
Information and Computation155, 13400169 (1999)
Article ID inco.1999.2830, available online at http://www.idealibrary.comSemi-Expli
it First-Class Polymorphismfor ML†

Jacques Garrigue

Kyoto University Research Institute for Mathematical Sciences, Kitashirakawa-Oiwakecho,

Sakyo-ku, Kyoto 606-01, Japan

and

Didier Rémy

INRIA-Rocquencourt, BP 105, 78153 Le Chesnay Cedex, FranceWe propose a modest
onservative extension to ML that allows semi-expli
it �rst-
lass polymorphism while preserving the essential properties oftype inferen
e. In our proposal, the introdu
tion of polymorphi
 types isfully expli
it, that is, both introdu
tion points and exa
t polymorphi
 typesare to be spe
i�ed. However, the elimination of polymorphi
 types is semi-impli
it: only elimination points are to be spe
i�ed as polymorphi
 typesthemselves are inferred. This extension is parti
ularly useful in Obje
tiveML where polymorphism repla
es subtyping.

1999 A
ademi
 Press
INTRODUCTION

The success of the ML language is due to its combination of several attractive fea-
tures. Undoubtedly, the polymorphism of ML [Damas and Milner, 1982] —orpoly-
morphismà la ML— with the type inference it allows, is a major advantage. The
ML type system stays in close correspondence with the rules of logic, following the
Curry-Howard isomorphism between types and formulas, which provides a simple
intuition, and a strong type discipline. Simultaneously, type inference relieves the
user from the burden of writing types: an algorithm automatically checks whether
the program is well-typed and, if true, returns a principal type.

Based on this simple system, many extensions have been proposed: polymorphic
records, first-class continuations, first-class abstract datatypes, type-classes, over-
loading, objects,etc. In all these extensions, type inference remains straightforward
first-order unification with toplevel polymorphism. This shows the robustness of
ML-style type inference.yA preliminary version of this paper has been presented at the“Third International Symposium on
Theoretical Aspects of Computer Software [Garrigue and Rémy, 1997].”

Copyright c
1999 by Academic Press
All rights of reproduction in any form reserved.

134

There are of course cases where one would like to have first-class polymorphism,
as in systemF . ML allows for polymorphic definitions, but abstractions can only
be monomorphic. Traditionally, ML polymorphism is used fordefinitions of first-
class functions such as folding or iteration over a parameterized datatype. Some
higher-order functionals require polymorphic functions as arguments. These situa-
tions mostly appear in encodings, and occurrences in real programs can usually be
solved by using functors of the module language.

This simple picture, which relies on a clear separation between data and func-
tions operating on data, has recently been invalidated by several extensions. For
instance, data and methods are packed together inside objects. This decreases
the need for polymorphism, since methods can be specializedto the piece of data
they are embedded with. However, data transformers such as folding functions re-
main parameterized by the type of the output. For instance, afunction fold with
the ML type8β;α: β list! (β! α! α)! α! α should become a method
for container objects, of type8α: (τ ! α ! α) ! α ! α where τ is the type
of the elements of the container. The extension of ML with first-class abstract
types [Läufer and Odersky, 1994, Rémy, 1994] also requires first-class polymorphic
functions: for instance, an expression such asλ f :open x as y in f y can only be
typed if the argumentf is polymorphic in its argument, so that the abstract repre-
sentation ofy is not revealed outside the scope of the open construct. First-class
polymorphism seems to be also useful in Haskell to enable thecomposition of mon-
ads.

First-class polymorphic values have been proposed in [Rémy, 1994, Odersky and Läufer, 1996]
based on ideas developed in [Läufer and Odersky, 1994]. After de-sugaring, all
these proposals reduce to the same idea of using explicit, mutually inverse introduc-
tion and elimination functions to coerce higher-order types into basic, parameterized
type symbols and back. Therefore, they all face the same problem: types must be
written explicitly, at both the introduction and the elimination of polymorphism.

Recent results on the undecidability of type inference for systemF [Wells, 1994,
Kfoury and Wells, 1994, Pfenning, 1993] do not leave many hopes for finding a
good subset of systemF that significantly extends ML, moreover with decidable
type inference and principal types. Previous attempts to accomplish this task were
unsuccessful.

This is not the path we choose here. We do not infer higher-order types and thus
avoid higher-order unification, undecidable in general. Furthermore, we maintain
the simplicity of the ML type system, following the premise that an extension of ML
should not modify the ML polymorphism in its essence, even ifit is an extension
that actually increases the level of polymorphism.

The original insight of our work is that, although ML polymorphism allows type
inference, actual ML programs do already contain a lot of type information. All
constants, all constructors, and all previously defined functions already have known
types. This information is only waiting to be used appropriately.

In comparison to previous works, we remove the requirement for type annotations
at the elimination of polymorphism by using type inference to propagate explicit

135

type information between different points of the program. In our proposal, tagging
values of polymorphic types with type symbols becomes superfluous. A type anno-
tation at the introduction of a polymorphic value is sufficient and can be propagated
to the elimination site (following the data-flow view of programs). This makes the
handling of such values considerably easier, and reasonably practical for use in a
programming language.

In a first section, we present our solution informally and explain how it simplifies
the use of higher-order types in ML. Then, we develop this approach formally, prov-
ing all fundamental properties. In a third section, encodings are provided, both for
previous formulations of first-class polymorphism, and forsystemF itself, along
with some syntactic comparisons. Section 4 shows how our system can be used
to provide polymorphic methods for Objective ML, in an almost transparent way.
In section 5 we discuss how the value-only restriction to polymorphism can be ap-
plied here. Lastly, we compare with related works, and conclude. Proofs of main
theorems are given in appendix.

1 INFORMAL APPROACH

In this section we present our solution informally. We first introduce a naive straight-
forward proposal. We show that this solution needs to be restricted to avoid higher-
order unification. Last, we describe a simple solution that allows for complete type
inference. We writex 4

= a to introduce a meta-level namex for a formal expression
a.

1.1 A naive solution

The self-application termself 4= λ f : f f cannot be typed in ML; however, we can
easily type it in systemF if we add proper type annotations. While this expression
is not very interesting for itself, a few variations on it aresufficient to illustrate most
aspects of type inference in the presence of higher-order types. Useful examples
can be found in section 4 in addition to those suggested in theintroduction.

The expressionlet f = id in f f whereid
4
= λx:x (the polymorphic identity func-

tion) is typable in ML. One can see let-definitions as a special syntax, combined
with a special typing rule, for the application(λx:a2) a1. Let us exercise by replac-
ing thelet polymorphic binding by first-class polymorphism. The identity id has
typeα! α whereα can be universally quantified. We shall write[id : 8α:α! α℄
for the creation (or introduction) of the polymorphic value wrappingid with the
polymorphic type8α:α! α. As usual in ML, we distinguish between first-class
simple types(or typesfor short) andpolymorphic types. Thus, we explicitly coerce
the polymorphic type8α:α! α to a simple type[8α:α! α℄ using the type con-
structor[℄ for that purpose. We call[8α:α! α℄ a polytype, which is (a particular
form of) a simple type.

Let id1 be the expression[id : 8α:α! α℄, which has type[8α:α! α℄. As any
first-class value,id1 can be passed to other functions, stored in data-structures, etc.

136

For instance(id1;1) is a pair of type([8α:α! α℄ � int). Such a wrapped function
cannot be applied directly, since it is typed with a polytype, which is incompatible
with an arrow type. We must previouslyopen (or eliminate) the polytype. We
introduce a new constructh i for that purpose. Hence,hid1i is a function of type an
instance of the polymorphic type8α:α!α, i.e. τ! τ for some typeτ. Its principal
type isα! α, making its typing behavior just the same as the polymorphicidentity
function id.

The raw expressionself is not well-typed. It should be passed a polymorphic
value as argument, for instance, of type[8α:α ! α℄. Here, we shall introduce
polymorphism by a type constraint on the argument:λ f : [8α:α! α℄:h f i f . The
first occurrence off in the body is opened to eliminate polymorphism before it is
applied. The following definition expression is well-typed:

self1
4
= λ f : [8α:α! α℄:h f i f : [8α:α! α℄! [8α:α! α℄

So are the two following variants:

self2
4
= λ f : [8α:α! α℄:h f i h f i : [8α:α! α℄! α0! α0

self3
4
= λ f : [8α:α! α℄: [h f i h f i : 8α:α! α℄ : [8α:α! α℄! [8α:α! α℄

In self2, the occurrence off in the argument position is also opened, so the result
type is no longer a polytype. Inself3, polymorphism is lost as inself2, then it is
recovered explicitly. Finally, we can applyself1 to the wrapped identity function
id1:(λ f : [8α:α! α℄:h f i f) [λx:x : 8α:α! α℄ : [8α:α! α℄
More interestingly, the following expression is also well-typed(λu:u id1) self1 : [8α:α! α℄
There is no term typable in ML that has the same erasure (untyped λ-term) as this
one. Note that no type annotation is needed onu; althoughu has a polytype as
result, it is not opened locally.

1.2 An obvious problem

The examples above mixed type-inference and type-checking(using type-annotations).
The obvious problem of type inference in the presence of higher-order types remains
to be solved: what happens when expressions of unknown type are opened. Should
the programλ f :h f i f or simplerλx:hxi be well-typed? In order to avoid higher-
order types, we accept to reject those examples. Our modest goal is to keep track of
user-provided polymorphism, but never guess polymorphismfrom scratch.

On the other hand, forbidding lambda abstraction of an unspecified type to be a
polytype is too restrictive. This would violate the assumption that polytypes are
regular ML types, which can be substituted for any type variable. Thus, ifλx:x has

137

typeα!α, it should also have type[σ℄! [σ℄ for any polymorphic typeσ. Actually,
for practical programming, it is important thatλx:x possesses all these types. For
instance, both(λx:x) f andλx: f x should be typable and have the same type asf .
The former expression is needed as soon as we are using polymorphic values inside
generic data structures, such as lists, and use polymorphicfunctions to extract them.
The later allowsη-expansion, for instance to reorder the arguments of a function,
without any superfluous type annotation.

When typingλ f :h f i f , variable f is first given an unknown typeτ. Guess-
ing [8α:α! α℄ for τ would be correct, but not principal, since[8α:α! α! α℄
would also be a possible type forτ. Conversely, the expressionλ f :if true thenh f i f else (f : [8α:α ! α℄) would have as only possible type[8α:α ! α℄ ![8α:α! α℄, since there is an explicit annotation onf . However, we prefer to also
reject this program. Informally, type inference would imply backtracking: f is first
assumed of unknown typeτ; we cannot typeh f i so we backtrack; typing the anno-
tation forcesf to be of type[8α:α! α℄, thenh f i can be typed, and so on. This
causes two problems. Firstly, backtracking may lead to a combinatorial explosion
of the search space1 and we would rather fail in every case where some inference
order would fail.

Worse, typing constraints may disappear during reduction.Traditionally, this is
not a problem since this only allows to infer better types. However, in our case, the
removal of polytype constraints will leave some polytypes unspecified and lead to
failure. Consequently, we would lose the subject reductionproperty. The expression
λ f :if true then h f i f else (f : [8α:α! α℄) reduces toλ f :h f i f but the latter is
not typable.

1.3 A simple solution

The essence of our proposal is a simple mechanism based on unification that dis-
tinguishes polytypes that have been user-provided from those that have just been
guessed. Each occurrence of a polytype[σ℄ is labeled with a label variableε (label
for short). That is, we write[σ℄ε rather than[σ℄.

To ensure that an expression was correctly annotated, in an elimination hai, the
type of a must be of the form8ε:[σ℄ε. This prevents negative occurrences of the
type annotation (such as in the context or on the left hand-side of an arrow), so
proving that it must have been user-provided. Expressions of the formλ f :h f i f are
not allowed; the type off is a simple type, which includes[σ℄ε, but not8ε:[σ℄ε.

Annotations do introduce polymorphism. We may writeλx:let f = (x : [σ℄ε) inh f i f , where the type annotation onx is a polytype. Such an annotation allows
label variables to be renamed apart in the type off and then abstracted over in
generalizing the type of the let-definition, thus allowingf to be used polymor-
phically in the let body. For convenience, we writeλx:τ:a as an abbreviation for
λx:let x= (x : τ) in a. Henceλ f : [8α:α! α℄ε:h f i f is well-typed.

1ML typability is exponentially hard in theory, but it is almost linear in practice; here, the combi-
natorial explosion would likely make type inference exponential in practice.

138

Annotations must be correctly introduced. The expressionλ f :if true thenh f i f else (f : [8α:α ! α℄ε) fails to type. The type[σ℄ε of the else-branch is
transmitted to the then-branch by unification. However, it is also simultaneously
transmitted to the binding occurrence; hence, the label variable ε also appears in
the type context and cannot be generalized; thereforeh f i is ill-typed. An explicit
type annotation is required on the then-branch:h f : [σ℄ε0i f . This has the effect of
renamingε into a fresh label variableε0 that does not occur in the context so that it
can be generalized. For convenience, we write[σ℄ instead of[σ℄ε when the labelε
is anonymous,i.e. when it does not appear anywhere else in the program, such asε0
in the above example.

Another subtle point is where to bind type variables that occur free in a type an-
notation(a : τ). Traditionally, these are shared between several type annotations,
and thus implicitly bound at a higher level according to scoping rules that depend
on the ML dialect. In our system, we chose to bind them (existentially) in the type
constraint where they occur. That is, they are never shared between two different
type annotations. This is simpler than defining specific scoping rules; and shar-
ing a type variable between several annotations could lead to lose polymorphism
unexpectedly.

2 FORMAL APPROACH

We formalize our approach as a small extension to core ML.

2.1 The core language

Types We assume given two collections of type variablesα2V , and labelsε2 E .
The syntax of types is:

τ ::= α j τ! τ j [σ℄ε (Simple) types
σ ::= τ j 8α:σ Polymorphic types
ς ::= σ j 8ε:ς Type schemes
ξ ::= α j ε Variables

The construct[σ℄ε is used to coerce a polymorphic typeσ to a type. We call[σ℄ε a
weak polytype. The label variableε is used to keep track of sharing between weak
polytypes. When an expression has a polytype[σ℄ε and the label variableε can be
generalized, then the polytype can be eliminated and the expression can be given
the polymorphic typeσ. We do not allow polymorphic labels in polymorphic types
σ, since this would not add any power to the system (it would be redundant with
explicit type annotations —see section 2.5).

Free type variables and free labels of a type scheme (which may be a simple
type)ς are writtenFV(ς) andFL(ς) respectively and are defined as usual. In a type
scheme8ξ:ς, 8 acts as a quantifier, and the variableξ is bound (i.e. not free) in8ξ:ς.
We consider type schemes equal by renaming and reordering ofbound variables
and labels, and removal of useless quantifiers (i.e. 8ξ:τ � τ whenever variableξ

139

(VAR)

x : ς 2 A

A` x : ς

(FUN)

A;x : τ0 ` a : τ
A` λx:a : τ0! τ

(APP)

A` a1 : τ2! τ1 A` a2 : τ2

A` a1 a2 : τ1

(GEN-V)

A` a : σ α =2 FV(A)
A` a : 8α:σ (GEN-E)

A` a : ς ε =2 FL(A)
A` a : 8ε:ς (INST-V)

A` a : 8α:σ
A` a : σfτ=αg

(INST-E)

A` a : 8ε:ς
A` a : ςfε0=εg (LET)

A` a1 : ς A;x : ς ` a2 : τ
A` let x= a1 in a2 : τ

(ANN)

A` a : τ1 (τ1 : τ : τ2)
A` (a : τ) : τ2

(INTRO)

A` a : σ1 (σ1 : σ : σ2)
A` [a : σ℄ : [σ2℄ε (ELIM)

A` a : 8ε:[σ℄ε
A` hai : σ

Figure 1: Typing rules

is not free inτ). We writefτ1; : : :τn=α1; : : :αng for the simultaneous substitution
of variablesα1, . . . , αn by τ1, . . . , τn, respectively. As usual, bound variables and
bound labels are renamed by substitutions so that free variables ofτi ’s can remain
unchanged without being captured. For example(α! [8β:β! α℄ε)fτ=αg is τ![8β:β! τ℄ε providedβ is not free inτ. An instance of a type scheme8ε̄; ᾱ:τ0 is
τfε̄0; τ̄=ε̄; ᾱg. A generic instance of a type schemeς is a type scheme8ξ̄:τ such that
τ is an instance ofς and bound variables̄ξ do not occur free inς.

Expressions are those of core ML (left) plus three new constructs (right): intro-
duction and elimination of first-class polymorphism and type annotation.

a ::= x j λx:a j a a j let x= a in a j [a : σ℄ j hai j (a : τ)
Typing rules are given in figure 1. Typing judgments are of the formA ` a : ς
whereA is a set of typing assumptions binding expression variablesto type schemes.
The extension of a set of typing assumptionsA with a new bindingx : ς is written
A;x : ς; it overrides any previous binding ofx in A. All typing rules but the last three
ones are standard. Rules ANN and INTRO use an auxiliary relation(: :). Given
a polymorphic typeσ, we write (σ1 : σ : σ2) if there exists a substitutionθ from
type variables to simple types and two substitutionsρ1 andρ2 from labels to labels,
such thatσ1 = θ(ρ1(σ)) andσ2 = θ(ρ2(σ)). The intuition is that ifθ is the identity,
thenσ1 andσ2 are both equal toσ except maybe in their labels. Indeed,(ρ1(σ) :
σ : ρ2(σ)) for any label renamingsρ1 andρ2. If σ does not contain any label, then(σ1 : σ : σ2) is equivalent toσ1 andσ2 being the same generic instance ofσ. The use
of θ implements the local quantification of user-given type variables that we stated
in the informal presentation. An important property of the relation(: σ :) is its
stability by substitution. That is, if(σ1 : σ : σ2), then(θ(σ1) : σ : θ(σ2)) for any

140

substitutionθ. Note thatσ is user-given and the substitutionθ is not applied toσ.
This relation is used to type explicit annotations. For typechecking purposes,

the construct(: τ) could have been replaced by a countable collection of primitives
λx:(x : τ) indexed byτ and given with principal type scheme8ε̄1; ε̄2;FV(τ): τfε̄1=ε̄g!
τfε̄2=ε̄g whereε̄1 andε̄2 are different renamings of the tuplēε of all label variables
of τ. That is, to type an expression(a : τ), let τ1 andτ2 be two copies ofτ where
their labels have been renamed, andθ be a substitution such thata has typeθ(τ1);
then (a : τ) has typeθ(τ2). We kept annotation as a primitive construct because
the dynamic semantics is simpler to define this way, but this is mainly a matter of
exposition.

Rule INTRO uses the same relation, except that polymorphic types replace simple
types. To type[a : σ℄, let σ1 and σ2 be two copies ofσ where labels have been
renamed; find a substitutionθ such thata has typeθ(σ1) (i.e. θ(σ1) is a generic
instance of the principal type scheme ofa); then [a : σ℄ has type[θ(σ2)℄ε for any
labelε.

Last, rule ELIM says that polymorphism can be used only if the label of the poly-
type does not occur anywhere else.

As an example, we have the following derivation, whereσ abbreviates8α:α! α
andA is f : [σ℄ε1:(VAR)

A` f : [σ℄ε1 ([σ℄ε1 : [σ℄ε : [σ℄ε2) (ANN)
A` (f : [σ℄ε) : [σ℄ε2 (GEN-E)

A` (f : [σ℄ε) : 8ε2:[σ℄ε2(σ� 8α:α! α) (ELIM)
A` h f : [σ℄εi : 8α:α! α(α [σ℄ε1) (INST-V)

A` h f : [σ℄εi : [σ℄ε1 ! [σ℄ε1

...
(VAR)

A` f : [σ℄ε1 (APP)
A` h f : [σ℄εi f : [σ℄ε1 (FUN)` λ f :h f : [σ℄εi f : [σ℄ε1 ! [σ℄ε1

2.2 Dynamic semantics

We give a reduction semantics for the core language. Actually we define two se-
mantics: a free reduction semantics for which we prove only subject reduction, and
a call-by-value semantics for which we prove full type soundness.

A one step reduction is either an immediate reduction (the label on the reduction

141

is indicative and optional): (λx:a) b
Fun�! afb=xglet x= b in a
Let�! afb=xgh[a : 8ᾱ:τ℄i Elim�! (a : τ)(a : τ2! τ1) b
Tfun�! (a (b : τ2) : τ1)([a : 8ᾱ:τ℄ : [σ℄ε) Tint�! [(a : τ) : σ℄(a : α) Tvar�! a

or obtained by induction (E is any term context with a single hole):

a1�! a2

Efa1g �! Efa2g
Note that the meta variableα, in rule TVAR, stands for a type variable and not for
an arbitrary type. It is a major difference with ML that type annotations are not just
a means to restrict principal types to instances. On the opposite, they allow better
typings. Thus, reduction must preserve type annotations aslong as they provide
useful typing information. Indeed, while terms are effectively reduced by rules
FUN, LET, and ELIM , we need the rules TFUN and TINT to maintain this type
information. These rules are needed for the following example: λ f :h(λx:x : [σ℄!
α) f i reduces toλ f :h f : [σ℄i which would not be typable but for the annotation.
Rule TVAR erases vacuous type information.

Although types are preserved during reduction, they do not actually participate in
the reduction. In particular, it would be immediate to definean untyped reduction��! and a type-erasure� so that ifa1�! a2, thenea1

��! ea2 or ea1 andea2 are equal.
We now define the call-by-value operational semantics by restricting the free re-

duction semantics. Evaluation contexts (used for the aboveinduction rule) are then

E ::= fg j E a j v E j let x= E in a j [E : σ℄ j (E : τ) j hEi
and the strategy is fixed so that inner redexes are reduced first. This is implemented
by substituting a value meta variablev for term meta variablesa or b when they
appear at evaluable positions in the reduction rules. Valuesv are defined as follows:

v ::= w j [v : σ℄
w ::= λx:a j (w : τ1! τ2)

By default, reduction will always refer to free reduction.

2.3 Type soundness

We could easily show that evaluation cannot go wrong by meansof translation into
systemF. We prefer to prove it in a more direct way. Subject reductionis an
intermediate result of the direct proof that is neither required nor implied by type

142

soundness. However, it is quite important for itself, sinceit shows that each reduc-
tion step preserves typings, and thus that the static semantics is tightly related to the
dynamic semantics. Subject reduction is not obviously preserved by the introduc-
tion of polytypes; in particular, subject reduction would not hold if we threw away
type constraints too early during reduction.

Both subject reduction and type inference are simplified by restricting ourselves
to canonical derivations. A similar result existed for the original Damas-Milner
presentation of ML, but ML is now often presented in its syntax directed form. We
chose a logic rather than a syntax directed presentation of typings rules, since this
is here much more concise. We can still recover the benefits ofa syntax directed
presentation by using canonical derivations. Canonical derivations are those where
occurrences of rules GEN and INST are restricted as follows:� rule GEN only occurs as the last rule of the derivation or right above rule

INTRO, ELIM , the left premise of rule LET, or another rule GEN.� rule INST may only occur right after rule VAR, rule ELIM , or another rule
INST.

Canonical derivations have been defined to validate the following lemma.

Lemma 1 (Canonical derivations) A valid typing judgment À a : τ has a canon-
ical derivation.

Another classical key result is the stability of typing judgments by substitution:

Lemma 2 (Stability) If A ` a : τ, then for any substitutionθ, θ(A) ` a : θ(τ).
It is important to notice that the substitution is not applied to the expressiona; in
particular, type constraints insidea are left unchanged: their free variables must be
understood as if they were closed by existential quantification (see the last paragraph
of section 1.3).

We define a relationa1 � a2 between programs stating that all typings ofa1 are
also typings ofa2, i.e.

a1� a2
4
= (8A;ς; A` a1 : ς =) A` a2 : ς)

This simplifies the statement of subject reduction, expressed for free reduction.

Theorem 1 (Subject reduction) Reduction preserves typings,i.e. if a1 �! a2,
then a1� a2.

Subject reduction is not sufficient to prove type soundness,since the full relation
(every program has every type in any context) satisfies subject reduction but does
not prevent from type errors. It must be complemented by the following result,
which we only express for call-by-value semantics.

Theorem 2 (Canonical forms) Irreducible programs (for call-by-value reduction)
that are well-typed in the empty environment are values.

Type soundness of the call-by-value semantics is a straightforward combination of
the two previous theorems.

143

2.4 Type inference

We present both unification and type inference as constraintsolving using rewriting
techniques. This formalism, now well-established [Jouannaud and Kirchner, 1991],
has several significant advantages over older, more algorithmic presentations of uni-
fication algorithms: renaming and introduction of fresh variables is rigorously and
simply formalized by existential binders; sharing, hence recursive types, is formally
dealt with by the use of multi-equations instead of simple equations2; the presenta-
tion with rewriting constraints is also more modular, whicheases proofs as well as
further extensions. The same framework can also be used for type inference, treating
type inference problems as unification problems [Rémy, 1992]. Indeed, solutions of
type inference problems are also sets of substitutions. Allthe previous benefits of
treating unification as constraint solving also apply to type inference. In particular,
type inference can be specified and proved correct independently of any strategy. A
top-down, bottom-up, or any other —even non-deterministic— terminating strategy
can be chosen later, or remain unspecified.

First-order unification on simple types must be extended to handle polytypes. Dur-
ing unification, a polytype is treated as a rigid skeleton corresponding to the poly-
morphic part, on which hang simple types. Reusing the framework of constraint
solving, we show that the addition of first-class polymorphism retain the flexibil-
ity and modularity of type inference. Simultaneously, we provide formal, general,
and efficient unification and type inference algorithms (no use of “fresh variables”,
preservation of sharing, treatment of recursive types3).

More precisely, the formalism used is that of conditional rewriting. For clarity of
presentation, we distinguish between two kinds of conditions. Those that can always
be satisfied are writtenlet conditionin rule; they amount to a convenient notation
for pattern matching. Other conditions may fail, providingdynamic control during
the inference process; they are writtenif conditionthen rule.

Unification for simple types First, we remind unification for simple types. In this
part only, we exclude polytypes from simple types, still ranged over by letterτ. A
unification problem, also called aunificand, is a formulaU defined by the following
grammar.

U ::=? j > jU ^U j 9α:U j e Unification problems
e ::= τ j τ := e Multi-equations

The symbols> and? are respectively the trivial and unsatisfiable unification prob-
lems. We treat them as a unit and a zero for^. That isU ^> andU ^? are equal
to U and?, respectively. We also identify> with singleton multi-equations. That

2Multi-equations can be easily mapped to equivalence classes as in [Huet, 1976], as well as to the
mutable structures that are used in destructive unificationalgorithms.

3Recursive types are correctly handled by our algorithms, although they are not considered in the
proofs.

144

is, we can always consider that a unification problemU contains at least one multi-
equationα or α := e for each variableα of U . A complex formula is the conjunction
of other formulas or the existential quantification of another formula. The symbol^ is commutative and associative.

The symbol9 will be needed later for polytypes. It acts as a binder,i.e. free
variables of9α:U are free variables ofU exceptα. Bound variables can freely be
renamed. We identify9α1:9α2:U and9α2:9α1:U and simply write9α1;α2:U .
The symbol

:= is associative and commutative. This makes multi-equations behave
as multi-sets of types.

The substitution of types is extended to unificands in a straightforward way. For
existentials, the application of a substitutionθ to a unificand9α:U is the unificand9α0:θ(Ufα0=αg) whereα0 is chosen outside of both the domain and the codomain
of θ and outside free variables ofU .

A substitutionθ is a solution of a multi-equation if it sends all types of the multi-
equation to the same codomain. The substitutionθ satisfies a conjunction of sub-
problems if it satisfies all subproblems;θ is a solution of9α:U if it can be extended
onα0 into a solution ofUfα0=αg whereα0 is chosen outside of both the domain and
the codomain ofθ and outside free variables ofU .

Two unification problems are equivalent if they have the sameset of solutions. All
previous structural equalities are indeed equivalences. We writeU1 �U2 when the
unification problemsU1 andU2 are equivalent. We also writeU1����>U2 to mean that
the unification problemU1 can be rewritten into the equivalent unification problem
U2. Finally, a solutionθ is a principal solution of a unification problemU if any
other solution can be obtained by (left) composition with the substitutionθ.

Given a unification problemU , we define the containment ordering�U as the
transitive closure of the immediate precedence ordering containing all pairsα� α0
such that there exists a multi-equationα := τ := e in U whereτ is a non-variable
type that containsα0 as a free variable. A unification problem is strict if�U is
irreflexive. Note that strictness is syntactic and is not preserved by equivalence.
Intuitively, strictness corresponds to the absence of immediate cycles. However, it
does not detect potential cycles that may appear after some computation steps. Still,
for fully merged and decomposed unification problems,i.e. when the rules MERGE

and DECOMPOSEcannot be applied anymore, strictness is equivalent to the fact that
if there is a solution then there is a finite solution.

A problem is in solved form if it is either? or>, or if it is strict, merged, decom-
posed, and of the form9 ᾱ:Vi21::n ei . In particular, each multi-equationei contains
at most one non-variable type, and ifi 6= j thenei andej contain no variable type
in common. An explicit principal solutionθ can be read straightforwardly from a
problem in solved form. We also writeU ����> 9 ξ̄:θ if θ is a principal solution of
U and variables̄ξ are not free inU , or by abuse of notation, ifU is unsatisfiable
andθ is ?. This is consistent with the previous notation sinceθ could be seen as^α2dom(θ)α := θ(α) whenever its domain and codomain are disjoint.

The unification algorithm is given as a set of rewriting rulesthat preserve equiv-
alence in figure 2. There are implicit context rules that allow to rewrite complex

145

OCCUR-CHECK

if�U is not strictthen
U ����>?

MERGE

α := e^α := e0 ����> α := e
:= e0

ABSORB

α := α := e����> α := e
DECOMPOSE

if size(τ1! τ2)� size(τ01! τ02) then
τ1! τ2

:= τ01! τ02 := e����> τ1! τ2
:= e^ τ1

:= τ01^ τ2
:= τ02

Figure 2: First-order unification for simple types

formulas by rewriting any sub-formula. We writesize(σ) the size of polymorphic
typeσ counted as the number of occurrences of symbols(!) or [℄ in σ. These
rules are all standard. It is well-known that given an arbitrary unification problem,
applying these rules always terminate with a unification problem in solved-formed.
The rule OCCUR-CHECK rejects solutions with recursive types. If it were omitted
the algorithm would infer recursive types.

Unification for simple-types with polytypes We now extend types to polytypes[σ℄ε. Consistently, we extend type variables with label variables. Hence, substitu-
tions are from type variables to polytypes and from label variables to label variables,
unless otherwise specified. In order to allow a natural decomposition of polytypes,
we extend typing problems with equations between polymorphic types.

U ::= : : : j σ 8= σ

These are not multi-equations. In particular, a variable cannot be equated to an ar-

bitrary polymorphic type. For instance,α0 8= 8α:α! α does not have any solution.
Thus, equations involving polymorphic types are never merged.

A substitutionθ is a solution of a polytype equation8ᾱ:τ 8= 8ᾱ0:τ0 if θ(8ᾱ:τ) =
θ(8ᾱ0:τ0), where equality is the usual equality for polymorphic typesin ML, i.e. it
is taken modulo reordering and renaming of universal quantifiers and removal of
useless universal variables. This is equivalent to the existence of� two injective substitutionsρ and ρ0 of respective domains̄α and ᾱ0 and of

codomainᾱᾱ0 and� a renamingη from ᾱᾱ0 outside of free variables ofθ, τ, τ0, andᾱᾱ0
such thatθÆη is a solution ofρ(τ) = ρ0(τ0). We could solve such unification prob-
lems by first unifyingρ(τ) andρ0(τ0) and then checking the constraints. However,

146

DECOMPOSE-POLY

if size(σ)� size(σ0) then[σ℄ε := [σ0℄ε0 := e����> [σ℄ε := e^ ε := ε0^σ 8= σ0
CLASH[σ℄ε := τ! τ0 := e0 ����>?
POLYTYPES

let ᾱ\ ᾱ0 = /0 and ᾱ\FV(τ0) = /0 and ᾱ0\FV(τ) = /0 in8ᾱ:τ 8= 8ᾱ0:τ0 ����> 9 ᾱᾱ0:τ := τ0^ ᾱ$ ᾱ0
RENAMING-TRUE

let ᾱ = (αi)i21::n+p and ᾱ0 = (α0
i)i21::n+q in9 ᾱᾱ0:(αi

:= α0
i)i21::n^ ᾱ$ ᾱ0 ����>>

RENAMING-FALSE

if β 2 ᾱ and τ =2 ᾱ0[fβg then β := τ := e^ ᾱ$ ᾱ0 ����>?
if β 2 ᾱ\FV(τ) and τ 6= β then γ := τ := e^ ᾱ$ ᾱ0 ����>?

Figure 3: First-order unification for simple types with polytypes

this would force some unnecessary dependence. Note thatη is only here for techni-
cal purposes, and can be omitted ifθ is disjoint fromᾱᾱ0. This can be dealt with by
existential quantification of unificands.

Without loss of generality, we can restrict ourselves to thecase wherēα\ ᾱ0,
FV(τ)\ ᾱ0, andFV(τ0)\ ᾱ are all empty sets. We refer to these hypotheses by
condition (H). We write the sum of two substitutions of disjoint domainsθ+θ0 that
maps variables ofdom(θ) anddom(θ0) to their image byθ or θ0, respectively. We
write θ j̀W for the restriction of the substitutionθ to the set of variablesW, that is,
the substitution equal toθ on dom(θ)\W and to the identity everywhere else. We
write V nW for the set difference betweenV andW, i.e. the set of all elements that
are inV but not inW. Consistently, we writeθnW for the restriction of a substitution
outside of a set of variablesW, that is the restriction ofθ to dom(θ)nW, or formally,
θ j̀ (dom(θ)nW).

Let θ0 be(η+η�1)ÆθÆηÆ(ρ+ρ0), which decomposes as(ηÆθn ᾱᾱ0)+(ρ+ρ0).
(If θ is disjoint from ᾱᾱ0, thenθ0 is simply θ Æ (ρ+ ρ0), which decomposes into
θ+ρ+ρ0.) The substitutionθ0 satisfies the three following properties:

(1) θ0(τ) = θ0(τ0),
(2) θ0 j̀ ᾱ andθ0 j̀ ᾱ0 are injective inᾱᾱ0, and

(3) no variable of̄αᾱ0 appears incodom(θ0 n ᾱᾱ0).
Conversely, a substitutionθ0 satisfying these three conditions is a solution of8ᾱ:τ 8=8α0:τ0.

The condition (1) above is a unification problem. We introduce a new kind of
unificandsᾱ$ ᾱ0 whose solutions are substitutions satisfying the conditions (2)

147

and (3) simultaneously. We consider̄α and ᾱ0 as multi-sets (i.e. the comma is
associative and commutative). In order to avoid special cases, we also require that
no variable is listed twice in the sequenceᾱᾱ0 (in particularᾱ\ ᾱ0 is empty). The

symbols
8= and$ are commutative. Thenθ is a solution of8ᾱ:τ 8= 8ᾱ0:τ0 under

the assumption (H), if and only if it is a solution9 ᾱᾱ0:(τ := τ0^ ᾱ$ ᾱ0). Note that
unificands are no longer stable by arbitrary substitutions as long as they contain free
variables appearing in renaming unificands (otherwise, renaming unificands could
even become ill-formed.) Still, unificands remain stable byrenamings. Indeed this
is necessary to give meaning to existentially quantified unificands.

Rules for unification with polytypes are those of figures 2 and3 together. Rule
CLASH handles type incompatibilities. Rule POLYTYPES transforms polytype equa-
tions as described above. Rule RENAMING-TRUE allows to remove a satisfiable re-
naming constraint that became garbage,i.e. independent of all other multi-equations.
On the opposite, rule RENAMING-FALSE detects unsolvable renaming constraints.
In the first case, a solutionθ of ᾱ$ ᾱ0 would identify a variableβ of ᾱ with another
variable ofᾱ (thusθ would not be injective) or with a term outside ofᾱ[ᾱ0. In the
second case, the image of a variableγ would contain properly a variableβ of ᾱ,
making it leak into a wider environment (thus, violating condition 3).

It can be easily checked that ifU is merged and decomposed, then for every re-
naming constraint that remains, either rule RENAMING-TRUE or rule RENAMING-FALSE

applies. Therefore, renaming constraints can always be eliminated.

Theorem 3 Given a unification problem U, there exists a most general unifier θ
which is computed by the set of rules in figures 2 and 3, or thereis no unifier and U
reduces to?.

Type inference For type inference, we extend unificands with typing problems.
A typing problem is a triple, writtenA . a : τ, of an environmentA, a terma, and
a typeτ. A solution of a typing problemA . a : τ is a substitutionθ such that
θ(A) ` a : θ(τ). By lemma 2, the set of solutions of a typing problem is stable
under substitution. Thus, typing problems can be treated asunification problems,
following [Rémy, 1992]. The rules for solving typing problems are given in figure 4.
The generalizationGen(σ;A) is, as usual,8ξ̄:σ whereξ̄ are all free variables and
free labels ofσ that do not occur inA. To lighten the presentation, we leave it
implicit that whenever we write9 ξ̄:θ, variablesξ̄ are assumed to be distinct from
all other variables appearing in the rule.

The rewriting for type inference closely follows typing rules given in 1, except
that we are assuming a syntactic presentation enforcing canonical derivations where
rules VAR and ELIM are combined with (followed by) rule INST- and rules LET and
USE are combined with (preceded by) rule GEN as in canonical forms. Rules VAR,
FUN, APP, LET are the same as for ML [Rémy, 1992]. The remaining rules are new
but unsurprising. Their close correspondence with rules offigure 1 is made in the
proof of soundness and completeness of type inference givenin appendix A.

148

VAR

let 8ξ̄:τ0 = A(x) and ξ̄\FV(τ) = /0 in
A . x : τ����> 9 ξ̄:τ := τ0

FUN

let α1;α2 =2 FV(A)[FV(τ) in
A . λx:a : τ����> 9α1;α2:(A;x : α1 . a : α2)^ τ := α1! α2

APP

let α =2 FV(A)[FV(τ) in
A . a1 a2 : τ����> 9α:(A . a1 : α! τ)^ (A . a2 : α)

LET

let α =2 FV(A) in
if A . a1 : α����> 9 ξ̄:θ then

A . let x= a1 in a2 : τ����> 9 ξ̄;α:θ^A;x : Gen(θ(α);θ(A)) . a2 : τ
elseA . let x= a1 in a2 : τ����>?

ANN

let ε̄0 = FL(τ0) and ε̄1 andε̄2 be disjoint copies of̄ε0 outside ofA andτ
and ᾱ0 = FV(τ0) and ᾱ1 be a copy of̄α0 outside ofA andτ
and τ1 = τ0fᾱ1=ᾱ0g in

A . (a : τ0) : τ����> 9 ε̄1; ε̄2; ᾱ1:A . a : τ1fε̄1=ε̄0g^ τ := τ1fε̄2=ε̄0g
INTRO

let σ = 8ᾱ:τ0 and ᾱ\FV(A) = /0
and ε̄0 = FL(σ) and ε̄1 andε̄2 be disjoint copies of̄ε0 outside ofA andτ
and ᾱ0 = FV(σ) and ᾱ1 be a copy of̄α0 outside ofA, τ andᾱ
and τ1 = τ0fᾱ1=ᾱ0g in
if A . a : τ1fε̄1=ε̄0g ����> 9 ξ̄:θ and ᾱ\ (dom(θ)[FV(codom(θ))) = /0 then

A . [a : σ℄ : τ����> 9 ξ̄; ε̄1; ε̄2; ᾱ1;ε:θ^ τ := [8ᾱ:τ1fε̄2=ε̄0g℄ε
elseA . [a : σ℄ : τ����>?

ELIM

let α =2 FV(A) in
if A . a : α����> 9 ξ̄:θ then

if θ(α) = [8ᾱ0:τ0℄ε and ε =2 FL(θ(A)) then A . hai : τ����> 9 ξ̄;α; ᾱ0:θ^ τ0 := τ
else ifθ(α) = α0 and α0 =2 FV(θ(A)) then A . hai : τ����> 9 ξ̄;α:θ
elseA . hai : τ����>?

elseA . hai : τ����>?
Figure 4: Rewriting rules for type inference.

Theorem 4 Given a typing problem(A . a : τ) there exists a principal solution,
which is computed by the set of rules described in figures 2, 3 and 4, or there is no
solution and the rules reduce to?.

149

2.5 Polymorphic labels in polytypes

We did not allow labels in polymorphic typesσ. We show here that this would
not increase expressiveness. In this section, we consider an alternative type sys-
tem, called theextendedtype system, where extended polytypes are of the form[ς℄ε
instead of[σ℄ε. Typing rules are unchanged.

To show that this does not increase expressiveness, we definea translationhh iiE
from extended type schemes to type schemes. The translationis parameterized by a
set of label variablesE that is omitted when empty. For simplicity, we suppose that
all quantified labels have different names in the definition of the translation:hhαiiE 4

= αhhτ1! τ2iiE 4
= 8ε̄1ε̄2:τ01! τ02 if hhτiiiE = 8ε̄i:τ0ihh[8ε̄:σ℄ε0iiE 4
= 8ε̄ε̄0:[σ0℄ε0 if ε0 2 E andhhσiiε̄[E = 8ε̄0:σ0hh[8ε̄:σ℄ε0iiE 4
= 8ε̄0:[σ0℄ε0 if ε0 62 E andhhσiiE = 8ε̄0:σ0hh8α:σiiE 4
= 8ε̄:8α:σ0 if hhσiiE = 8ε̄:σ0hh8ε̄:σii 4
= 8ε̄:hhσiiε̄

Intuitively, the translation moves label quantifiers to theouter level. During this
process however, label quantifiers that appear in a polytypewhose label is itself
not quantified are simply dropped. The translation is extended homomorphically to
expressions and typing environments. Then, considering the judgmentA` a : ς in
the extended type system, it is translated into the judgmenthhAii ` hhaii : hhςii of
our system. The latter has smaller type annotations since all label quantifiers are
dropped inhhaii. It is then easy to prove (by induction on the size of the former
derivation) that whenever the former judgment is valid, so is the later.

2.6 Printing labels as sharing constraints

In this section, we propose an alternative interface to the user aimed at enhancing
readability of types. It is also robust. However, it is slightly harder to present, for-
mally. Hence, we followed the other, more traditional approach above for simplicity
of presentation.

Labels are used to trace the sharing of polytypes. Types can be restricted so that
two polytypes with the same label are necessarily equal. This property is not re-
quired in the present type system, but it is stable: if satisfied by all initial type
assumptions inA and type annotations ina, then it remains valid in all types ap-
pearing in a principal derivation ofA` a : τ. The grammar of types can be extended
with a sharing construct4:

τ ::= : : : j (τ where α = τ)
Using sharing, any type can always be written such that everylabel occurs at

most once, and thus can be omitted. In fact, in our presentation, sharing of types
4Alternatively, one could use the bindingτ as α as in Objective ML, although the binding scope

of as is less clear and harder to deal with, formally.

150

is preserved during type inference. Sharing was just ignored when reading princi-
pal solutions from unificands in solved form. Thewhere construct allows to read
and print all sharing present in the solved form. Actually, only sharing involving
polytypes needs to be printed; all other sharing can be ignored.

For instance, the expressionλx:(x : [σ℄) has type[σ℄! [σ℄, which would have
previously been written8ε;ε0:[σ℄ε! [σ℄ε0 . Conversely, the expressionλx:let y=(x : [σ℄ε) in x has type(α! α where α = [σ℄ε) which would have been written8ε:[σ℄ε! [σ℄ε, where the two polytypes share the same label.

Both notations (sharing constraints and label variables) actually coincide when
all polytypes are anonymous (i.e. no label variable occur twice) and polytypes are
simply written[σ℄. For instance,λx:(x : [σ℄) has type[σ℄! [σ℄. This is an important
case, since the only types the user actually needs to write are of this form. Indeed,
types written by the user are only type annotations, which become more general by
removing sharing constraints. More precisely, ifσ0 is a polymorphic type obtained
from σ by a label substitutionρ, then for any expressiona, we have(a : [σ℄)� (a :[σ0℄) and[a : σ℄� [a : σ0℄. This is an easy consequence ofσ being more general than
σ0.

Thus, the user never needs to write labels or sharing constraints, but he must read
them in both inferred types and type-error messages.

3 ENCODINGS

In this section, we give encodings in our language for both explicit polymorphism
with datatypes and systemF . This last encoding is direct, and makes our language
an alternative to systemF. We also compare the use of explicit type information
between systemF and our proposal.

3.1 Type annotation on arguments

It is convenient to allowλx:τ:a in expressions. We see such expressions as syntactic
sugar forλx:let x= (x : τ) in a. The derived typing rule is:

(POLY-FUN)

A;(x : 8ε̄:τ2) ` a : τ0 (τ1 : τ : τ2) ε̄\FL(τ1) = /0
A` λx:τ:a : τ1! τ0

The derived reduction is(λx:τ:a) b
Fun�! af(b : τ)=xg. Note thatτ1 andτ2 are not

just the results of renaming label variables ofτ. They may also be an instance ofτ.
Hence, the setε of generalized labels contains only labels corresponding to copies
of those ofτ and do not include any label that would have been brought by the
instance of a free type variable ofτ (since those would also appear inτ1).

3.2 Polymorphic datatypes

Previous works have used data types to provide ML with explicit polymorphism [Läufer and Odersky, 1994,
Rémy, 1994, Odersky and Läufer, 1996]. Omitting other aspects that are irrelevant

151

here, all these works amount to an extension of ML with expressions of the form:

t ::= α j t! t j T ᾱ Types
s ::= t j 8α:s Polymorphic types

M ::= x jM M j λx:M j T M j T�1 M Termsj type T ᾱ = sin M Type declarations

whereT ranges over datatype symbols. In expressions,T andT�1 act as mutually
inverse introduction and elimination functions to coerce the polymorphic types into
the simple typeT ᾱ.

The translation is an inductive definitionhh iiρ. The environmentρ is a list of
type definitionstype T ᾱ = σ0 and ρ(T) is the functionΛᾱ:σ0, i.e. given type
arguments̄τ, it returns the typeσ0fτ̄=ᾱg, using the right most definition ofT in ρ.
The translation of these types into types of our language is straightforward. The
translation does not actually use type annotations smartly, and uses a single labelε.
(While the program uses only one label, the type derivation need at least two other
labels to type the elimination patternshhhMiiρ : [ρ(T) ᾱ℄εi, locally.) It could also
make all labels of the translation different,i.e. anonymous, but this is not needed.hhαiiρ 4

= α hht1! t2iiρ 4
= hht1iiρ! hht2iiρ hhT t̄iiρ 4

= [hhρ(T) t̄iiρ℄εhh8α:siiρ 4
= 8α:hhsiiρ

We translate programs as follows.hhxiiρ 4
= x hhtype T ᾱ = t in Miiρ 4

= hhMiiρ;type T ᾱ=thhλx:Miiρ 4
= λx:hhMiiρ hhM1 M2iiρ 4

= hhM1iiρ hhM2iiρhhT Miiρ 4
= [hhMiiρ : ρ(T) ᾱ℄ hhT�1 Miiρ 4

= h(hhMiiρ : [ρ(T) ᾱ℄ε)i
Indeed, the patternh(: [σ℄)i amounts to the explicit elimination of polymorphism
(the explicit polytype annotation(: [σ℄) ensures that the polytype is anonymous.)

Since the elimination of polymorphism is always explicit inthe translated terms,
it can easily be shown that the translation of a well-typed term is well-typed. More
precisely, we extend the translationhh ii to typing environments as follows.hh /0iiρ 4

= /0 hhA;x : τiiρ 4
= hhAiiρ;x : hhτiiρ;dAe hhA;type T ᾱ = siiρ 4

= hhAiiρd /0e 4
= /0 dA;x : τe 4

= dAe dA;type T ᾱ = se 4
= (dAe;type T ᾱ = s)

For any termM, if A`M : t, thenhhAii ` hhMiidAe : hhtiidAe.
As we noticed above, the translation does not use type annotations smartly. In-

deed, all eliminations are explicitly typed and the translation could have been given
in a weaker language with explicit elimination of polymorphism.

152

3.3 Encoding system F

Laüfer and Odersky have shown an encoding of systemF into polymorphic datatypes
[Odersky and Läufer, 1996]. This guarantees by composition that systemF can be
encoded into semi-explicit polymorphism. We give here a direct encoding of system
F , which is much simpler than the encoding into polymorphic datatypes.

The types and the terms of systemF are

t ::= α j t! t j 8α:t Types
M ::= x jM M j λx: t:M j Λα:M jM t Terms

The translation of types of systemF into types of our language is again straightfor-
ward, and may use a single labelε:hhαii 4

= α hht1! t2ii 4= hht1ii ! hht2ii hh8α:tii 4= [8α:hhtii℄ε
The translationhh ii is extended to typing environments in an homomorphic way.
The translation of typing derivations of terms of systemF into terms of our language
is given by the following inference rules:

x : t 2 A
A` x : t) x

A;x : t `M : t 0) a

A` λx: t:M : t! t 0) λx:hhtii:a
A`M : t 0! t) a A`M0 : t 0) a0

A`M M0 : t) a a0 A`M : t) a α =2 FV(A)
A` Λα:M : 8α:t) [a : 8α:hhtii℄

A`M : 8α:t 0) a
A`M t : t 0ft=αg) hai

Since the translation rules copy the typing rules of systemF, the translation is de-
fined for all well-typed terms. There is no ambiguity and the translation is deter-
ministic.

Lemma 3 For any term M of system F, if À M : t) a, thenhhAii ` a : hhtii.
Proof: The proof is by structural induction onM. The only potential difficulty is
to ensure that when typinghai the polytype[σ℄ε of a is always anonymous. This
is immediate: since the translation of an abstraction is always annotated with the
exact type of the variable, all type schemes of the typing environment may be fully
generalized with respect to label variables; therefore there should be a derivation
with no free labels in the typing environment where rule ELIM will always succeed.

If we choose for systemF the semantics where abstraction does not stop evalua-
tion, then the translation preserves the semantics in a strong sense (reduction steps
of a term can be mapped to reduction steps of the translated term). Another seman-
tics would need easy adjustment, either of the translation or of the semantics of our
system.

153

The simplicity of our encoding of systemF compared to its encoding into poly-
morphic datatypes [Odersky and Läufer, 1996] mainly results from having poly-
types as first-class types. We have used a single label in the translation, as in the
previous section. However, the derivation now relies on polymorphism of label
variables in the constructionλx:τ:a and the elimination sites are left unannotated.

3.4 Comparison with system F

The above encoding shows that our system is a possible alternative to systemF.
Thus, it is interesting to compare a termM of systemF with its translationa in our
language, syntactically.

Our types differ by having an extra type constructor[℄ surrounding every poly-
morphic type. Term variables do not carry type information in either M or a.
Lambda abstractions carry exactly the same type information in bothM anda. The
type information at elimination of polymorphism is always omitted ina. The coun-
terpart is that type information at introduction of polymorphism appears explicitly
in [a : 8α:hhτii℄. In Λα:M, only the variableα is mentioned; the typeτ is deduced
from the type information located at abstraction and application nodes inM.

The comparison can be illustrated on the following two abstract examples:hhλ(f :8α:t):Mf f t 0gii= λ f : [8α:τ℄:afh f ighhM1fΛα:M2gii= a1f[a2 : 8α:τ℄g
The first example corresponds to the abstraction and use of a polymorphic valuef

in a function. Type annotations are similar in systemF and our system, and we are
even shorter since we can omit the instantiation types at polymorphism elimination.
For such cases, our approach appears to be more comfortable than systemF.

In the second example we introduce polymorphism somewhere inside a term.
While systemF can do it just by giving the type variable to quantify, we haveto
give an explicit polymorphic type. Indeed, our system provides no way to identify
a type variable outside of an explicit type.

Which of the two syntaxes will be longer depends on which one of the two patterns
dominates the other. We believe that the former pattern is more frequent in user
programs, and that conversely the latter is more frequent inlibraries. Hence, our
system may provide a reasonable alternative syntax for higher-order programming.

Notice also that we have been comparing here a systemF term and its direct
translation in our system. Terms directly written in our system can omit much more
type information. For instance, we do not actually need to provide a full type in our
second example, but only a skeleton containing all occurrences ofα in τ. And since
we are extending ML, we do not need explicit type abstractionand instantiation for
toplevel polymorphism.

We may also develop specific idioms. One of them is the simultaneous use of
multiple type abstractions, as in[a : 8α1;α2:τ℄. Since type application is explicit in
systemF, the expressionΛα1;α2:M would be ambiguous; thus it is not allowed.

154

This does not give us more concision than systemF, but it allows to avoid the
common pattern[[f : 8α:τ℄ : 8α0:8α:τ℄. In most cases, instantiation of all variables
will be simultaneous and we can simply write[f : 8α0:8α:τ℄.
3.5 Fully explicit type annotations

Considering the inherent difficulties of our semi-implicitelimination scheme, we
present a sublanguage where elimination of polymorphism isfully explicit. This
highlights the first stage of our proposal,i.e. making polymorphism explicit, while
the second stage was dedicated to propagating type information.

This sublanguage is theoretically interesting. We do not lose any expressive power
by enforcing explicit elimination of polymorphism,i.e. adding an explicit type an-
notation to all eliminations. Indeed, the encoding of polymorphic data types into
polytypes has been done in such a restricted sublanguage. Simultaneously, the re-
striction to the sublanguage removes the need for labels, and hereby significantly
simplifies the type system.

The encoding of systemF is also possible and as easy in this restricted language.
We just have to change the abstraction and type application rules.

A`M : 8α:t 0) a
A`M t : t 0ft=αg) ha : hh8α:t 0iii A;x : t `M : t 0) a

A` λx: t:M : t! t 0) λx:a
Changing the abstraction rule is not required, but annotating abstractions would
be superfluous in this new translation. Notice however that terms encoded in the
sublanguage are more verbose.

Finally, let us compare terms translated from our system into this restricted sys-
tem. It looks like we would just have to move annotations fromabstraction to elim-
ination nodes, occasionally duplicating them. However, wesee two main cases
where this gets worse. Firstly, when an annotation containsseveral polytypes, like
will often be the case for objects, we must split the annotation into pieces, and use
a different type annotation to eliminate each polytype. Secondly, in our system we
did not need any annotation at all forlet-defined identifiers.

For a complete example, letτ1
4
= [σ1℄, τ2

4
= [σ2℄, τ3

4
= [σ3℄ andτ 4

= τ1� τ2. Using
semi-implicit elimination we can write:let y= [a : σ3℄ in λx:τ:(hfst xi;hsnd xi;hai)
but if we had only explicit elimination we would have to write:let y= [a : σ3℄ in λx:(hfst x : τ1i;hsnd x : τ2i;ha : τ3i)
One could argue that some annotations in the second term are actually smaller than
in the first one. We think however, that the number of annotations matters more than
their size (which could always be shortened using type abbreviations).

In summary, restricting to fully-explicit polymorphism isinteresting for its sim-
plicity, but cannot stick syntactically to systemF as much as semi-explicit polymor-
phism allows. It is also less convenient to use than the full system.

155

4 APPLICATION TO Objective ML

In this section we show how the core language can be used to provide polymor-
phic methods in Objective ML5 [Rémy and Vouillon, 1997]. Polymorphic methods
are useful in parameterized classes. Indirectly, they may also reduce the need for
explicit coercions.

While Objective ML has parameterized classes, it does not allow methods to be
polymorphic. For instance, the following class definition fails to type.let α
olle
tion =
lass (l)val
ontents = lmeth mem = λx. mem x
ontentsmeth fold : (β ! α ! β) ! β ! β= λf.λx. fold left f x
ontentsend
The reason is that variableβ is free in the type for methodfold and it is not bound
to a class parameter. The solution is to have the methodfold be polymorphic inβ.
With polytypes, we can writemeth fold =[λf.λx. fold left f x
ontents : 8β. (β ! α ! β) ! β ! β℄
Still, we have to distinguish between polymorphic and monomorphic methods, in
particular when sending a message to the object. The aim of the remainder of this
section is to make invocation of polymorphic and monomorphic methods similar
and also to make the invocation of polymorphic methods lighter.

The first step is to give polytypes to all methods. This is easily done by wrapping
monomorphic methods into polytypes. For instance, we shallwritemeth mem = [λx. mem x l : α℄
However, we still want to be able to use monomorphic methods without type an-
notations. There is a small but very convenient extension tothe core language that
solves this problem. We add a new typing rule ELIM -M:

(ELIM -M)

A` a : [τ℄ε
A` hai : τ

As opposed to rule ELIM , this one allowsε to appear inA. Inference problems are
solved by forcing the polytype to be monomorphic.

Both rules ELIM and ELIM -M apply whenε is anonymous and the polytype is
monomorphic, but they produce the same derivation. If either ε is free inA or the
polytype is polymorphic, then only one of the two rules may beused. As a result,
principal types are preserved. The type inference algorithm can be modified as
shown in figure 5. The subject reduction property is also preserved.

5The examples of objects and classes given below are rather intuitive, and could be translated in
other class-based object-oriented languages; the reader shall refer to [Rémy and Vouillon, 1997] for a

156

ELIM

let α =2 FV(A) in
if A . a : α����> 9 ξ̄:θ then

if θ(α) = [8ᾱ0:τ0℄ε and ε =2 FL(θ(A)) then A . hai : τ����> 9 ξ̄;α; ᾱ0:θ^ τ0 = τ
else ifθ(α) = α0 and α0 =2 FV(θ(A)) then A . hai : τ����> 9 ξ̄;α:θ
else letε0 62 (FL(A)[FL(τ)) in A . hai : τ����> 9 ξ̄;ε0;α:θ^α := [τ℄ε0

elseA . hai : τ����>?
Figure 5: Type inference rule for use of monomorphic polytypes

The expression(λx:λy:hx#memi y) is then typable with principal typehmem : [α!
β℄; ::i ! α! β. Since all methods are now given polytypes, we shall change our
notations (the new notations are given in term of the old ones): in types, we now
write m : σ for m : [σ℄; in expressions, we now writem : σ = a for m= [a : σ℄, m= a
for m= [a : α℄, anda#m for ha#mi. With the new notations, the collection example
is written:let α
olle
tion =
lass (l)val
ontents = lmeth mem = λx. mem x
ontentsmeth fold : 8β. (β ! α ! β) ! β ! β= λf.λx. fold left f x
ontentsend;;value
olle
tion :
lass α (α list)meth mem : α ! boolmeth fold : 8β. (β ! α ! β) ! β ! βend
A monomorphic method is used exactly as before.let
oll mem
 x =
#mem x
oll mem : hmem : α ! β; ..i ! α ! β

However, when polymorphic methods are used under abstractions, the type of the
object should be provided as an annotation,let simple and double (
 : α
olle
tion) =let l1 =
#fold (λx.λy. x::y) [℄ inlet l2 =
#fold (λx.λy. (x,x)::y) [℄ in(l1, l2);;simple and double : α
olle
tion ! (α list * (α * α) list)
Since the methodfold is used with two different types, this example could not be
typed without first-class polymorphism.

formal presentation of Objective ML, allowing a deeper reading of this section.

157

Polymorphic methods also appear to be useful to limit the need for explicit coer-
cions. In Objective ML, coercions are explicit. For instance, assume that objects of
class point have the interfacehx : int;y : inti, and that we want to define a class
circle with a method giving the distance from the circle to a point.let
ir
le =
lass (x,y,r) ...meth distan
e = λp:point. ...end;;value
ir
le :
lass (int * int * int) ...meth distan
e : point ! floatend
Given a pointp and a circle
, we compute their distance by
#distan
e p. How-
ever, an object
p of a class
olor point where
olor point is a subtype ofpoint (e.g. its interface ishx : int;y : int;
olor :
olori) needs to be explicitly
coerced topoint before its distance to the circle can be computed:
#distan
e (
p :
olor point :> point)
This coercion could be avoided ifdistan
e were a toplevel function rather than a
method:let distan
e
 p =
#distan
e (p :> point);;value distan
e : hdistan
e : point ! α ; ..i ! #point ! α

The type expression#point represents any subtype ofpoint. Actually, it is an
abbreviation for the typehx : int;y : int;ρi. Here, #point contains a hidden
row variable that is polymorphic in the functiondistan
e. This allows different
applications to use different instances of the polymorphicrow variable and thus to
accept different objects all matching the type of points.

Explicit polymorphism allows to recover the same power inside methods:meth distan
e : 8α:#point. α ! float = λp. ...
Then,
#distan
e
p is typable just by instantiation of these row variables, with-
out explicit coercion. Of course, we must know here that
 is a circle before using
methoddistan
e, like would happen in more classical object-oriented type sys-
tems. There is an alternative between using explicit coercions or providing more
type information. The advantage of type information is thatit occurs at more con-
venient places. That is, it is necessary in method definitions and at the invocation of
a method of an object of unknown type. On the opposite, explicit coercions must be
repeated at each invocation of a method even when all types are known.

5 VALUE-ONLY POLYMORPHISM

For impure functional programming languages, value-only polymorphism has be-
come the standard way to handle the ubiquity of side-effects. It preserves type-
soundness in the presence of side-effects, without making the type system overly

158

complex. It is based on a very simple idea —if an expression isexpansive, i.e. its
evaluation may produce side-effects, then its type should not be polymorphic [Wright, 1993].

This is usually incorporated by restricting the GEN rule to a class of expressions
b, called non-expansive, composed of variables and functions. Equivalently, this
restriction can be put on the LET rule: both ways give exactly the same canonical
derivations in the core language. We actually prefer the latter, since we also need
rule GEN to precede rules ELIM and INTRO.

Thus, we replace rules INTRO and LET by the following four rules, each rule
being split in its expansive and non-expansive versions.

(POLY-V)

A` b : σ1 (σ1 : σ : σ2)
A` [b : σ℄ : [σ2℄ε (POLY-E)

A` a : τ1 (τ1 : τ : τ2)
A` [a : τ℄ : [τ2℄ε

(LET-V)

A` b : ς A;x : ς ` a : τ
A` let x= b in a : τ

(LET-E)

A` a1 : τ0 A;x : τ0 ` a2 : τ
A` let x= a1 in a2 : τ

The class of non-expansive expressions can be refined, provided the evaluation
cannot produce side-effects and preserves non-expansiveness. For instance, in ML,
we can consider let-bindings of non-expansive expressionsin non-expansive expres-
sions as non-expansive. In our calculus, type annotations are also non-expansive.
More generally, any expression where every application is protected (i.e. appears)
under an abstraction is non-expansive (creation of mutabledata-structure would be
the application of a primitive):

b ::= x j λx:a j let x= b in b j (b : τ) j [b : σ℄ j hbi
This system works perfectly, and all properties are preserved.

However, it seems too weak in practice. Since we use polymorphism of labels
to denote confirmation of polytypes, as soon as we let-bind anexpansive expres-
sion, all its labels become monomorphic, and all its polytypes need an explicit type
annotation before they can be eliminated. For instance, thefollowing program is
not typable, because labels in the type of the binding occurrence ofg cannot be
generalized.let f = [λx:x : 8α:α! α℄ in let g= (λx:x) f in hgi g

When ML polymorphism is restricted to values, the result of an application is
monomorphic (here, the result of applyingλx:x to f). Traditionally, the typical
situation when a polymorphic result is restricted to be monomorphic is partial ap-
plication. There, polymorphism is easily recoverable byη-expansion. However, the
same problem appears when objects are represented as records of methods, with no
possibility of η-expansion. In our core language, the only way to recover at least
explicit polymorphism in such a case is to annotate the use oflet-bound variables
with their own types:let f = [λx:x : 8α:α! α℄ in let g= (λx:x) f in hg : [8α:α! α℄i g

159

In practice, with objects, this means recalling explicit polymorphism information at
each method invocation. The strength of our system being itsability to omit such
information, its interest would be significantly reduced bythis limitation.

One might think that allowing quantification on labels in LET-E, i.e. write 8ε̄:τ0 in
place ofτ0, is harmless. Indeed, label polymorphism does not allow type mismatches
like usual polymorphism would: verifying identity of polymorphic types is done
separately. However, this rule would break principal types. Consider, for instance,
the following expression:let x= id [℄ in let y= hhd xi in x

It can be assigned the polytype[σ℄ε list for any polymorphic typeσ. However, the
ordering of polymorphic types does not induce a corresponding ordering of poly-
types, two polytypes with different polymorphic structureare unordered. Therefore,
this expression has no principal type.

This problem is pathological, since such patterns will rarely occur. However, it is
serious and significant machinery is required to fix it. It canbe solved by restricting
judgments to minimal ones. That is, we replace LET-V and LET-E by the restricted
versions defined below. We writeA`? a : ς to mean thatς is a minimal type scheme
for a under assumptionsA. That is,A ` a : ς and there exists noς0 strictly greater
thanς in the instantiation order, such thatA` a : ς0. (Since we happen to be keeping
principality, ς is the principal type scheme fora under assumptionsA.)

(LET-V?)
A`? b : ς A;x : ς ` a : τ

A` let x= b in a : τ

(LET-E?)
A`? a1 : 8ε̄ᾱ:τ0 a1 6� b A;x : (8ε̄:τ0)fτ̄=ᾱg ` a2 : τ

A` let x= a1 in a2 : τ

The rule LET-E? may seem strange, since it is not an instance of the original LET

rule, but rather a combination of INST and LET. The original derivation would have
been:

A` a1 : 8ε̄ᾱ:τ0
...

A` a1 : 8ε̄:τ00 A;x : 8ε̄:τ00 ` a2 : τ

A` let x= a1 in a2 : τ

The restriction to minimal judgments is not new: it has already been used for
the typing of dynamics in ML [Leroy and Mauny, 1991], for instance. One has to
reject the programλx:(dynami
 x) because, in the principal judgmentx : α ` x : α,
some variable of the type ofx occurs free in the context. A non principal judgment
obtained by choosingint for α would be correct, but arbitrary. More recently,
it has been used for local type inference in systemF� [Pierce and Turner, 1998].

160

Type inference is only allowed locally at application nodes, and upon the condition
there is a principal solution to the local inference problem. Without this condition,
choices made at an application node would influence other nodes, and inference
would lose its locality.

We use minimality here in a somewhat different way. In the above two systems,
requiring a principal solution was a way to have the inference fail on some ambigu-
ous cases. Contrary to dynamics, our types do not need to be ground; they may share
variables with the environment. Contrary to local type inference, all our satisfiable
inference problems have principal solutions. Thus, our minimality condition never
makes a type inference problem fail, but only restricts the set of types that can be
assigned to a variable in a let statement. Notice that`? judgments do not actually
require the derivation to be principal, but only minimal; they do not eliminate all
different derivations, but only those that would be obtained by unnecessarily instan-
tiating some types. We may then prove the existence of principal types by showing
that all minimal type schemes are equal modulo renaming of bound variables, and
as a result our minimality condition happens to be a principality condition. This
condition is not harmful when reasoning about derivations:the property of mini-
mality of a derivation is kept by global substitution of freetype variables, so that the
stability lemma is still valid in the extended system.

Still, we do not consider this solution as fully satisfactory, and we view it as an
example of the difficulties inherent to value-only polymorphism.

6 RELATED WORK

Full type inference of polymorphic types is undecidable [Wells, 1994]. Several
works have studied the problem of partial type inference in systemF.

Some implementations of languages based on systemF relieve the user from the
burden of writing all types down. In Cardelli’s implementation of the language
Fun [Cardelli, 1993] polymorphic types are marked either asimplicit (actually their
variables are marked) and they are automatically instantiated when used, or as ex-
plicit and they remain polymorphic until they are explicitly instantiated. This mech-
anism turns out to be quite effective in inferring type applications. However, types
of abstracted values are never inferred. Thus, the expression λx:x cannot be typed
without providing a type annotation on the variablex, which shows that this is not
an extension to ML. Pierce and Turner have extended this partial inference mecha-
nism toFω� in the design of the language Pict [Pierce and Turner, 1997b]. By default
they also assign “unification variables” to parameters of functions with no type an-
notations. Their solution requires surprisingly little type information in practice,
especially in the absence of subtyping. Still, as for Cardelli’s solution, it is quite
difficult to know exactly the set of well-typed programs, since the description is
only algorithmic.

Conscious of this problem, they more recently proposed to replace this unpre-
dictable approach by one based on predictable local inference [Pierce and Turner, 1998,
Pierce and Turner, 1997a]. Their approach is somewhat opposite of ours: while we

161

provide some inference-free type checking without modifying ML type inference,
they add some type inference toF� and keep a checking based system. In their ap-
proach, the uniqueness of typing is still valid at every step. As we, they distinguish
between the specification and the algorithm of type inference, but this distinction is
only limited to one rule, the one doing local inference. Thisrule has two provably
equivalent versions: one is a specification of the inferred type in terms of a univer-
sal property; the other one is algorithmic and is presented in a constraint-solving
style. The difference of approach and the fact that they alsohandle subtyping make
it difficult to compare the respective strength of the two systems.

A different approach is taken by Pfenning [Pfenning, 1988].Instead of provid-
ing type annotations on lambda’s, he indicates possible type applications (this cor-
responds to the notationh i in our language). Then, he shows that partial type
inference in systemF corresponds to second-order unification and is thus undecid-
able [Pfenning, 1993]. As in our system, his solution is an extension of ML. His
solution is also more powerful than ours; the price is the loss of principal types and
decidability of type inference. A decidable subcase of higher-order unification has
also been considered in [Dowek et al., 1996]. Neither solution handles subtyping
yet.

Kfoury and Wells show that type inference could be done for the rank-2 frag-
ment of systemF [Kfoury and Wells, 1994]. However, they do not have a notion of
principal types. It is also unclear how partial type information could be added.

In [Odersky and Läufer, 1996], Läufer and Odersky actually present two differ-
ent mechanisms. First, as we explained in the introduction they add higher-order
polymorphism with fully explicit introduction and elimination. As we have seen
in section 3.2, our framework subsumes theirs. They also introduce another mech-
anism that allows annotations of abstractions by polymorphic types as inλx:σ:x
together with a type containment relation on polymorphic types similar to the one
of Mitchell [Mitchell, 1984] but with some serious restriction. Polymorphic types
may be of the form8α:σ1! σ2, whereσi are polymorphic types themselves. How-
ever, universal variables such asα can only be substituted by simple types. Thus,
the only way to apply a function of type8α:α! α to a polymorphic value re-
mains to embed the argument inside an explicitly defined polytype. Actually, one
of the reasons for complementing universal-datatype polymorphism by restricted
type-containment is to obtain an encoding of systemF. In our case, the encoding of
systemF is permitted by the use of polytypes.

In [Duggan, 1995], Duggan proposes an extension to ML with objects and poly-
morphic methods. His solution heavily relies on the use of kinds and type annota-
tions. These are carried by method names that must be declared before being used.
In this regard, his solution is similar to having fully explicit polymorphism both at
introduction and elimination, as in [Odersky and Läufer, 1996]. His use of recursive
kinds allows some programs that cannot be typed in our proposal (section 4). How-
ever, this is due to a different interpretation of object types rather than a stronger
treatment of polymorphism.

162

CONCLUSION

We have presented a conservative extension to ML that allowsfor first-class poly-
types and first-class polymorphic values. In our proposal asin ML, let-polymorphism
remains implicit. While first-class polymorphism must be introduced explicitly,
type information is inferred at the elimination point. Thisallows for polymorphic
methods in Objective ML, which are particularly useful in parameterized classes.

We have also shown that polymorphism can be restricted to values, so as to be
sound in the presence of side-effects. This naive standard restriction weakens the
propagation of first-class polymorphism, and forces some type annotations, unnec-
essarily. Thus, we have also proposed an extension that covers all useful cases and
does not present any known limitations. Even though the specification of typecheck-
ing becomes technically more difficult, since it involves the notion of minimal judg-
ments, the principal-type property is preserved. Althoughpractically insignificant,
this difficulty exposes a drawback of the value-only restriction of polymorphism.

As future work, three extensions of importance are to be studied. While second
order polymorphism is sometimes quite useful for programming, it is not always
enough. Indeed, this is only one step further on the scale of abstraction. There
are few but serious situations when systemFω is needed to accomplish the desired
abstraction. Extending our solution toFω might be possible, but certainly trickier
because ofβ-reduction at the level of types. Secondly, we should consider applying
our technique to existential types. The encoding of these into universal types intro-
duces inner quantifiers, which removes all opportunities for inference. It remains
unclear whether primitive existential types could benefit from our work. Thirdly,
the replacement of the core ML type system by one with subtyping constraints
as in [Aiken and Wimmers, 1993, Eifrig et al., 1995a], would combine first-order
generic polymorphism and subtyping polymorphism in an ML-like language. The
issues of constraint checking and type generalization are rather orthogonal. How-
ever, some recent and more general presentation [Pottier, 1996, Eifrig et al., 1995b]
significantly differs from ML. Thus, more investigation is required.

The principle of our approach has been to keep within first-order type inference.
While we believe this to be sufficient in practice, we would still like to formulate
our type system in terms of partial type inference for second-order lambda-calculus.

References

[Aiken and Wimmers, 1993] Aiken, A. and Wimmers, E. L. (1993). Type inclu-
sion constraints and type inference. InConference on Functional Programming
Languages and Computer Architecture, pages 31–41. ACM press.

[Cardelli, 1993] Cardelli, L. (1993). An implementation ofFSub. Research Re-
port 97, Digital Equipment Corporation Systems Research Center.

163

[Damas and Milner, 1982] Damas, L. and Milner, R. (1982). Principal type-
schemes for functional programs. InProceedings of the Ninth ACM Conference
on Principles of Programming Langages, pages 207–212.

[Dowek et al., 1996] Dowek, G., Hardin, T., Kirchner, C., andPfenning, F. (1996).
Higher-order unification via explicit substitutions: the case of higher-order pat-
terns. In Maher, M., editor,Joint international conference and symposium on
logic programming, pages 259–273.

[Duggan, 1995] Duggan, D. (1995). Polymorphic methods withself types for ML-
like languages. Technical report cs-95-03, University of Waterloo.

[Eifrig et al., 1995a] Eifrig, J., Smith, S., and Trifonov, V. (1995a). Sound poly-
morphic type inference for objects. InOOPSLA.

[Eifrig et al., 1995b] Eifrig, J., Smith, S., and Trifonov, V. (1995b). Type inference
for recursively constrained types and its application to OOP. In Mathematical
Foundations of Programming Semantics.

[Garrigue and Rémy, 1997] Garrigue, J. and Rémy, D. (1997). Extending ML with
semi-explicit higher-order polymorphism. In Ito, T. and Abadi, M., editors,The-
oretical Aspects of Computer Software, volume 1281 ofLecture Notes in Com-
puter Science, pages 20–46. Springer-Verlag.

[Huet, 1976] Huet, G. (1976).Résolution d’́equations dans les langages d’ordre
1;2; : : : ;ω. Thèse de doctorat d’état, Université Paris 7.

[Jouannaud and Kirchner, 1991] Jouannaud, J.-P. and Kirchner, C. (1991). Solving
equations in abstract algebras: a rule-based survey of unification. In Lassez, J.-L.
and Plotkin, G., editors,Computational Logic. Essays in honor of Alan Robinson,
chapter 8, pages 257–321. MIT-Press, Cambridge (MA, USA).

[Kfoury and Wells, 1994] Kfoury, A. J. and Wells, J. B. (1994). A direct algorithm
for type inference in the rank-2 fragment of the second-order λ-calculus. In
Proceedings of the ACM Conference on Lisp and functional programming, pages
196–207, Orlando, Florida.

[Läufer and Odersky, 1994] Läufer, K. and Odersky, M. (1994). Polymorphic type
inference and abstract data types.ACM Transactions on Programming Lan-
guages and Systems, 16(5):1411–1430.

[Leroy and Mauny, 1991] Leroy, X. and Mauny, M. (1991). Dynamics in ML.
In Hughes, J., editor,Conference on Functional Programming and Computer
Achitecture, volume 523 ofLecture Notes in Computer Science, pages 406–426.
Springer-Verlag.

[Mitchell, 1984] Mitchell, J. C. (1984). Polymorphic type inference and contain-
ment. In Proceedings of the International Symposium on Semantics ofData

164

Types, volume 173 ofLecture Notes in Computer Science, pages 257–278,
Sophia-Antipolis, France. Springer-Verlag. Full versionin Information and Com-
putation, 76(2/3):211–249, 1988. Reprinted inLogical Foundations of Func-
tional Programming,ed. G. Huet, pages 153–194, Addison-Wesley, 1990.

[Odersky and Läufer, 1996] Odersky, M. and Läufer, K. (1996). Putting type an-
notations to work. InProceedings of the 23rd ACM Conference on Principles of
Programming Languages, pages 54–67.

[Pfenning, 1988] Pfenning, F. (1988). Partial polymorphictype inference and
higher-order unification. InProceedings of the ACM Conference on Lisp and
Functional Programming, pages 153–163, Snowbird, Utah. ACM Press.

[Pfenning, 1993] Pfenning, F. (1993). On the undecidability of partial polymor-
phic type reconstruction.Fundamenta Informaticae, 19(1/2):185–199. Prelim-
inary version available as Technical Report CMU-CS-92-105, School of Com-
puter Science, Carnegie Mellon University, January 1992.

[Pierce and Turner, 1997a] Pierce, B. C. and Turner, D. N. (1997a). Local type ar-
gument synthesis with bounded quantification. Technical Report 495, Computer
Science Department, Indiana University.

[Pierce and Turner, 1997b] Pierce, B. C. and Turner, D. N. (1997b). Pict: A pro-
gramming language based on the pi-calculus. Technical report, Computer Sci-
ence Department, Indiana University.

[Pierce and Turner, 1998] Pierce, B. C. and Turner, D. N. (1998). Local type infer-
ence. InProceedings of the 25th ACM Conference on Principles of Programming
Languages. Full version available as Indiana University CSCI Technical Report
493.

[Pottier, 1996] Pottier, F. (1996). Simplifying subtypingconstraints. InProceed-
ings of the 1996 ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP ’96), pages 122–133.

[Rémy, 1992] Rémy, D. (1992). Extending ML type system with a sorted equa-
tional theory. Research Report 1766, Institut National de Recherche en Infor-
matique et Automatisme, Rocquencourt, BP 105, 78 153 Le Chesnay Cedex,
France.

[Rémy, 1994] Rémy, D. (1994). Programming objects with ML-ART: An exten-
sion to ML with abstract and record types. In Hagiya, M. and Mitchell, J. C.,
editors,Theoretical Aspects of Computer Software, volume 789 ofLecture Notes
in Computer Science, pages 321–346. Springer-Verlag.

[Rémy and Vouillon, 1997] Rémy, D. and Vouillon, J. (1997). Objective ML: A
simple object-oriented extension to ML. InProceedings of the 24th ACM Con-
ference on Principles of Programming Languages, pages 40–53. ACM Press.

165

[Wells, 1994] Wells, J. B. (1994). Typability and type checking in the second order
λ-calculus are equivalent and undecidable. InNinth annual IEEE Symposium on
Logic in Computer Science, pages 176–185, Paris, France.

[Wright, 1993] Wright, A. K. (1993). Polymorphism for imperative languages
without imperative types. Technical Report 93–200, Rice University.

A PROOFS OF MAIN THEOREMS

Lemmas 1 (canonical derivations) and 2 (stability by substitution) are tedious but
essential in ML. Their proofs easily carry over with the three new rules, ANN,
INTRO, and ELIM .

Proof of type soundness for the core language

Lemma 4 (Term substitution) If A;x : σ2 ` a : σ1 and A` b : σ2 hold, then À
afb=xg : σ1 also holds.

Proof: The proof is by induction on the structure of the first derivation.

Theorem 1 (Subject reduction) Reduction preserves typings,i.e. if a1 �! a2,
then a1� a2.

Proof: We show that every rule in the definition of�! is satisfied by the relation�. Since�! is the smallest relation verifying those rules, then� must be a super-
relation of�!. All cases are independent. In each case but CONTEXT, we assume
thatA` a1 : ς (1) and thata1�! a2, (the structure ofa1 depending on the case) and
we show thatA` a2 : ς (2).

We first assume that the derivation does not end with a rule GEN. If the derivation
ends with a rule GEN, it is of the form:

∆
A` a1 : ς0 (GEN*)

A` a1 : 8ξ̄:ς0

where the derivation∆ of (1) does not end with a rule GEN. Thus we haveA` a2 : ς0

and (2) follows by the same sequence of generalizations.

Case FUN and LET: This is a straightforward application of term-substitution
lemma.

CaseELIM : A canonical derivation of (1) ends with

A` a : σ1 (σ1 : σ0 : σ2) (INTRO)
A` [a : σ0℄ : [σ2℄ε (GEN)

A` [a : σ0℄ : 8ε:[σ2℄ε (ELIM)
A` h[a : σ0℄i : σ2

166

The polymorphic typesσ1, σ0, andσ2 are of the form8ᾱ:τ1, 8ᾱ:τ0, and8ᾱ:τ2, and
such that(τ1 : τ0 : τ2). Choosing variables̄α that do not occur free inA, we can
contract this derivation into the following derivation of (2):

A` a : σ1 (INST*)
A` a : τ1 (τ1 : τ0 : τ2) (ANN)

A` (a : τ0) : τ2 (GEN*)
A` (a : τ0) : σ2

CaseTFUN: A canonical derivation ofA` a1 : σ ends with

A` a : τ02! τ01 (τ02! τ01 : τ2! τ1 : τ002! τ001) (3) (ANN)
A` (a : τ2! τ1) : τ002! τ001 A` b : τ002 (APP)

A` (a : τ2! τ1) b : τ001
Since the relation (3) implies both(τ002 : τ2 : τ02) and(τ01 : τ1 : τ001), we can build the
derivation:

A` a : τ02! τ01 A` b : τ002 (τ002 : τ2 : τ02) (ANN)
A` (b : τ2) : τ02 (APP)

A` a (b : τ2) : τ01 (τ01 : τ1 : τ001) (ANN)
A` (a (b : τ2) : τ1) : τ001

CaseTINT: The last derivation of (1) ends with:

A` a : σ01 (3) (σ01 : σ1 : σ001) (4) (INTRO)
A` [a : σ1℄ : [σ001℄ε1 ([σ001℄ε1 : [σ2℄ε2 : [σ3℄ε3) (5) (ANN)

A` ([a : σ1℄ : [σ2℄ε2) : [σ3℄ε3

Let 8ᾱ:τ1 be σ1. From (4), we know that we can writeσ01 and σ001 as8ᾱ:τ01 and8ᾱ:τ001. Moreover, we have(τ01 : τ1 : τ001). From (5), we also get(σ001 : σ2 : σ3). Thus,
we have (3) (INST*)

A` a : τ01 (τ01 : τ1 : τ001) (ANN)
A` (a : τ1) : τ001 (GEN*)
A` (a : τ1) : σ001 (σ001 : σ2 : σ3) (INTRO)

A` [(a : τ1) : σ2℄ : [σ3℄ε3

CaseTVAR: Annotating with a type variable does nothing.

CaseCONTEXT: Here, we need to show that ifa1 � a2 then for any evaluation
contextE we also haveEfa1g�Efa2g. The proof, which we can directly take from
usual ML, is by structural induction onE.

167

Theorem 2 (Canonical forms) Irreducible programs (for call-by-value reduction)
that are well-typed in the empty environment are values.

Proof: We first relate the shape of types and the shape of values. Letv be a value of
typeτ. By considering all possible canonical derivations, we seethat:� if v is a poly expression, possibly with a type constraint, thenτ is a polytype;� otherwise,v is of the formw andτ is a functional type.

Since polytypes and functional types are incompatible, we can invert the property:� if τ is a polytype, thenv is a poly expression, possibly with a typed constraint.� otherwise,τ is a functional type, andv is of the formw.

Then, the theorem follows: considering a programa that is well-typed in the empty
environment and that cannot be reduced, it can easily be shown by structural induc-
tion thata is a value.

Proof of the principal type property

Lemma 5 (Unification) Each of the rules given in figures 2 and 3, is correct and
complete.

Proof:

CasesOCCUR-CHECK, MERGE, ABSORB, and DECOMPOSE: those are standard
rules for first-order unification.

CaseDECOMPOSE-POLY and CLASH: immediate.

CasePOLYTYPES: This case amounts to fully formalizing the discussion in sec-
tion 2.4. Assume that̄α\ ᾱ0, ᾱ\FV(τ0), andᾱ0\FV(τ) are all empty (1).

Soundness: Assume thatθ is a solution of9 ᾱᾱ0:τ := τ0 ^ ᾱ$ ᾱ0. Let η be a
renaming ofᾱᾱ0 into variables outside of free variables ofθ, τ, τ0, andᾱᾱ0. The
substitutionη Æ θ is also a solution of the same unificand. Since its image has no
variable in common withᾱᾱ0, the substitutionη Æ θ n ᾱᾱ0 can be extended by a
substitutionρ of domainᾱᾱ0 such that the substitutionθ0 equal toη Æ θ n ᾱᾱ0+ ρ
is a solution ofτ := τ0 ^ ᾱ$ ᾱ0. Sinceθ0 is a solution ofᾱ$ τ̄0, the substitution
ρ is injective onᾱ and ᾱ0 taken separately. Moreover, its image is inᾱᾱ0. The
substitution(η+η�1)Æθ0 decomposes as(θn ᾱᾱ0)+(ηÆρ), which is actually equal
to θÆηÆρ; it must be a solution ofτ := τ0. Therefore the substitutionθ is a solution

of 8ᾱ:τ 8= 8ᾱ0:τ0.
Completeness: Let θ be a solution of8ᾱ:τ 8= 8ᾱ0:τ0. Reusing the reasoning and the

definitions of section 2.4, the substitution(ηÆθn ᾱᾱ0)+ρ is a solution ofτ := τ0^
168

ᾱ$ ᾱ0 whereη is a renaming of̄αᾱ0 into variables taken outside of free variables
of θ, τ, τ0, andᾱᾱ0. Thus,ηÆθ is a solution of9 ᾱᾱ0:τ := τ0^ ᾱ$ ᾱ0 and so isθ by
composition withη�1.

CaseRENAMING-TRUE: The completeness is obvious. For the soundness, letθ
be any substitution. Letη be a renaming of̄αᾱ0 outside ofᾱᾱ0 and free variables
of θ. The substitution(η Æ θ) n ᾱᾱ0 can be extended with the substitution(αi 7!
α0

i)i21::n. Clearly, this extension satisfies both(αi
:= α0

i)i21::n andᾱ$ ᾱ0. Thusθ is
a solution of9 ᾱᾱ0:(αi

:= α0
i)i21::n^ ᾱ$ ᾱ0.

CaseRENAMING-FALSE: The soundness is obvious. For the completeness let us
consider the two following cases:

β 2 ᾱ and τ =2 ᾱ0 [fβg: Assume that there exists a solutionθ of both β := τ := e
and ᾱ$ ᾱ0. Sinceθ(τ) is equal toθ(β), it must be a variable, and so shouldτ
itself. Sinceθ n ᾱᾱ0 should not have variables in common with̄αᾱ0, τ must be in
ᾱᾱ0. However, since it is not in̄α0, it must be another variableγ of ᾱ distinct from
β, which contradicts with the fact thatθ j̀ ᾱ must be injective (condition 2).

β 2 ᾱ\FV(τ) and τ 6= β: In particular,τ must be a proper term. Assume that
there exists a solutionθ of bothγ := τ := eandᾱ$ ᾱ0. The termθ(γ), equal toθ(τ),
is a proper term; thus,γ cannot be a variable of̄αᾱ0. However,θ(γ) contains the
variableθ(β) that belongs tōαᾱ0. This contradicts condition 3.

Theorem 4 Given a typing problem(A . a : τ) there exists a principal solution,
which is computed by the set of rules described in figures 2, 3 and 4, or there is no
solution and the problem reduces to?.

Proof: We first show the soundness and completeness of each rewriting rule:

CasesVAR, FUN, APP, and LET: are as in ML.

CaseANN: The case ANN is not special since the construct(: τ) could be treated
as the application of a primitive.

CaseINTRO: We assume that all the conditions of the first four lines are satisfied.
We writeσi for σfᾱ1ε̄i=ᾱ0ε̄0g.

Soundness: Let us assume thatA ` a : τ1fε̄1=ε̄0g ����> 9ξ:θ and ᾱ\ dom(θ) [
FV(codom(θ)) = /0. We haveθ(A) ` a : θ(σ1) by generalization of̄α in the judg-
mentθ(A) ` a : θ(τ1fε̄1=ε̄0g). Since by construction(θ(σ1) : σ : θ(σ2)), we also
haveθ(A) ` [a : σ℄ : θ([σ2℄ε). That is,θ is a solution ofA ` [a : σ℄ : [σ2℄ε. Thus,
a solution ofθ^ τ = [σ2℄ε is a solution ofA ` [a : σ℄ : τ. Moreover, no variable of
ε̄1; ε̄2;ε; ᾱ1 appears inA or τ.

169

Completeness: Let us assume thatθ0 is a solution ofA . [a : σ℄ : τ. A canonical
derivation ofθ0(A) ` [a : σ℄ : θ0(τ) must end with rule INTRO. Thus, there exists
some polymorphic typesσ01 andσ02 and some labelε such thatθ0(A) ` a : σ01 (1),(σ01 : σ : σ02) (2), andθ0(τ) = [σ02℄ε (3). By definition of the relation(: σ :) the pair(σ01;σ02) must be of the form(θ00(σ1);θ00(σ2)) for some substitutionθ00 of domain
ε̄1ε̄2ᾱ0. A canonical derivation of (1) must end with a succession of rules GEN.
Thus we haveθ0(A) ` a : θ00(τ1fε̄1=ε̄0g). On the one hand, the substitutionθ0+θ00
is a solution ofA ` a : τ1fε̄1=ε̄0g, and consequently a solution ofθ. On the other
hand, it is a solution ofτ = [τ1fε̄2=ε̄0g℄ε. Moreover, it extendsθ0 on ᾱ0, ε̄0, ε̄1, ε,
andξ̄.

The completeness of the else branch is straightforward; Theproof above actually
applies ifθ is?. If θ is not?, the right condition may always be satisfied sinceᾱ
is disjoint from free variables of the typing problem.

CaseELIM : We assume that the condition of the first line is satisfied.
Soundness: If θ(α) = [8ᾱ0:τ0℄ε andε =2 FL(θ(A)) then rule ELIM applies, and an

extension ofθ such thatθ(τ) = θ(τ0) is a solution ofA . hai : τ. If θ(α) = α0 and
α0 =2 FV(θ(A)) then fromθ(A) ` a : α0 we deduceθ(A) ` a : [τ℄ε for someε not in
FV(θ(A)). By generalization ofε and rule ELIM , we getθ(A) ` hai : θ(τ). The
substitutionθ is thus a solution ofA . hai : τ.

Completeness: Let us assume thatθ0 is a solution ofA ` hai : τ. The canonical
derivation ofθ0(A) ` hai : θ0(τ) must end with rule ELIM . Thus, we must have
θ0(A) . a : [σ℄ε0 for someε0 that does not appear inθ0(A) and some polymorphic
typeσ of which θ0(τ) is an instance. Since9 ξ̄:θ is a principal solution ofA . a : α,
θ0 can be extended on̄ξ into a solution ofθ^θ(α) := [σ℄ε0 (1).

Thereforeθ(α) cannot be an arrow type. If it is a variable, then it cannot belong to
θ(A), otherwiseε0 would belong toθ0(A). Hence, together with (1) the completeness
of the second and third cases.

If θ(α) = [8ᾱ0:τ0℄ε thenε cannot belong toFL(θ(A)), otherwiseε0 would belong
to FL(θ0(A)). Sinceθ0 is a solution of[σ℄ε0 := [8ᾱ0:τ0℄ε, it is also a solution of
σ = 8ᾱ0:τ. Sinceθ0(τ) is an instance ofσ, it is an instance of8ᾱ0:τ. Thusθ0 can
be extended on̄α0 into a solution ofτ = τ0. Together with (1),θ0 is a solution of
θ^ τ = τ0.
Termination: We now show that applying the rules in any order always termi-
nates, with a unification problem in solved form.

Each rule of the algorithm decreases of the lexicographic ordering composed of
successively

1. the sum of sizes of program components,

2. the sum of monomialsXsize(σ) for all type and polymorphic type components
of the system,

3. the number of polymorphic constraints,

170

4. the number of multi-equations,

5. the sum of the lengths of multi-equations, and

6. the number of renaming problems.

Moreover, unification problems that cannot be reduced are insolved form. Clearly,
there cannot remain any typing problem since for each construction of the language
some rule applies. Similarly, polytypes can always be decomposed. Let us consider
a renaming problem̄α$ ᾱ0 for which rule RENAMING-FALSE would not apply.
Then variables of̄αᾱ0 could only appear in multi-equations composed of the vari-
ables inᾱᾱ0. Moreover at most one variable of each setᾱ andᾱ0 could appear in
each of these multi-equations. Therefore rule RENAMING-TRUE would apply. The
remaining rules are standard rules for unification for simple types.

171

