using functors of the module language.

This simple picture, which relies on a clear separation betwdata and func-
tions operating on data, has recently been invalidated bgrakextensions. For
instance, data and methods are packed together insidetbj@dis decreases
the need for polymorphism, since methods can be specidi@#ie piece of data
they are embedded with. However, data transformers suabigieg functions re-
main parameterized by the type of the output. For instandenetion fold with
the ML typeVp,a. B 1list - (B — a — o) — a — o should become a method
for container objects, of typ¥a. (1 — a — o) — a — a whereTt is the type
of the elements of the container. The extension of ML withtdifass abstract
types [Laufer and Odersky, 1994, Rémy, 1994] also reqdirst-class polymorphic
functions: for instance, an expression such\&sopen X as y in f y can only be
typed if the argument is polymorphic in its argument, so that the abstract repre-
sentation ofy is not revealed outside the scope of the open constructt-dlass
polymorphism seems to be also useful in Haskell to enabledghgosition of mon-
ads.

First-class polymorphic values have been proposed in j[R&894, Odersky and Laufer, 1996]
based on ideas developed in [Laufer and Odersky, 1994]er Afe-sugaring, all
these proposals reduce to the same idea of using expliditiatypinverse introduc-
tion and elimination functions to coerce higher-order g/jm¢o basic, parameterized
type symbols and back. Therefore, they all face the samdegmolitypes must be
written explicitly, at both the introduction and the eliration of polymorphism.

Recent results on the undecidability of type inference ystemF [Wells, 1994,
Kfoury and Wells, 1994, Pfenning, 1993] do not leave manydsofor finding a
good subset of systefa that significantly extends ML, moreover with decidable
type inference and principal types. Previous attempts ¢oraplish this task were
unsuccessful.

This is not the path we choose here. We do not infer highezrdggbes and thus
avoid higher-order unification, undecidable in generalrtti@rmore, we maintain
the simplicity of the ML type system, following the premisat an extension of ML
should not modify the ML polymorphism in its essence, evehig an extension
that actually increases the level of polymorphism.

The original insight of our work is that, although ML polynpdtism allows type
inference, actual ML programs do already contain a lot oétygormation. All
constants, all constructors, and all previously definedtfons already have known
types. This information is only waiting to be used appragtia

In comparison to previous works, we remove the requirenartype annotations
at the elimination of polymorphism by using type inferenoeptopagate explicit

135

type information between different points of the programour proposal, tagging
values of polymorphic types with type symbols becomes dlymers. A type anno-
tation at the introduction of a polymorphic value is suffitciand can be propagated
to the elimination site (following the data-flow view of prmagns). This makes the
handling of such values considerably easier, and reasppaattical for use in a
programming language.

In a first section, we present our solution informally andlaixphow it simplifies
the use of higher-order types in ML. Then, we develop thiseqgh formally, prov-
ing all fundamental properties. In a third section, encgsiare provided, both for
previous formulations of first-class polymorphism, and $gstemF itself, along
with some syntactic comparisons. Section 4 shows how ouesysan be used
to provide polymorphic methods for Objective ML, in an almtansparent way.
In section 5 we discuss how the value-only restriction toyparphism can be ap-
plied here. Lastly, we compare with related works, and agdel Proofs of main
theorems are given in appendix.

1 INFORMAL APPROACH

In this section we present our solution informally. We firdtéduce a naive straight-
forward proposal. We show that this solution needs to beicest to avoid higher-

order unification. Last, we describe a simple solution thiatvs for complete type

inference. We writex 2 a to introduce a meta-level nanxgor a formal expression
a.

1.1 A naive solution

The self-application ternself= A f. ff cannot be typed in ML; however, we can
easily type it in systenk if we add proper type annotations. While this expression
is not very interesting for itself, a few variations on it atdficient to illustrate most
aspects of type inference in the presence of higher-orgmrsty Useful examples
can be found in section 4 in addition to those suggested imtheduction.

The expressionet f =id in f f whereid 2AX.X (the polymorphic identity func-
tion) is typable in ML. One can see let-definitions as a spesyiatax, combined
with a special typing rule, for the applicatighx.ay) a;. Let us exercise by replac-
ing thelet polymorphic binding by first-class polymorphism. The idnid has
typea — a wherea can be universally quantified. We shall wrijté : Ya.a — a
for the creation (or introduction) of the polymorphic value wrappingl with the
polymorphic typeva.a — a. As usual in ML, we distinguish between first-class
simple typegor typesfor short) andoolymorphic typesThus, we explicitly coerce
the polymorphic typé&/a.a — o to a simple typdva.a — a] using the type con-
structor|_| for that purpose. We calla.a — a] a polytype, which is (a particular
form of) a simple type.

Let id; be the expressiofid : Va.a — a], which has typgva.a — a]. As any
first-class valueid; can be passed to other functions, stored in data-structetes

136

For instanceidy, 1) is a pair of typg([Va.a — a] x int). Such a wrapped function
cannot be applied directly, since it is typed with a polytypéich is incompatible
with an arrow type. We must previoushpen (or eliminatg the polytype. We
introduce a new constru¢t) for that purpose. Hencéid;) is a function of type an
instance of the polymorphic typé.a — a, i.e. T — 1 for some typa. Its principal
type isa — a, making its typing behavior just the same as the polymorijatantity
functionid.

The raw expressioself is not well-typed. It should be passed a polymorphic
value as argument, for instance, of typ&.a — a]. Here, we shall introduce
polymorphism by a type constraint on the argument: [Va.a — a].(f) f. The
first occurrence of in the body is opened to eliminate polymorphism before it is
applied. The following definition expression is well-typed

self £\ f:[Va.a — al. (f) f - [Va.a — o] — [Va.a — q]
So are the two following variants:

self, A f:[Vo.a — al. (f) (f) :Va.a »a] »a’ —a
selg £\ f:[Va.a — al. [(f) (f) : Va.a —] : Voo — a] — [Va.a — d]

In self,, the occurrence of in the argument position is also opened, so the result
type is no longer a polytype. Iself;, polymorphism is lost as iself, then it is
recovered explicitly. Finally, we can appself; to the wrapped identity function
idli

(Af:[Va.a —al.(f) f) [Ax.x: Vo.a — a] : Voo — a]
More interestingly, the following expression is also wigibed
(Au.uidy) selfy : Voo — a]

There is no term typable in ML that has the same erasure (ediyjterm) as this
one. Note that no type annotation is neededupalthoughu has a polytype as
result, it is not opened locally.

1.2 An obvious problem

The examples above mixed type-inference and type-che¢usigg type-annotations).
The obvious problem of type inference in the presence ofdrighder types remains
to be solved: what happens when expressions of unknown tgpepaned. Should
the program\ f.(f) f or simplerAx. (x) be well-typed? In order to avoid higher-
order types, we accept to reject those examples. Our modakisgo keep track of
user-provided polymorphism, but never guess polymorpliism scratch.

On the other hand, forbidding lambda abstraction of an wied type to be a
polytype is too restrictive. This would violate the assuimptthat polytypes are
regular ML types, which can be substituted for any type \@eiaThus, ifAx.x has

137

typea — a, it should also have type| — [o] for any polymorphic type. Actually,

for practical programming, it is important thak.x possesses all these types. For
instance, botl{Ax.x) f andAx. f x should be typable and have the same typé.as
The former expression is needed as soon as we are using pplyimealues inside
generic data structures, such as lists, and use polymadiyoiétions to extract them.
The later allows-expansion, for instance to reorder the arguments of aifumct
without any superfluous type annotation.

When typingAf.(f) f, variable f is first given an unknown type. Guess-
ing [Va.a — a] for T would be correct, but not principal, sinféa.a — o — a
would also be a possible type for Conversely, the expressiaf.if true then
(f) f else (f : [Vo.a — a]) would have as only possible tyge€a.a — a] —
[Va.a — a], since there is an explicit annotation énHowever, we prefer to also
reject this program. Informally, type inference would implacktracking:f is first
assumed of unknown type we cannot type f) so we backtrack; typing the anno-
tation forcesf to be of type[vVa.a — a], then(f) can be typed, and so on. This
causes two problems. Firstly, backtracking may lead to abaooanorial explosion
of the search spaéand we would rather fail in every case where some inference
order would fail.

Worse, typing constraints may disappear during reductitmaditionally, this is
not a problem since this only allows to infer better typeswieer, in our case, the
removal of polytype constraints will leave some polytypespecified and lead to
failure. Consequently, we would lose the subject redugti@perty. The expression
Af.if true then (f) f else (f:[Va.a — a]) reduces ta\f. (f) f but the latter is
not typable.

1.3 A simple solution

The essence of our proposal is a simple mechanism based fication that dis-
tinguishes polytypes that have been user-provided fromeethibat have just been
guessed. Each occurrence of a polytypkis labeled with a label variable (label
for short). That is, we writéo]® rather thario].

To ensure that an expression was correctly annotated, itiraimation (a), the
type ofa must be of the fornve.[o]®. This prevents negative occurrences of the
type annotation (such as in the context or on the left hadd-sf an arrow), so
proving that it must have been user-provided. ExpressibtteedormAf.(f) f are
not allowed; the type of is a simple type, which includés|?, but notve.[o]E.

Annotations do introduce polymorphism. We may wiitelet f = (x: [0]?) in
(f) f, where the type annotation onis a polytype. Such an annotation allows
label variables to be renamed apart in the typef agind then abstracted over in
generalizing the type of the let-definition, thus allowifiggo be used polymor-
phically in the let body. For convenience, we wrke 1.a as an abbreviation for
AX.let X= (x:T) ina. Hence\f:[Voa.a — a]t. (f) f is well-typed.

IML typability is exponentially hard in theory, but it is alsolinear in practice; here, the combi-
natorial explosion would likely make type inference exputiad in practice.

138

Annotations must be correctly introduced. The expres3iénif true then
(f) f else (f: [Va.a — a]?) fails to type. The typda]® of the else-branch is
transmitted to the then-branch by unification. Howevers ialiso simultaneously
transmitted to the binding occurrence; hence, the labéhbigre also appears in
the type context and cannot be generalized; therefbyas ill-typed. An explicit
type annotation is required on the then-bran¢h: [o]¢) f. This has the effect of
renaminge into a fresh label variablée that does not occur in the context so that it
can be generalized. For convenience, we wiaienstead of/g]* when the labet
is anonymousi.e. when it does not appear anywhere else in the program, swgh as
in the above example.

Another subtle point is where to bind type variables thatodree in a type an-
notation(a: t). Traditionally, these are shared between several typetatimos,
and thus implicitly bound at a higher level according to segpules that depend
on the ML dialect. In our system, we chose to bind them (emig#y) in the type
constraint where they occur. That is, they are never shastglelen two different
type annotations. This is simpler than defining specific sappules; and shar-
ing a type variable between several annotations could leddse polymorphism
unexpectedly.

2 FORMAL APPROACH

We formalize our approach as a small extension to core ML.

2.1 The core language

Types We assume given two collections of type varialdes 7/, and labelg € £.
The syntax of types is:

T:=a|1—1]|[0] (Simple) types
o:=T1|VYa.o Polymorphic types
¢:i=0|Veg Type schemes
Ei=ale Variables

The construc{o]® is used to coerce a polymorphic typeo a type. We cal[o]® a
weak polytype. The label variabteis used to keep track of sharing between weak
polytypes. When an expression has a polytj@é and the label variable can be
generalized, then the polytype can be eliminated and theesgin can be given
the polymorphic types. We do not allow polymorphic labels in polymorphic types
g, since this would not add any power to the system (it woulddaindant with
explicit type annotations —see section 2.5).

Free type variables and free labels of a type scheme (whighbaaa simple
type) g are writtenFV () andFL(g) respectively and are defined as usual. In a type
schemeré.c, V acts as a quantifier, and the variablis bound {.e. not free) inV¢.c.

We consider type schemes equal by renaming and reorderibguofd variables
and labels, and removal of useless quantifiees .t = T whenever variabl€,

139

(VAR) (Fun) (APP

X:CeA AX:Tgpla:t AFa; 1o —> T AFay: 1,
AFX:C AFAXa:Tg— T AFaia:1;
(GEN-V) (GEN-E) (INST-V)
AtFa:o a¢FV(A) AFa:g e¢ FL(A) AF a:Va.o
Al a:Vvo.o AFa:Vveg AlFa:o{t/a}
(INST-E) (LeT) (ANN)
At a:Ve.g At aj:¢q AX:cFax:t AFa:1; (T1:1:12)
Ata:c{e/¢e} AFletx=ainay:1 AF(a:1):12
(INTRO) (ELIM)
AFa:o; (01:0:07) AR a:Ve.[o]f
Al la: o] : oyt A-(a):o

Figure 1: Typing rules

is not free int). We write {11,...Tn/01,...0n} for the simultaneous substitution
of variablesas, ...,a, by 14, ..., Ty, respectively. As usual, bound variables and
bound labels are renamed by substitutions so that freeblesiaft;’s can remain
unchanged without being captured. For exanfple~ [VB.p — a]®){t/a} isT—
[VB.B — 1] providedp is not free int. An instance of a type schenv&,a.1q is
1{€/,1/¢,a}. A generic instance of a type scheis a type schem&Z.t such that
Tis an instance of and bound variable& do not occur free irm.

Expressions are those of core ML (left) plus three new constructs (righro-
duction and elimination of first-class polymorphism andetgmnotation.

ar=x|Ax.alaa|letx=ainal|[a:0]|(a)|(a:T)

Typing rules are given in figure 1. Typing judgments are of the fofi a: ¢
whereAis a set of typing assumptions binding expression varigblggpe schemes.
The extension of a set of typing assumptignwith a new bindingx : ¢ is written
A, Xx: ¢ it overrides any previous binding &fin A. All typing rules but the last three
ones are standard. RulesiA and INTRO use an auxiliary relatiofL: _: _). Given
a polymorphic typeo, we write (01 : 0 : 02) if there exists a substitutiof from
type variables to simple types and two substitutippgndp, from labels to labels,
such thao; = 0(p1(0)) ando, = 6(p2(0)). The intuition is that i is the identity,
theno; andoy are both equal t@ except maybe in their labels. Indedg (o) :

0 : p2(0)) for any label renamingp; andp,. If o does not contain any label, then
(01:0:0) is equivalent tay; ando, being the same generic instancesofThe use
of 8 implements the local quantification of user-given typeafales that we stated
in the informal presentation. An important property of teétion(_: o :) is its
stability by substitution. That is, ifo; : 0 : 02), then(6(o1) : 0 : 6(02)) for any

140

substitutionB. Note thato is user-given and the substitutiéris not applied ta.

This relation is used to type explicit annotations. For tfpking purposes,
the construct_: 1) could have been replaced by a countable collection of priesit
AX. (x:1) indexed byr and given with principal type scherves, €, FV (1). 1{e1/€} —
1{e,/€} whereg; ande; are different renamings of the tupdeof all label variables
of t. That is, to type an expressida: 1), let 1; and 1, be two copies of where
their labels have been renamed, &nde a substitution such thathas typed(t;);
then (a: 1) has typef(t2). We kept annotation as a primitive construct because
the dynamic semantics is simpler to define this way, but ghimainly a matter of
exposition.

Rule INTRO uses the same relation, except that polymorphic typesaegianple
types. To typela: a], let o1 and o, be two copies obr where labels have been
renamed; find a substitutiod such thata has typef(o;) (i.e. 6(o1) is a generic
instance of the principal type schemeaf then[a: o] has type[6(o,)|® for any
labele.

Last, rule EIM says that polymorphism can be used only if the label of thg-pol
type does not occur anywhere else.

As an example, we have the following derivation, wher@bbreviate¥a.a — a
andAis f : [o]®:

(VAR)

AF f-[I (9] 1[0 1 [0%) (AN
- (f:[0]") : [0]* (GEN-E)

(0=Vo.a —a) ([018) ez o (ELM)
(o [o]%) A"<f [0]°) : Va.a — a (INST-V)
AR(Tel) el =l

: m (APP)

At (f:[of) f:[o]® (FUN)

FAf.(f:[o]) f:[o]® — [0]®

2.2 Dynamic semantics

We give a reduction semantics for the core language. Agtwed define two se-
mantics: a free reduction semantics for which we prove ounbjext reduction, and
a call-by-value semantics for which we prove full type sausss.

A one step reduction is either an immediate reduction (thellan the reduction

141

is indicative and optional):

-
c
3

(Ax.a)b — a{b/x}
letx=bina - a{b/x}
(a:var) =B (a:)
(@a:12—>11)b Thug (a(b:12):11)
([a:va]:[off) 1% [(@:1):0]
(a:a) v a

or obtained by inductionH is any term context with a single hole):

a; —r ay
E{a;} — E{az}

Note that the meta variabke, in rule TvAR, stands for a type variable and not for
an arbitrary type. It is a major difference with ML that typenatations are not just
a means to restrict principal types to instances. On the sigdhey allow better
typings. Thus, reduction must preserve type annotationsrasas they provide
useful typing information. Indeed, while terms are effeely reduced by rules
FuN, LET, and EImM, we need the rules AUN and TINT to maintain this type
information. These rules are needed for the following eXampf. ((Ax.x: [0] —

a) f) reduces to\f.(f : [0]) which would not be typable but for the annotation.
Rule TVAR erases vacuous type information.

Although types are preserved during reduction, they do ciotadly participate in
the reduction. In particular, it would be immediate to defameuntyped reduction
-~ and a type-erasure so that ifa; — ap, thena; — & or &, anda, are equal.

We now define the call-by-value operational semantics blyicéiag the free re-
duction semantics. Evaluation contexts (used for the abwitection rule) are then

E:={}|Eal|vE|letx=Einal|[E:0O]|(E:T)]|(E)

and the strategy is fixed so that inner redexes are reducedrtiis is implemented
by substituting a value meta variablefor term meta variablea or b when they
appear at evaluable positions in the reduction rules. dalaee defined as follows:

Vi=WwW|[v:0]
wi=Ax.al(w:Ts — T2)

By default, reduction will always refer to free reduction.

2.3 Type soundness

We could easily show that evaluation cannot go wrong by meatranslation into
systemF. We prefer to prove it in a more direct way. Subject reduci®mn
intermediate result of the direct proof that is neither fegginor implied by type

142

soundness. However, it is quite important for itself, siichows that each reduc-
tion step preserves typings, and thus that the static sesastightly related to the

dynamic semantics. Subject reduction is not obviouslyekesi by the introduc-

tion of polytypes; in particular, subject reduction woulck imold if we threw away

type constraints too early during reduction.

Both subject reduction and type inference are simplifieddsgricting ourselves
to canonical derivations. A similar result existed for tmggimal Damas-Milner
presentation of ML, but ML is now often presented in its syrdaected form. We
chose a logic rather than a syntax directed presentatioypoigds rules, since this
is here much more concise. We can still recover the benefitssyhtax directed
presentation by using canonical derivations. Canonicavaléons are those where
occurrences of rules €&\ and INST are restricted as follows:

e rule GEN only occurs as the last rule of the derivation or right abavle r
INTRO, ELIM, the left premise of rule ET, or another rule GN.
e rule INST may only occur right after rule AR, rule ELim, or another rule
INST.
Canonical derivations have been defined to validate theviiollg lemma.

Lemma 1 (Canonical derivations) A valid typing judgment A a: T has a canon-
ical derivation.

Another classical key result is the stability of typing judgnts by substitution:
Lemma 2 (Stability) If A+ a: 1, then for any substitutio, 8(A) - a: 6(1).

It is important to notice that the substitution is not apglte the expressioa; in
particular, type constraints insi@eare left unchanged: their free variables must be
understood as if they were closed by existential quantifingsee the last paragraph
of section 1.3).

We define a relatiom; C ap between programs stating that all typingsaefare
also typings ofy, i.e.

aCaps (VA ¢, AFa1: (= Al a:()
This simplifies the statement of subject reduction, exgeé$sr free reduction.

Theorem 1 (Subject reduction) Reduction preserves typingse. if a; — ap,
then a C ay.

Subject reduction is not sufficient to prove type soundnsisge the full relation
(every program has every type in any context) satisfies subgeluction but does
not prevent from type errors. It must be complemented by atlewing result,

which we only express for call-by-value semantics.

Theorem 2 (Canonical forms) Irreducible programs (for call-by-value reduction)
that are well-typed in the empty environment are values.

Type soundness of the call-by-value semantics is a stfaig¥drd combination of
the two previous theorems.

143

2.4 Type inference

We present both unification and type inference as constsalaing using rewriting
techniques. This formalism, now well-established [Joaaichand Kirchner, 1991],
has several significant advantages over older, more aiguitpresentations of uni-
fication algorithms: renaming and introduction of freshiales is rigorously and
simply formalized by existential binders; sharing, hereursive types, is formally
dealt with by the use of multi-equations instead of simpleatigng; the presenta-
tion with rewriting constraints is also more modular, whedmses proofs as well as
further extensions. The same framework can also be usegffeiriference, treating
type inference problems as unification problems [Rémy2]l98deed, solutions of
type inference problems are also sets of substitutionsth&llprevious benefits of
treating unification as constraint solving also apply teetygference. In particular,
type inference can be specified and proved correct indepépd# any strategy. A
top-down, bottom-up, or any other —even non-deterministierminating strategy
can be chosen later, or remain unspecified.

First-order unification on simple types must be extendeditwle polytypes. Dur-
ing unification, a polytype is treated as a rigid skeletorresponding to the poly-
morphic part, on which hang simple types. Reusing the fraonlewf constraint
solving, we show that the addition of first-class polymosphiretain the flexibil-
ity and modularity of type inference. Simultaneously, wevile formal, general,
and efficient unification and type inference algorithms (se af “fresh variables”,
preservation of sharing, treatment of recursive types

More precisely, the formalism used is that of conditionanigng. For clarity of
presentation, we distinguish between two kinds of conaltidr hose that can always
be satisfied are writtelet conditionin rule; they amount to a convenient notation
for pattern matching. Other conditions may fail, providishgnamic control during
the inference process; they are writieonditionthenrule.

Unification for simple types First, we remind unification for simple types. In this
part only, we exclude polytypes from simple types, stillgad over by letter. A
unification problemalso called ainificand is a formulaJ defined by the following
grammar.

Uui=1|T|UAU|3Ja.U|e Unification problems
el=T1|1=e Multi-equations

The symbolsT and_L are respectively the trivial and unsatisfiable unificatioobp
lems. We treat them as a unit and a zero/forThat isU A T andU A 1 are equal
toU and_L, respectively. We also identify with singleton multi-equations. That

2Multi-equations can be easily mapped to equivalence cassin [Huet, 1976], as well as to the
mutable structures that are used in destructive unificatigorithms.

SRecursive types are correctly handled by our algorithnibpagh they are not considered in the
proofs.

144

is, we can always consider that a unification probléroontains at least one multi-
equationa or a = efor each variablex of U. A complex formula is the conjunction
of other formulas or the existential quantification of amstformula. The symbol
A is commutative and associative.

The symbol3 will be needed later for polytypes. It acts as a binder, free
variables of4a.U are free variables df excepta. Bound variables can freely be
renamed. We identifydas.3a,.U and3az.3a3.U and simply writedag,a,.U.
The symbol= is associative and commutative. This makes multi-equatimhave
as multi-sets of types.

The substitution of types is extended to unificands in aghtéorward way. For
existentials, the application of a substituti®mo a unificandda.U is the unificand
Ja’.8(U{a’'/a}) wherea’ is chosen outside of both the domain and the codomain
of 8 and outside free variables 0f.

A substitution8 is a solution of a multi-equation if it sends all types of thaltn
equation to the same codomain. The substitufaatisfies a conjunction of sub-
problems if it satisfies all subproblent¥is a solution oHa.U if it can be extended
ona’ into a solution oJ {a’/a} whereda’ is chosen outside of both the domain and
the codomain 08 and outside free variables Of.

Two unification problems are equivalent if they have the saet®f solutions. All
previous structural equalities are indeed equivalenceswiite U; = U, when the
unification problem&J); andU, are equivalent. We also writd; = U, to mean that
the unification problen; can be rewritten into the equivalent unification problem
U,. Finally, a solutionf is a principal solution of a unification probleth if any
other solution can be obtained by (left) composition with slubstitutiord.

Given a unification problend, we define the containment ordering, as the
transitive closure of the immediate precedence orderimgaiaing all pairsa < a’
such that there exists a multi-equatian= 1 = e in U whereT is a non-variable
type that contain®’ as a free variable. A unification problem is strict<f; is
irreflexive. Note that strictness is syntactic and is nosereed by equivalence.
Intuitively, strictness corresponds to the absence of ithate cycles. However, it
does not detect potential cycles that may appear after sompwutation steps. Still,
for fully merged and decomposed unification problemnes,when the rules MRGE
and DEcomMmposEcannot be applied anymore, strictness is equivalent tceittetiat
if there is a solution then there is a finite solution.

A problem is in solved form if it is eithet or T, or if it is strict, merged, decom-
posed, and of the forrda. A1 n&. In particular, each multi-equatias contains
at most one non-variable type, and i j theng ande; contain no variable type
in common. An explicit principal solutio® can be read straightforwardly from a
problem in solved form. We also writd = 3¢.0 if 8 is a principal solution of
U and variable€ are not free iflJ, or by abuse of notation, [l is unsatisfiable
and@ is L. This is consistent with the previous notation sificeould be seen as
Aacdome)® = 6(a) whenever its domain and codomain are disjoint.

The unification algorithm is given as a set of rewriting rullest preserve equiv-
alence in figure 2. There are implicit context rules thatvalto rewrite complex

145

OccCUR-CHECK
if <y is not strictthen
U= |
MERGE
a=eAo=€=>a=e=¢
ABSORB
ao=a=e=>a=e
DECOMPOSE
if sizgt; — 12) < sizg1] — T5) then
o h=T—>Th=e>T 3Hh=eATI=TIAT,=T,

Figure 2: First-order unification for simple types

formulas by rewriting any sub-formula. We wrisézg o) the size of polymorphic
type o counted as the number of occurrences of symbols _) or [_] in 0. These
rules are all standard. It is well-known that given an adbijtrunification problem,
applying these rules always terminate with a unificatiorbfam in solved-formed.
The rule GccuUR-CHECK rejects solutions with recursive types. If it were omitted
the algorithm would infer recursive types.

Unification for simple-types with polytypes We now extend types to polytypes
[0]¢. Consistently, we extend type variables with label vagablHence, substitu-
tions are from type variables to polytypes and from labekdes to label variables,
unless otherwise specified. In order to allow a natural deosition of polytypes,
we extend typing problems with equations between polymorgipes.

U:= ...|0i0

These are not multi-equations. In particular, a variablenoabe equated to an ar-

bitrary polymorphic type. For instance, Y va.a — a does not have any solution.
Thus, equations involving polymorphic types are never mgrg

A substitution® is a solution of a polytype equaticro.t 2 vart if B(va.1) =
B(Va'.t"), where equality is the usual equality for polymorphic typediL, i.e. it
is taken modulo reordering and renaming of universal gtiargiand removal of
useless universal variables. This is equivalent to theemnig of

e two injective substitutionp andp’ of respective domaina anda’ and of
codomainaa’ and

e arenaming) from aa’ outside of free variables &, 1, T/, andaa’
such thaBon is a solution ofp(t) = p’(t’'). We could solve such unification prob-

lems by first unifyingp(t) andp’(t’) and then checking the constraints. However,

146

DECOMPOSEPOLY
if siz€o) < sizgd’) then
[Of = [0 “e= [0ff =eAre=€¢ ATZ 0
CLASH
Of=t1—=1T=€e=>1
POLYTYPES
letana’ =0andanNFV(t) =0anda’ NFV(t) =0in
VATV T = 300 T=TAG < O
RENAMING-TRUE
let o = (ai)iel..ner andad’ = (ail)iel..nJrq in
Jad’. (@i =a))t"Aad e o =>T
RENAMING-FALSE
fBeaandt¢a U{B}thenB=1=era+d = L
ifBeanFV(t)andt #Btheny=t=eAa+ o = L

Figure 3: First-order unification for simple types with piyiyes

this would force some unnecessary dependence. Notq ikainly here for techni-
cal purposes, and can be omitte® i disjoint fromaa’. This can be dealt with by
existential quantification of unificands.

Without loss of generality, we can restrict ourselves to ¢ase where Na’,
FV(T1)nad’, andFV(t) Nna are all empty sets. We refer to these hypotheses by
condition (H). We write the sum of two substitutions of digfodomainst + 6’ that
maps variables oflom(6) and dom(6') to their image by or €', respectively. We
write B W for the restriction of the substitutioBito the set of variable®/, that is,
the substitution equal t6 on dom(6) "W and to the identity everywhere else. We
write V \ W for the set difference betwe&handW, i.e. the set of all elements that
are inV but not inW. Consistently, we writ@\ W for the restriction of a substitution
outside of a set of variabl&¥, that is the restriction d to dom(6) \ W, or formally,

01 (dom(6) \W).

Let® be(n+n—1)oBono(p+p'), which decomposes &go 0\ aa’) + (p+p’).

(If 8 is disjoint fromaa’, then® is simply 8o (p + p’), which decomposes into
6+ p+ p'.) The substitutiord’ satisfies the three following properties:

(1) 6() =6(7),
(2) ©'la and®’ 1o’ are injective inoa’, and
(3) no variable ofxa’ appears icodom®' \ aa’).

Conversely, a substitutiodf satisfying these three conditions is a solutiowaft al
va'.T.

The condition (1) above is a unification problem. We intragl@cnew kind of
unificandsa «++ a’ whose solutions are substitutions satisfying the comnuiti(2)

147

and (3) simultaneously. We considerand a’ as multi-setsi(e. the comma is
associative and commutative). In order to avoid specig@s;ase also require that
no variable is listed twice in the sequerxe’ (in particulara Na’ is empty). The

symbolsi and <> are commutative. Thef is a solution ofva.tT = V&'t under
the assumption (H), if and only if it is a solutiahod’. (T =T Ao <+ o). Note that
unificands are no longer stable by arbitrary substituti@ieiag as they contain free
variables appearing in renaming unificands (otherwisearmang unificands could
even become ill-formed.) Still, unificands remain stabledryyamings. Indeed this
iS necessary to give meaning to existentially quantifiedicamds.

Rules for unification with polytypes are those of figures 2 8ndgether. Rule
CLAsH handles type incompatibilities. RuleRyTyPEStransforms polytype equa-
tions as described above. RulefMING-TRUE allows to remove a satisfiable re-
naming constraint that became garbage jndependent of all other multi-equations.
On the opposite, rule RNAMING-FALSE detects unsolvable renaming constraints.
In the first case, a solutidhof o <+ a’ would identify a variablg of a with another
variable ofa (thus® would not be injective) or with a term outside @fJa’. In the
second case, the image of a variapleould contain properly a variablg of a,
making it leak into a wider environment (thus, violating daion 3).

It can be easily checked thatUf is merged and decomposed, then for every re-
naming constraint that remains, either ruleNAMING - TRUE or rule RENAMING-FALSE
applies. Therefore, renaming constraints can always lerelied.

Theorem 3 Given a unification problem U, there exists a most generafiem®
which is computed by the set of rules in figures 2 and 3, or tiseme unifier and U
reduces tal .

Type inference For type inference, we extend unificands with typing proldem
A typing problem is a triple, writte\ > a : T, of an environmen#, a terma, and

a typet. A solution of a typing problemA > a: T is a substitution® such that
B(A) Fa: 6(1). By lemma 2, the set of solutions of a typing problem is stable
under substitution. Thus, typing problems can be treataghdiation problems,
following [Rémy, 1992]. The rules for solving typing prehs are given in figure 4.
The generalizatiorGen(o,A) is, as usualy&.o whereg are all free variables and
free labels ofo that do not occur imA. To lighten the presentation, we leave it
implicit that whenever we writel&. 0, variablest are assumed to be distinct from
all other variables appearing in the rule.

The rewriting for type inference closely follows typing esl given in 1, except
that we are assuming a syntactic presentation enforcingnézed derivations where
rules VAR and E.iIM are combined with (followed by) rulenisT- and rules [ET and
UsE are combined with (preceded by) rul€&as in canonical forms. Rulesa¥,
FUN, AppP, LET are the same as for ML [Rémy, 1992]. The remaining rules ave n
but unsurprising. Their close correspondence with rulefigofe 1 is made in the
proof of soundness and completeness of type inference givegopendix A.

148

VAR _
let VE.T' = A(x) and ENFV(1) = 0in
Abx:t=>3J&1=T
FUN
letaq,0o ¢ FV(A)UFV(T)in
Ar Ax.a:T= 30,02 (AX:01>a:02) AT=01 — 0>
APP
leta ¢ FV(A)UFV (1) in
Avg a:1=3Jo.(Avag:a—=T)A(Avay:a)
LET
leta ¢ FV(A)in_
if Abag:a=3&.0then _
ApvletXx=ainay: 1= 3 a.0NAX: Gen(6(a),0(A))pay:t
elseArletX=a inay: 1= L
ANN
let &o = FL(1o) and €1 andg; be disjoint copies ofg outside ofA andt
and 0y = FV(10) and a; be a copy ofig outside ofA andt
and1; = To{01/0p} in
A (a: To) T=> 351,8_2,0_(1.A> a: Tl{gl/ﬁ_o} AT = Tl{E_z/go}
INTRO
leto =Va.tpandaNFV(A) =0
and gy = FL(0) and &; ande; be disjoint copies of, outside ofA andt
and 0y = FV (o) and a; be a copy ofig outside ofA, T anda
and1; = To{01/0p} in _
if A>a:1i{e1/e0} = 3& 6and a N (dom(6) UFV (codom8))) = 0then
Av[a:o]:1=> 38 €,8,01,8.0AT = [Va.T1{e2/€0}]F
elseAvr[a:o]:1=> L
ELIM
leta ¢ FV(A) in
if Aba:a = 3&.0then _
if 8(a) = [va'.T']*ande ¢ FL(B(A)) thenAp (@) : 1= 3&, 0,0 .0AT =1
else ifd(a) =a’anda’ ¢ FV(6(A)) thenA> (a) : 1= 3&,0.0
elseAr (a):1=> L
elseAr> (a) 11> L

Figure 4: Rewriting rules for type inference.

Theorem 4 Given a typing problenfA> a: 1) there exists a principal solution,
which is computed by the set of rules described in figures Bdd3aor there is no
solution and the rules reduce tb.

149

2.5 Polymorphic labels in polytypes

We did not allow labels in polymorphic types We show here that this would
not increase expressiveness. In this section, we considaiternative type sys-
tem, called thextendedype system, where extended polytypes are of the fgfm
instead ofo]®. Typing rules are unchanged.

To show that this does not increase expressiveness, we aefiiarslation((_))g
from extended type schemes to type schemes. The transigapanameterized by a
set of label variablek that is omitted when empty. For simplicity, we suppose that
all quantified labels have different names in the definitibthe translation:

((ape = «a
(1= To)e = VeigaT) =T, if (T))e = V&1l
([ve.ol®o)e = Vee.[o']o if € € E and{((0))zue = V€'.0'
([Ve.olo)e = VE.[o']eo if £ ¢ E and((0))g = V€'.0'
(Va.o))g £ Veva.o' if (o)) = Ve.o'
(veo) = Ve(ohe

Intuitively, the translation moves label quantifiers to theer level. During this
process however, label quantifiers that appear in a polyiyipese label is itself
not quantified are simply dropped. The translation is ex@drftbomomorphically to
expressions and typing environments. Then, consideriagutigmentA a: ¢in
the extended type system, it is translated into the judgriiégt - ((a)) : ((¢)) of
our system. The latter has smaller type annotations sindebel quantifiers are
dropped in{(a)). It is then easy to prove (by induction on the size of the farme
derivation) that whenever the former judgment is valid,ssthe later.

2.6 Printing labels as sharing constraints

In this section, we propose an alternative interface to #& mimed at enhancing
readability of types. It is also robust. However, it is stighharder to present, for-
mally. Hence, we followed the other, more traditional agmtoabove for simplicity
of presentation.

Labels are used to trace the sharing of polytypes. Types eaadiricted so that
two polytypes with the same label are necessarily equals property is not re-
quired in the present type system, but it is stable: if satisby all initial type
assumptions irA and type annotations ia, then it remains valid in all types ap-
pearing in a principal derivation &t a: 1. The grammar of types can be extended
with a sharing construtt

T:=...|(Twherea =T1)

Using sharing, any type can always be written such that elsdygl occurs at
most once, and thus can be omitted. In fact, in our presentasiharing of types

4Alternatively, one could use the bindirgas a as in Objective ML, although the binding scope
of as is less clear and harder to deal with, formally.

150

is preserved during type inference. Sharing was just ighareen reading princi-
pal solutions from unificands in solved form. Thkere construct allows to read
and print all sharing present in the solved form. Actuallglyosharing involving
polytypes needs to be printed; all other sharing can be @hor

For instance, the expressidwx. (x : [0]) has type[o] — [o], which would have
previously been writteive, &'.[0]f — [0]¢. Conversely, the expressiox. let y =
(x:[0]¥) in x has type(a — o where o = [0]¥) which would have been written
Ve.[o]® — [0]¢, where the two polytypes share the same label.

Both notations (sharing constraints and label variableg)adly coincide when
all polytypes are anonymousd. no label variable occur twice) and polytypes are
simply written[o]. For instance)x. (x : [0]) has typgo] — [o]. This is an important
case, since the only types the user actually needs to watefahis form. Indeed,
types written by the user are only type annotations, whicoiye more general by
removing sharing constraints. More preciselyglifis a polymorphic type obtained
from o by a label substitutiomp, then for any expressios we have(a: [0]) C (a:
[0']) and[a: 0] C [a: 0']. This is an easy consequencesdieing more general than
o

Thus, the user never needs to write labels or sharing camtstraut he must read
them in both inferred types and type-error messages.

3 ENCODINGS

In this section, we give encodings in our language for bottliex polymorphism
with datatypes and systef This last encoding is direct, and makes our language
an alternative to systerr. We also compare the use of explicit type information
between systerk and our proposal.

3.1 Type annotation on arguments

Itis convenient to allow\x: T.ain expressions. We see such expressions as syntactic
sugar forAx.1let x = (x: 1) in a. The derived typing rule is:
(F’OLY-FUI\Q _
A(x:Vety) Fa: T (T1:1:12) ENFL(t1) =0
AFAxT.a: 11— 1

Fun

The derived reduction ifAx:t.a) b — a{(b: 1)/x}. Note thatt; andt, are not
just the results of renaming label variablestoiThey may also be an instancetof
Hence, the set of generalized labels contains only labels correspondngppies

of those oft and do not include any label that would have been brought &y th
instance of a free type variable ofsince those would also appearti).

3.2 Polymorphic datatypes

Previous works have used data types to provide ML with exglalymorphism [Laufer and Odersky, 1994,
Rémy, 1994, Odersky and Laufer, 1996]. Omitting otheraspthat are irrelevant

151

here, all these works amount to an extension of ML with exgoes of the form:

ti=a|t—ot|Ta Types
s:=t|Va.s Polymorphic types
Mi=X|MM|AXM|TM|T 1M Terms

|type Ta =sin M Type declarations

whereT ranges over datatype symbols. In expressidnandT ! act as mutually
inverse introduction and elimination functions to coetue polymorphic typeinto
the simple typel a.

The translation is an inductive definitiogfL))p. The environmenp is a list of
type definitionstype T o = g and p(T) is the functionAa. gy, i.e. given type
argumentg, it returns the typeo{t/a}, using the right most definition of in p.
The translation of these types into types of our languagérasgbtforward. The
translation does not actually use type annotations smarity uses a single label
(While the program uses only one label, the type derivatiesdnat least two other
labels to type the elimination patterg§M)), : [p(T) a]¢), locally.) It could also
make all labels of the translation different. anonymous, but this is not needed.

(CHIEX ({te = t2))p = (tL))p — {(t2))p (T Do = [(R(T) Dpl*

(Va.8)p = V()

We translate programs as follows.

(N = x (type Ta=tinM))y 2 ((M))pypeT =t
(AXM)p 2 A (M), (MIM2))p & ((M1))p (M)
(TM)p 2 [(M)p:p(T)a] (TIMYe & (((M))p: [p(T) &%)

Indeed, the patterf(_ : [0])) amounts to the explicit elimination of polymorphism
(the explicit polytype annotatiofy. : [0]) ensures that the polytype is anonymous.)
Since the elimination of polymorphism is always explicittire translated terms,
it can easily be shown that the translation of a well-typethtis well-typed. More

precisely, we extend the translati¢p)) _ to typing environments as follows.

(o), = (AX: T = (A X (pral (Atype TA=8))p = (Ao
0120 [AX:T] 2[A] [Atype Ta=s| = ([A],type T a =5)

For any termM, if A-M :t, then((A)) = ((M))a] : {(t)) [a]-

As we noticed above, the translation does not use type amtgasmartly. In-
deed, all eliminations are explicitly typed and the tratistacould have been given
in a weaker language with explicit elimination of polymoigrh.

152

3.3 Encoding system F

Laufer and Odersky have shown an encoding of systento polymorphic datatypes
[Odersky and Laufer, 1996]. This guarantees by compasitiat systent can be
encoded into semi-explicit polymorphism. We give here adiencoding of system
F, which is much simpler than the encoding into polymorphitatiges.

The types and the terms of systéhare

ti=a|t—t]|Va.t Types
M:i=x|MM|Axt.M|Aa.M | Mt Terms

The translation of types of systelfinto types of our language is again straightfor-
ward, and may use a single lalgel

((a) =a (t = t2) = (ta) = ((t2) ((va.t) = [Va. ()"

The translation((_)) is extended to typing environments in an homomorphic way.
The translation of typing derivations of terms of systénmto terms of our language
is given by the following inference rules:

X:teA AX:tEFM:t'=a
AEX:t=X AEAEM:t =t = A ((t).a
AFM:t st=a AFM:t'=4d AFM:it=a a¢FV(A)
AFMM :t=ad AFA0.M:VYo.t = [a:Voa.((t))]

AFM:Vat = a
AEMt:t'{t/a} = (a)

Since the translation rules copy the typing rules of sydterthe translation is de-
fined for all well-typed terms. There is no ambiguity and translation is deter-
ministic.

Lemma 3 For any term M of system F, if AM : t = a, then((A)) Fa: ((t)).

Proof The proof is by structural induction ad. The only potential difficulty is

to ensure that when typingg) the polytype[o]® of a is always anonymous. This
is immediate: since the translation of an abstraction isagdrannotated with the
exact type of the variable, all type schemes of the typingrenmnent may be fully

generalized with respect to label variables; thereforeetiséiould be a derivation
with no free labels in the typing environment where rulenE will always succeed.

[]

If we choose for systeri the semantics where abstraction does not stop evalua-
tion, then the translation preserves the semantics in aggense (reduction steps
of a term can be mapped to reduction steps of the translated. tAnother seman-
tics would need easy adjustment, either of the translatiaf the semantics of our
system.

153

The simplicity of our encoding of systef compared to its encoding into poly-
morphic datatypes [Odersky and Laufer, 1996] mainly tsstrom having poly-
types as first-class types. We have used a single label imahslation, as in the
previous section. However, the derivation now relies orymalrphism of label
variables in the constructiokx: T.a and the elimination sites are left unannotated.

3.4 Comparison with system F

The above encoding shows that our system is a possible atiterrto systent-.
Thus, it is interesting to compare a tehof systemF with its translationa in our
language, syntactically.

Our types differ by having an extra type construdtgrsurrounding every poly-
morphic type. Term variables do not carry type informationeitherM or a.
Lambda abstractions carry exactly the same type informatidbothM anda. The
type information at elimination of polymorphism is alwaywitted ina. The coun-
terpart is that type information at introduction of polymbism appears explicitly
in [a:Va.{(t))]. In Aa.M, only the variablex is mentioned; the type is deduced
from the type information located at abstraction and apgibe nodes irM.

The comparison can be illustrated on the following two azstexamples:

((N(f:vaut).M{ft'})) =Af:[va.t].a{(f)}

(M1{Aa.M2})) = ai{[az : Va.1]}

The first example corresponds to the abstraction and useaymprphic valuef
in a function. Type annotations are similar in systerand our system, and we are
even shorter since we can omit the instantiation types ghpaiphism elimination.
For such cases, our approach appears to be more comfotiahlsytstent.

In the second example we introduce polymorphism somewlmsidd a term.
While systemF can do it just by giving the type variable to quantify, we have
give an explicit polymorphic type. Indeed, our system pdegi no way to identify
a type variable outside of an explicit type.

Which of the two syntaxes will be longer depends on which drieeotwo patterns
dominates the other. We believe that the former pattern ierfrequent in user
programs, and that conversely the latter is more frequetibriaries. Hence, our
system may provide a reasonable alternative syntax forehigtder programming.

Notice also that we have been comparing here a sy$tet@rm and its direct
translation in our system. Terms directly written in ourteys can omit much more
type information. For instance, we do not actually need twigle a full type in our
second example, but only a skeleton containing all occaa=ofa in t. And since
we are extending ML, we do not need explicit type abstraddioa instantiation for
toplevel polymorphism.

We may also develop specific idioms. One of them is the simetias use of
multiple type abstractions, asfa: Vay,02.1]. Since type application is explicit in
systemF, the expressiom\aq, ..M would be ambiguous; thus it is not allowed.

154

This does not give us more concision than systepbut it allows to avoid the
common pattert[f : Va.1] : Va'.Va.t]. In most cases, instantiation of all variables
will be simultaneous and we can simply wrjte: Va'.va.t|.

3.5 Fully explicit type annotations

Considering the inherent difficulties of our semi-implielimination scheme, we
present a sublanguage where elimination of polymorphisfulii explicit. This
highlights the first stage of our proposaé. making polymorphism explicit, while
the second stage was dedicated to propagating type infiomat

This sublanguage is theoretically interesting. We do ree Eny expressive power
by enforcing explicit elimination of polymorphisme. adding an explicit type an-
notation to all eliminations. Indeed, the encoding of palyphic data types into
polytypes has been done in such a restricted sublanguageilt&neously, the re-
striction to the sublanguage removes the need for labets hareby significantly
simplifies the type system.

The encoding of systeff is also possible and as easy in this restricted language.
We just have to change the abstraction and type applicaties.r

AFM: Vot = a AX:tEM:t'=a
AEMt:t'{t/a} = (a: (Va.t'))) AFAXt.M:t—t' = Axa

Changing the abstraction rule is not required, but anmagadibstractions would
be superfluous in this new translation. Notice however thah$ encoded in the
sublanguage are more verbose.

Finally, let us compare terms translated from our systeim tinis restricted sys-
tem. It looks like we would just have to move annotations framstraction to elim-
ination nodes, occasionally duplicating them. However,sge two main cases
where this gets worse. Firstly, when an annotation contgneral polytypes, like
will often be the case for objects, we must split the annoiainto pieces, and use
a different type annotation to eliminate each polytype.d&dty, in our system we
did not need any annotation at all fbst-defined identifiers.

For a complete example, let 2 [04], T2 2 [02], T3 £ [03] andT 214 x To. Using
semi-implicit elimination we can write:

lety=[a: 03] in AX:T. ({fst X), (snd X), (a))
but if we had only explicit elimination we would have to write
lety=[a:03] in AX ((fst X: T1),(snd X: Tp),(a: T3))

One could argue that some annotations in the second ternctaidip smaller than
in the first one. We think however, that the number of annagtimatters more than
their size (which could always be shortened using type afddirens).

In summary, restricting to fully-explicit polymorphism iisteresting for its sim-
plicity, but cannot stick syntactically to systdfmas much as semi-explicit polymor-
phism allows. It is also less convenient to use than the yisliesn.

155

4 APPLICATION TO Objective ML

In this section we show how the core language can be used wdprpolymor-
phic methods in Objective ML[Rémy and Vouillon, 1997]. Polymorphic methods
are useful in parameterized classes. Indirectly, they nsy reduce the need for
explicit coercions.

While Objective ML has parameterized classes, it does notvahethods to be
polymorphic. For instance, the following class definitiaild to type.

let O collection = class (1)
val contents =1
meth mem = AX. mem X contents
meth fold : B - a - B) - B — B
= AMf.Ax. fold_left f x contents
end

The reason is that variabfeis free in the type for methoflo1d and it is not bound
to a class parameter. The solution is to have the metbad be polymorphic ir.
With polytypes, we can write

meth fold =
[Af .Ax. fold_left f x contents : VB. (B - a — B) — B — B]

Still, we have to distinguish between polymorphic and moagghic methods, in
particular when sending a message to the object. The aineakthainder of this
section is to make invocation of polymorphic and monomarphiethods similar
and also to make the invocation of polymorphic methods éght

The first step is to give polytypes to all methods. This islgakine by wrapping
monomorphic methods into polytypes. For instance, we strétié

meth mem = [Ax. mem x 1 : O]

However, we still want to be able to use monomorphic methoitlsowt type an-
notations. There is a small but very convenient extensidhdaore language that
solves this problem. We add a new typing ruleNe-M:

(ELIM -M)
Alta:[t]®
AF(a):1

As opposed to rule BM, this one allows to appear iPA. Inference problems are
solved by forcing the polytype to be monomorphic.

Both rules EiMm and E.im-M apply whene is anonymous and the polytype is
monomorphic, but they produce the same derivation. If ei¢hie free inA or the
polytype is polymorphic, then only one of the two rules mayused. As a result,
principal types are preserved. The type inference alguoritan be modified as
shown in figure 5. The subject reduction property is alsogyresl.

5The examples of objects and classes given below are rathuitivie, and could be translated in
other class-based object-oriented languages; the relaakrefer to [Rémy and Vouillon, 1997] for a

156

ELIm
leta ¢ FV(A) in
if Aba:a = 3¢.0then _
if 8(a) = [va'.T']*ande ¢ FL(B(A)) thenAp (@) : 1= 3&,0,0.0AT =1
else if6(a) =a’anda’ ¢ FV(6(A)) thenAr (a) : 1= 3&,0.0
else lete’ ¢ (FL(A) UFL(1))in A> (a) : 1= 3, ,a.0Aa = [1)°
elseAr (a) 1= L

Figure 5: Type inference rule for use of monomorphic polgtyp

The expressiofAx. Ay. (x#mem) y) is then typable with principal typénem: [0 —
B];..) = a — B. Since all methods are now given polytypes, we shall change o
notations (the new notations are given in term of the old pniestypes, we now
write m: o for m: [0]; in expressions, we now writ@: 0 =aform=[a: o], m=a
for m=[a: a], anda#m for (a#m). With the new notations, the collection example

is written:

let O collection = class (1)

val contents =1

meth mem = Ax. mem x contents

meth fold : VB. B - a = B) - B = B

= AMf.Ax. fold_left f x contents

end; ;
value collection : class a (0 list)

meth mem : 0 — bool

meth fold : VB. B - a = B) - B = B
end

A monomorphic method is used exactly as before.

let coll mem ¢ x = c#mem x

collmem : (mem : d — B; ..) - a — B
However, when polymorphic methods are used under absimagtthe type of the
object should be provided as an annotation,

let simple_and_double (¢ : O collection) =
let 11 = c#fold (Ax.Ay. x::y) [1 in
let 12 = c#fold (Ax.Ay. (x,x)::y) [1 in
(11, 12);;
simple_and double : O collection — (0 list * (0 * O) list)
Since the methodold is used with two different types, this example could not be
typed without first-class polymaorphism.

formal presentation of Objective ML, allowing a deeper iegaf this section.

157

Polymorphic methods also appear to be useful to limit thel fieeexplicit coer-
cions. In Objective ML, coercions are explicit. For instapnassume that objects of
class point have the interfa¢e : int;y : int), and that we want to define a class
circle with a method giving the distance from the circle tooanp

let circle = class (x,y,r)
meth distance = Ap:point.

end;;

value circle : class (int * int * int)
meth distance : point — float

end

Given a pointp and a circlec, we compute their distance leytdistance p. How-
ever, an objectp of a classcolor_point wherecolor_point is a subtype of
point (e.g.its interface is(x : int;y : int; color : color)) needs to be explicitly
coerced tpoint before its distance to the circle can be computed:

c#distance (cp : color_point :> point)

This coercion could be avoideddfistance were a toplevel function rather than a
method:

let distance c p = c#distance (p :> point);;
value distance : (distance : point — O ; ..) — #point — O

The type expressioftpoint represents any subtype pbint. Actually, it is an
abbreviation for the typéx : int;y : int;p). Here, #point contains a hidden
row variable that is polymorphic in the functiatistance. This allows different
applications to use different instances of the polymorpbig variable and thus to
accept different objects all matching the type of points.

Explicit polymorphism allows to recover the same powerdesinethods:

meth distance : Va:#point. 0 — float = Ap.

Then,c#distance cp is typable just by instantiation of these row variableshwit
out explicit coercion. Of course, we must know here ihét a circle before using
methoddistance, like would happen in more classical object-oriented tyy® s
tems. There is an alternative between using explicit coascor providing more
type information. The advantage of type information is thatcurs at more con-
venient places. Thatis, it is necessary in method defirgtaord at the invocation of
a method of an object of unknown type. On the opposite, ekpliercions must be
repeated at each invocation of a method even when all typdenamn.

5 VALUE-ONLY POLYMORPHISM
For impure functional programming languages, value-omlymorphism has be-

come the standard way to handle the ubiquity of side-effetitpreserves type-
soundness in the presence of side-effects, without makiadype system overly

158

complex. It is based on a very simple idea —if an expressi@xpansivei.e. its
evaluation may produce side-effects, then its type shaald@ polymorphic [Wright, 1993].
This is usually incorporated by restricting the&Grule to a class of expressions
b, called non-expansive, composed of variables and furgtidqguivalently, this
restriction can be put on thegr rule: both ways give exactly the same canonical
derivations in the core language. We actually prefer thterasince we also need
rule GEN to precede rules lEM and INTRO.
Thus, we replace rulesNnfrrRO and LET by the following four rules, each rule
being split in its expansive and non-expansive versions.

(PoLy-V) (PoLy-E)
AkFb:o; (01:0:07) AFa:t (T1:T: 1)
At [b:a]: oy Akla:T]: (1)t
(LET-V) (LET-E)
AFb:¢ AXx:cra:t Ara: v AX:Tray:t
AFletx=bina:t AFletX=aina:T

The class of non-expansive expressions can be refined,dpb¥he evaluation
cannot produce side-effects and preserves non-expaesiseRor instance, in ML,
we can consider let-bindings of non-expansive expressiomsn-expansive expres-
sions as non-expansive. In our calculus, type annotationslao non-expansive.
More generally, any expression where every applicatiorrategted i.e. appears)
under an abstraction is non-expansive (creation of mugdidie-structure would be
the application of a primitive):

br=x|Ax.a|letx=binb]|(b:1)|[b:0]|(b)

This system works perfectly, and all properties are preskrv

However, it seems too weak in practice. Since we use polyhigmp of labels
to denote confirmation of polytypes, as soon as we let-bindx@ansive expres-
sion, all its labels become monomorphic, and all its polgs/peed an explicit type
annotation before they can be eliminated. For instancefalf@ving program is
not typable, because labels in the type of the binding oeags ofg cannot be
generalized.

let f =[Ax.X:Va.a0 — d] inlet g= (Ax.X) f in (g) g

When ML polymorphism is restricted to values, the result ofapplication is

monomorphic (here, the result of applying.x to f). Traditionally, the typical

situation when a polymorphic result is restricted to be rmaphic is partial ap-

plication. There, polymorphism is easily recoverablea)bgxpansion. However, the
same problem appears when objects are represented assretandthods, with no
possibility of n-expansion. In our core language, the only way to recovesast!

explicit polymorphism in such a case is to annotate the ugetdfound variables
with their own types:

let f =[Ax.X:Vo.a — a] inletg= (Ax.X) f in(g: [Va.a —a]) g

159

In practice, with objects, this means recalling explicitypoorphism information at
each method invocation. The strength of our system beingpitgy to omit such
information, its interest would be significantly reducedtbig limitation.

One might think that allowing quantification on labels ig1-E, i.e. write Ve.t’ in
place oft’, is harmless. Indeed, label polymorphism does not allow tgismatches
like usual polymorphism would: verifying identity of polyarphic types is done
separately. However, this rule would break principal typéensider, for instance,
the following expression:

let Xx=1id[]inlety= (hd X) in X

It can be assigned the polytype]® 1ist for any polymorphic type. However, the
ordering of polymorphic types does not induce a correspandrdering of poly-
types, two polytypes with different polymorphic structare unordered. Therefore,
this expression has no principal type.

This problem is pathological, since such patterns willlsgoecur. However, it is
serious and significant machinery is required to fix it. It barsolved by restricting
judgments to minimal ones. That is, we replacrV and LET-E by the restricted
versions defined below. We wrife-* a: ¢ to mean that is a minimal type scheme
for a under assumption&. That is,At a: ¢ and there exists nq strictly greater
thancin the instantiation order, such that-a: ¢'. (Since we happen to be keeping
principality, ¢ is the principal type scheme farunder assumptionA.)

(LET-V?)
AF*b:¢ AXx:¢ka:t

AFletXx=bina:t

(LET-E»)
AF*a;vea.U! a#b Ax:(Ver){t/a}lray:t
AFletX=ainay:1

The rule LET-E* may seem strange, since it is not an instance of the origiaal L
rule, but rather a combination ofl 6T and LET. The original derivation would have
been:

Al a; :Vea.T

AFa; Vet Ax:Ver' Fap:t

AFletX=a inay:T

The restriction to minimal judgments is not new: it has alyedeen used for
the typing of dynamics in ML [Leroy and Mauny, 1991], for iaste. One has to
reject the programx. (dynamic X) because, in the principal judgmenta - x: a,
some variable of the type afoccurs free in the context. A non principal judgment
obtained by choosindnt for a would be correct, but arbitrary. More recently,
it has been used for local type inference in system[Pierce and Turner, 1998].

160

Type inference is only allowed locally at application nadasd upon the condition
there is a principal solution to the local inference prohléffithout this condition,
choices made at an application node would influence othees)aahd inference
would lose its locality.

We use minimality here in a somewhat different way. In thevabiwo systems,
requiring a principal solution was a way to have the infeesfail on some ambigu-
ous cases. Contrary to dynamics, our types do not need tobadjrthey may share
variables with the environment. Contrary to local type iafece, all our satisfiable
inference problems have principal solutions. Thus, ourimmétity condition never
makes a type inference problem fail, but only restricts #teo$ types that can be
assigned to a variable in a let statement. Notice ftHgudgments do not actually
require the derivation to be principal, but only minimaleyhdo not eliminate all
different derivations, but only those that would be obtdibg unnecessarily instan-
tiating some types. We may then prove the existence of pahtypes by showing
that all minimal type schemes are equal modulo renaming ohtdvariables, and
as a result our minimality condition happens to be a priritipaondition. This
condition is not harmful when reasoning about derivatiote property of mini-
mality of a derivation is kept by global substitution of frgge variables, so that the
stability lemma is still valid in the extended system.

Still, we do not consider this solution as fully satisfagfoand we view it as an
example of the difficulties inherent to value-only polymiaigm.

6 RELATED WORK

Full type inference of polymorphic types is undecidable [¢/e994]. Several
works have studied the problem of partial type inferenceygtesnF.

Some implementations of languages based on syBteelieve the user from the
burden of writing all types down. In Cardelli's implementet of the language
Fun [Cardelli, 1993] polymorphic types are marked eitheingdicit (actually their
variables are marked) and they are automatically instactizzhen used, or as ex-
plicit and they remain polymorphic until they are expligithstantiated. This mech-
anism turns out to be quite effective in inferring type apgiions. However, types
of abstracted values are never inferred. Thus, the expresgix cannot be typed
without providing a type annotation on the variaklevhich shows that this is not
an extension to ML. Pierce and Turner have extended thisaparterence mecha-
nism toF2 in the design of the language Pict [Pierce and Turner, 19%pflefault
they also assign “unification variables” to parameters atfions with no type an-
notations. Their solution requires surprisingly littlgpgyinformation in practice,
especially in the absence of subtyping. Still, as for Cditsledolution, it is quite
difficult to know exactly the set of well-typed programs, centhe description is
only algorithmic.

Conscious of this problem, they more recently proposed pace this unpre-
dictable approach by one based on predictable local inderfitierce and Turner, 1998,
Pierce and Turner, 1997a]. Their approach is somewhat dappufours: while we

161

provide some inference-free type checking without moddyML type inference,
they add some type inferencefa. and keep a checking based system. In their ap-
proach, the uniqueness of typing is still valid at every ste&pwe, they distinguish
between the specification and the algorithm of type infegebat this distinction is
only limited to one rule, the one doing local inference. Tiike has two provably
equivalent versions: one is a specification of the inferyge in terms of a univer-
sal property; the other one is algorithmic and is presented ¢onstraint-solving
style. The difference of approach and the fact that they ladsuwlle subtyping make

it difficult to compare the respective strength of the twasyss.

A different approach is taken by Pfenning [Pfenning, 1988ktead of provid-
ing type annotations on lambda’s, he indicates possible &gplications (this cor-
responds to the notatiofr) in our language). Then, he shows that partial type
inference in systerf corresponds to second-order unification and is thus undecid
able [Pfenning, 1993]. As in our system, his solution is ateesion of ML. His
solution is also more powerful than ours; the price is the lafgprincipal types and
decidability of type inference. A decidable subcase of érgbrder unification has
also been considered in [Dowek et al., 1996]. Neither smiutiandles subtyping
yet.

Kfoury and Wells show that type inference could be done fer idink-2 frag-
ment of systeni [Kfoury and Wells, 1994]. However, they do not have a notién o
principal types. It is also unclear how partial type infotioa could be added.

In [Odersky and Laufer, 1996], Laufer and Odersky acyuphesent two differ-
ent mechanisms. First, as we explained in the introductiey add higher-order
polymorphism with fully explicit introduction and elimitian. As we have seen
in section 3.2, our framework subsumes theirs. They alsodote another mech-
anism that allows annotations of abstractions by polymiorpypes as imAx:g.x
together with a type containment relation on polymorphjgety similar to the one
of Mitchell [Mitchell, 1984] but with some serious restimi. Polymorphic types
may be of the fornva.o; — 02, whereo; are polymorphic types themselves. How-
ever, universal variables such asan only be substituted by simple types. Thus,
the only way to apply a function of typ€a.a — a to a polymorphic value re-
mains to embed the argument inside an explicitly definedtppéy Actually, one
of the reasons for complementing universal-datatype poipitism by restricted
type-containment is to obtain an encoding of syskenin our case, the encoding of
systemF is permitted by the use of polytypes.

In [Duggan, 1995], Duggan proposes an extension to ML wifleab and poly-
morphic methods. His solution heavily relies on the use néi&iand type annota-
tions. These are carried by method names that must be d#tiafere being used.
In this regard, his solution is similar to having fully exptipolymorphism both at
introduction and elimination, as in [Odersky and Lauf&9@]. His use of recursive
kinds allows some programs that cannot be typed in our pedgssction 4). How-
ever, this is due to a different interpretation of objecteypather than a stronger
treatment of polymorphism.

162

CONCLUSION

We have presented a conservative extension to ML that aflonfrst-class poly-
types and first-class polymorphic values. In our proposad BK_, let-polymorphism
remains implicit. While first-class polymorphism must bé&raduced explicitly,
type information is inferred at the elimination point. Thalsows for polymorphic
methods in Objective ML, which are particularly useful irrgaeterized classes.

We have also shown that polymorphism can be restricted wesalso as to be
sound in the presence of side-effects. This naive standatdation weakens the
propagation of first-class polymorphism, and forces sorpe gnnotations, unnec-
essarily. Thus, we have also proposed an extension thatscalleiseful cases and
does not present any known limitations. Even though theifpeton of typecheck-
ing becomes technically more difficult, since it involves tiotion of minimal judg-
ments, the principal-type property is preserved. Althopgictically insignificant,
this difficulty exposes a drawback of the value-only resitsic of polymorphism.

As future work, three extensions of importance are to beistlidWhile second
order polymorphism is sometimes quite useful for prograngnit is not always
enough. Indeed, this is only one step further on the scaldsiraction. There
are few but serious situations when systéfhis needed to accomplish the desired
abstraction. Extending our solution E&° might be possible, but certainly trickier
because oB-reduction at the level of types. Secondly, we should carsagplying
our technique to existential types. The encoding of thetgeuniversal types intro-
duces inner quantifiers, which removes all opportunitiesirfterence. It remains
unclear whether primitive existential types could benebtrf our work. Thirdly,
the replacement of the core ML type system by one with subtymonstraints
as in [Aiken and Wimmers, 1993, Eifrig et al., 1995a], woulzhibine first-order
generic polymorphism and subtyping polymorphism in an NKke-language. The
issues of constraint checking and type generalizationaher orthogonal. How-
ever, some recent and more general presentation [Po&i@8, Eifrig et al., 1995b]
significantly differs from ML. Thus, more investigation isquired.

The principle of our approach has been to keep within firdeotype inference.
While we believe this to be sufficient in practice, we wouldll §ke to formulate
our type system in terms of partial type inference for seemmigr lambda-calculus.

References

[Aiken and Wimmers, 1993] Aiken, A. and Wimmers, E. L. (1993)ype inclu-
sion constraints and type inference. Gonference on Functional Programming
Languages and Computer Architectupages 31-41. ACM press.

[Cardelli, 1993] Cardelli, L. (1993). An implementation BSub. Research Re-
port 97, Digital Equipment Corporation Systems Researahteze

163

[Damas and Milner, 1982] Damas, L. and Milner, R. (1982). nE&lpal type-
schemes for functional programs. Pnoceedings of the Ninth ACM Conference
on Principles of Programming Langaggsages 207-212.

[Dowek et al., 1996] Dowek, G., Hardin, T., Kirchner, C., &iénning, F. (1996).
Higher-order unification via explicit substitutions: thase of higher-order pat-
terns. In Maher, M., editorJoint international conference and symposium on
logic programming pages 259-273.

[Duggan, 1995] Duggan, D. (1995). Polymorphic methods wih types for ML-
like languages. Technical report cs-95-03, University aft§¥oo.

[Eifrig et al., 1995a] Eifrig, J., Smith, S., and Trifonov, {1995a). Sound poly-
morphic type inference for objects. MOPSLA

[Eifrig et al., 1995b] Eifrig, J., Smith, S., and Trifonov, {4995b). Type inference
for recursively constrained types and its application toFOMn Mathematical
Foundations of Programming Semantics

[Garrigue and Rémy, 1997] Garrigue, J. and Rémy, D. (198X)ending ML with
semi-explicit higher-order polymorphism. In Ito, T. andal, M., editors,The-
oretical Aspects of Computer Softwaw®lume 1281 olecture Notes in Com-
puter Sciencgpages 20-46. Springer-Verlag.

[Huet, 1976] Huet, G. (1976)Résolution déquations dans les langages d’'ordre
1,2,...,w. These de doctorat d’état, Université Paris 7.

[Jouannaud and Kirchner, 1991] Jouannaud, J.-P. and Karctin (1991). Solving
equations in abstract algebras: a rule-based survey ofaitiifn. In Lassez, J.-L.
and Plotkin, G., editor€omputational Logic. Essays in honor of Alan Robinson
chapter 8, pages 257-321. MIT-Press, Cambridge (MA, USA).

[Kfoury and Wells, 1994] Kfoury, A. J. and Wells, J. B. (1994 direct algorithm
for type inference in the rank-2 fragment of the second+oidealculus. In
Proceedings of the ACM Conference on Lisp and functionanammming pages
196-207, Orlando, Florida.

[Laufer and Odersky, 1994] Laufer, K. and Odersky, M. (AR%Polymorphic type
inference and abstract data typeACM Transactions on Programming Lan-
guages and Systents(5):1411-1430.

[Leroy and Mauny, 1991] Leroy, X. and Mauny, M. (1991). Dyriesnin ML.
In Hughes, J., editorConference on Functional Programming and Computer
Achitecture volume 523 of_ecture Notes in Computer Sciengages 406—426.
Springer-Verlag.

[Mitchell, 1984] Mitchell, J. C. (1984). Polymorphic typaference and contain-
ment. InProceedings of the International Symposium on Semantid3atd

164

Types volume 173 ofLecture Notes in Computer Sciengeages 257-278,
Sophia-Antipolis, France. Springer-Verlag. Full versiomformation and Com-
putation 76(2/3):211-249, 1988. Reprinted krogical Foundations of Func-
tional Programminged. G. Huet, pages 153-194, Addison-Wesley, 1990.

[Odersky and Laufer, 1996] Odersky, M. and Laufer, K. @P9Putting type an-
notations to work. IrProceedings of the 23rd ACM Conference on Principles of
Programming Languagepages 54-67.

[Pfenning, 1988] Pfenning, F. (1988). Partial polymorphype inference and
higher-order unification. IrProceedings of the ACM Conference on Lisp and
Functional Programmingpages 153-163, Snowbird, Utah. ACM Press.

[Pfenning, 1993] Pfenning, F. (1993). On the undecidabiit partial polymor-
phic type reconstructionFundamenta Informaticael9(1/2):185-199. Prelim-
inary version available as Technical Report CMU-CS-92;1®¢hool of Com-
puter Science, Carnegie Mellon University, January 1992.

[Pierce and Turner, 1997a] Pierce, B. C. and Turner, D. N9Ta®. Local type ar-
gument synthesis with bounded quantification. TechnicaloRe195, Computer
Science Department, Indiana University.

[Pierce and Turner, 1997b] Pierce, B. C. and Turner, D. NOTb). Pict: A pro-
gramming language based on the pi-calculus. TechnicartePomputer Sci-
ence Department, Indiana University.

[Pierce and Turner, 1998] Pierce, B. C. and Turner, D. N. 8)9Bocal type infer-
ence. InProceedings of the 25th ACM Conference on Principles of Rmogning
Languages Full version available as Indiana University CSCI TechhiReport
493.

[Pottier, 1996] Pottier, F. (1996). Simplifying subtypicgnstraints. IfProceed-
ings of the 1996 ACM SIGPLAN International Conference ondional Pro-
gramming (ICFP '96) pages 122-133.

[Rémy, 1992] Rémy, D. (1992). Extending ML type systemhadt sorted equa-
tional theory. Research Report 1766, Institut National éeterche en Infor-
matique et Automatisme, Rocquencourt, BP 105, 78 153 Le ri@lye€edex,
France.

[Rémy, 1994] Rémy, D. (1994). Programming objects with-MRT: An exten-
sion to ML with abstract and record types. In Hagiya, M. andchill, J. C.,
editors, Theoretical Aspects of Computer Softwarelume 789 olecture Notes
in Computer Scienggages 321-346. Springer-Verlag.

[Rémy and Vouillon, 1997] Rémy, D. and Vouillon, J. (1997Dbjective ML: A
simple object-oriented extension to ML. Rroceedings of the 24th ACM Con-
ference on Principles of Programming Languagesges 40-53. ACM Press.

165

[Wells, 1994] Wells, J. B. (1994). Typability and type chewkin the second order
A-calculus are equivalent and undecidableNInth annual IEEE Symposium on
Logic in Computer Sciencpages 176-185, Paris, France.

[Wright, 1993] Wright, A. K. (1993). Polymorphism for impsive languages
without imperative types. Technical Report 93—200, Ricévensity.

A PROOFS OF MAIN THEOREMS

Lemmas 1 ¢anonical derivationsand 2 étability by substitutiopare tedious but
essential in ML. Their proofs easily carry over with the thneew rules, AN,
INTRO, and E.IM.

Proof of type soundness for the core language

Lemma 4 (Term substitution) If A,x: 0> Fa: o, and A- b: 0, hold, then A-
a{b/x} : 01 also holds.

Proof The proof is by induction on the structure of the first deiva]

Theorem 1 (Subject reduction) Reduction preserves typingse. if a; — ap,
then a C ap.

Proof We show that every rule in the definition ef— is satisfied by the relation
C. Since— is the smallest relation verifying those rules, themust be a super-
relation of—. All cases are independent. In each case i C=XT, we assume
thatAt a; : ¢ (1) and thatsy — ap, (the structure of; depending on the case) and
we show thalA - ay : ¢ (2).

We first assume that the derivation does not end with a rele. & the derivation
ends with a rule &N, it is of the form:

A
AFa;:qo (GEN*)

Al a; :VE€.qo

where the derivatioa of (1) does not end with a rulegdl. Thus we havé\Fa, : ¢
and (2) follows by the same sequence of generalizations.

CaseFuN and LET: This is a straightforward application of term-substitatio
lemma.

CaseELIM: A canonical derivation of (1) ends with

AlFa:o; (01:00:02) (INTRO)
Al [a: agl: [o2)f (GEN)
Al [a: og| : Ve.[0o) (ELIM)
At ([a:0gl): 02

166

The polymorphic typess, g, ando; are of the formiva.t4, Va.19, andva.T,, and
such that(t; : Tp : T2). Choosing variables that do not occur free i, we can
contract this derivation into the following derivation &)(

AFa:o; (|NST*)

AFa:t; (T1:To: T2) (ANN)
AF(a:to) T2 (GEN*)
Ak (a:1p): 02

CaseTFUN: A canonical derivation oA+ a; : ¢ ends with
AFa:1, -1 (=1 =111, = 1)) (3) (ANN)
AF(@:T2—=T11) 15> AFb:t)
AF(a:12—T1)b: 1

(APP)

Since the relation (3) implies botht} : 12 : 1,) and (1] : 11 : 1{), we can build the
derivation:
Akb:1) (15 :12: 1) (ANN)
AFa:1, =1 A (b:12):T) (APP)
Ara(b:1):T) (fyita: 1) (ANN)
A-(a(b:t) 1) 1]

CaseTINT: The last derivation of (1) ends with:

Ala:ad} (3) (0} :01:0%) (4) (INTRO)
AF[a:oy]: [of]e ([07]% 1 [02]%2 : [03]%) (5) (ANN)
Al ([a: 01]: [02]%2) : [03]%

Let Va.1, be o;. From (4), we know that we can writg} and o] asVa.t; and
Va.1}. Moreover, we havét) : 11 : T{). From (5), we also gefo’ : 02 : 03). Thus,
we have

(3) / (INST*) / .
Af(aim) T (GEN*)
Ak (a:1y): 0] (0] :02:03) (INTRO)

AF[(a:11):07]: [03]%
CaseTVAR: Annotating with a type variable does nothing.
CaseCONTEXT: Here, we need to show thataf C a, then for any evaluation
contextE we also havé&{a; } C E{az}. The proof, which we can directly take from

usual ML, is by structural induction d&.
[]

167

Theorem 2 (Canonical forms) Irreducible programs (for call-by-value reduction)
that are well-typed in the empty environment are values.

Proof We first relate the shape of types and the shape of values.leet value of
typet. By considering all possible canonical derivations, wetbaé

e if vis a poly expression, possibly with a type constraint, thena polytype;
e otherwisey is of the formw andt is a functional type.
Since polytypes and functional types are incompatible, areiovert the property:
e if Tis a polytype, thewis a poly expression, possibly with a typed constraint.
e otherwisej is a functional type, andis of the formw.

Then, the theorem follows: considering a prograthat is well-typed in the empty
environment and that cannot be reduced, it can easily bershgwtructural induc-
tion thata is a value. [

Proof of the principal type property

Lemma 5 (Unification) Each of the rules given in figures 2 and 3, is correct and
complete.

Proof

Cases0CcCUR-CHECK, MERGE, ABSORB, and DECOMPOSE those are standard
rules for first-order unification.

CaseDEcoMPOSEPOLY and CLASH: immediate.

CasePoLYTYPES. This case amounts to fully formalizing the discussion in sec
tion 2.4. Assume that Na’, a NFV ('), anda’ NFV (1) are all empty (1).
SoundnessAssume thab is a solution ofjaa’.Tt =t Aa «<> d’. Letn be a
renaming ofad’ into variables outside of free variables &ft, 1/, andaa’. The
substitutionn o B is also a solution of the same unificand. Since its image has no
variable in common withod’, the substitutiom o 8\ aa’ can be extended by a
substitutionp of domainaa’ such that the substitutiofl equal ton o6\ aa’ + p
is a solution oft = U Aa «+ d’. Since® is a solution ofa «++ T, the substitution
p is injective ona and o’ taken separately. Moreover, its image isoa’. The
substitution(n +n—1) o8 decomposes d8\ aa’) + (nop), which is actually equal
to Bon o p; it must be a solution of = 1'. Therefore the substitutiodis a solution
of Va1 < Va'.T'.
Completenesd_et 8 be a solution of/a.t 2 val v, Reusing the reasoning and the
definitions of section 2.4, the substitutiono 6\ aa’) + p is a solution oft = 1’ A

168

a < o’ wheren is a renaming ofia’ into variables taken outside of free variables
of ©, 1, T, andaa’. Thus,no0is a solution oHaa’.T1 =1 Ad <> a’ and so iP by
composition withn 1.

CaseRENAMING-TRUE: The completeness is obvious. For the soundness$, let
be any substitution. La{ be a renaming ofia’ outside ofaa’ and free variables
of 8. The substitution(n o 0) \ aa’ can be extended with the substituti¢m; —
al)'€L-n. Clearly, this extension satisfies by = a!)'€>" anda <+ a'. Thus@ is

a solution ofdad’. (o = al) €A A <« o

CaseRENAMING-FALSE: The soundness is obvious. For the completeness let us
consider the two following cases:

Beaandt ¢ o' U{B}: Assume that there exists a soluti6rof bothB =1=¢e
anda < a’. Since6(1) is equal to8(B), it must be a variable, and so should
itself. SinceB\ aa’ should not have variables in common wil’, T must be in
aa’. However, since it is not in’, it must be another variableof a distinct from
B, which contradicts with the fact th@tfa must be injective (condition 2).

BeanFV(t)andt # B: In particular,T must be a proper term. Assume that
there exists a solutiof of bothy =1 = eanda «> a’. The termd(y), equal tod(t),
is a proper term; thusy cannot be a variable afa’. However,6(y) contains the
variabled(B) that belongs taa’. This contradicts condition 3.

|

Theorem 4 Given a typing problenfA> a: 1) there exists a principal solution,
which is computed by the set of rules described in figures Bd3aor there is no
solution and the problem reduces to

Proof. We first show the soundness and completeness of each remite:
CasesVAR, FUN, App,and LET: are asin ML.

CaseANN: The case AN is not special since the constryct t) could be treated
as the application of a primitive.

CaseINTRO: We assume that all the conditions of the first four lines afisfsed.
We write o for o{a;€;/0o€o}-

Soundness Let us assume thah - a: 11{€1/€} = 3&.6 and a N dom(6) U
FV(codom8)) = 0. We haveb(A) - a: 6(a1) by generalization ol in the judg-
mentB(A) - a: 8(t1{€1/€0}). Since by constructiori(o;) : o : 6(02)), we also
haveB(A) I [a: o] : 6([02]?). That is,B is a solution ofA [a: a] : [02]%. Thus,
a solution ofd AT = [02]? is a solution ofAl- [a: o] : T. Moreover, no variable of
€1,€2,€,011 appears it or T.

169

CompletenessLet us assume th& is a solution ofA> [a: 0] : T. A canonical
derivation of®(A) - [a: o] : 6'(T) must end with rule NTRO. Thus, there exists
some polymorphic typeg andao’, and some labet such that®’(A) - a: o (1),
(0% :0:0%) (2), and®' (1) = [05]F (3). By definition of the relatior_: ¢ : _) the pair
(0%,0%) must be of the form(0”(o01),6"(02)) for some substitutio®’ of domain
€1€200p. A canonical derivation of (1) must end with a successionutdés GeEN.
Thus we haveéd'(A) - a: 8" (11{e1/€0}). On the one hand, the substitutiéh+ 6”
is a solution ofA a: 11{€1/€}, and consequently a solution 6f On the other
hand, it is a solution of = [t1;{€,/€0}]¢. Moreover, it extend§’ on ay, €, €1, &,
andé.

The completeness of the else branch is straightforward;pfdef above actually
applies if6 is L. If 8 is not L, the right condition may always be satisfied sinoce
is disjoint from free variables of the typing problem.

CaseELIM: We assume that the condition of the first line is satisfied.

Soundnessif 8(a) = [Vo'.T']¢ ande ¢ FL(B(A)) then rule Eim applies, and an
extension o such thatd(t) = 6(t’) is a solution ofA> (a) : 1. If 8(a) = a’ and
a’ ¢ FV(0(A)) then fromB(A) - a: a’ we deduceéd(A) - a: [t]¢ for somee not in
FV(B(A)). By generalization ot and rule Eim, we getB(A) - (a) : 6(t). The
substitution® is thus a solution oA > (a) : T.

CompletenessLet us assume th& is a solution ofA - (a) : T. The canonical
derivation of&'(A) F (a) : 6'(t) must end with rule ElM. Thus, we must have
0'(A) > a: [0]¢ for somee’ that does not appear i(A) and some polymorphic
type o of which 6'(1) is an instance. Sinc&g.0 is a principal solution oA a: a,
®' can be extended dhinto a solution o A 8(a) = [0]F (1).

ThereforeB(a) cannot be an arrow type. Ifit is a variable, then it cannobbelto
B(A), otherwisee’ would belong td'(A). Hence, together with (1) the completeness
of the second and third cases.

If 8(a) = [Va'.T']¢ thene cannot belong té-L(8(A)), otherwisee’ would belong
to FL(6'(A)). Since® is a solution of[o]¢ = [Va'.T']¢, it is also a solution of
o = Vva'.t. Since®'(1) is an instance of, it is an instance ofa’.t. Thus®' can
be extended on’ into a solution oft = t'. Together with (1)’ is a solution of
eAT=T.

Termination: We now show that applying the rules in any order always termi-
nates, with a unification problem in solved form.

Each rule of the algorithm decreases of the lexicographderang composed of
successively

1. the sum of sizes of program components,

2. the sum of monomialXs49) for all type and polymorphic type components
of the system,

3. the number of polymorphic constraints,

170

4. the number of multi-equations,
5. the sum of the lengths of multi-equations, and
6. the number of renaming problems.

Moreover, unification problems that cannot be reduced aselired form. Clearly,
there cannot remain any typing problem since for each aactsin of the language
some rule applies. Similarly, polytypes can always be dems®d. Let us consider

a renaming problenat <+ o’ for which rule RENAMING-FALSE would not apply.
Then variables ofia’ could only appear in multi-equations composed of the vari-
ables inoa’. Moreover at most one variable of each geanda’ could appear in
each of these multi-equations. Therefore rulEeNRMING-TRUE would apply. The
remaining rules are standard rules for unification for sertppes.]

171

